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In this paper we study the action of certain integral operators on spaces of holo-
morphic functions on some domains inCn. These integral operators are defined
by using powers of the Szegö kernel as integral kernel. We show that they act like
differential operators, or like pseudo-differential operators of not necessarily in-
tegral order. These operators may be used to give equivalent norms for the Besov
spacesBp of holomorphic functions. As a consequence we prove that, when 1≤
p < ∞, the small Hankel operatorshf on Hardy and weighted Bergman spaces
are in the Schatten classSp if and only if the symbolf belongs toBp.

The type of domains we deal with are the smoothly bounded strictly pseudo-
convex domains inCn and a class of complex ellipsoids inCn. Our results for
strictly pseudo-convex domains depend on Fefferman’s expansion of the Szegö
kernel. In this case, its powers act like a power of the derivation in the normal di-
rection. The ellipsoids we consider are the simplest examples of domains of finite
type. In this case, the symmetries of the domains can be exploited to use methods
of harmonic analysis and describe the pseudo-differential operators involved.

1. Basic Notation and Statement of the Main Results

LetD = { z : ρ(z) < 0 } be a smoothly bounded domain inCn, with ρ ∈ C∞(D̄)
and∇ρ 6= 0 on∂D. Forp > 0 letHp(D) denote the Hardy space of holomorphic
functions onD, with norm given by

‖f ‖pHp(D) := sup
ε>0

∫
δ(w)=ε

|f(w)|p dσ(w),

whereδ(w) := −ρ(w) is equivalent to the distance to the boundary anddσ is the
surface measure. LetP (σ)S andSσ denote the Szegö projection and the Szegö ker-
nel respectively:

P
(σ)
S g(z) :=

∫
∂D
Sσ(z, ζ)g(ζ) dσ(ζ)

for g ∈L2(∂D). We are interested in the (small) Hankel operatorh
(σ)
f with symbol

f, defined forg ∈L2(∂D) as
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h
(σ)
f (g) := P (σ)S

(
fP

(σ)
S (g)

)
. (1)

Moreover, forp > 0, we define the Besov spaces of holomorphic functions
B
p,n/p
p (D) by setting

Bp,n/pp (D) :=
{
g ∈Lp(D) :

∫
D
|δ l∇ lg|pB(z, z) dV(z) <∞

}
,

whereB(z,w) denotes the Bergman kernel onD, dV is the Lebesgue measure
onD, andl is some integer such thatlp > 2. For simplicity of notation, we shall
writeBp for Bp,n/pp (D). We also set

‖g‖Bp := ‖g‖Lp +
[ ∫
D
|δ l∇ lg|pB(z, z) dV(z)

]1/p

.

WhenD is the unit ball inCn, the Szegö kernelS is known explicitly and
S(z, ζ) = cn(1− z · ζ̄)−n. In this case, it is quite often useful to study the ac-
tion of integral operators defined by using powers of the Szegö kernel. The action
of these operators is usually expressed in terms of Besov norms, and it is easily
understood via the relation(

I + N
n

)
S(z, ζ) = S(n+1)/n(z, ζ), (2)

whereN is the differential operator
∑n

j=1zj ∂zj . Thus, equation (2) shows a link
between powers of the Szegö kernel and differential operators.

Using identity (2) and iterations of it, Feldman and Rochberg [FR] proved that
in the case of the unit ball, when 1≤ p <∞, the Hankel operatorhf belongs to
the Schatten classSp if and only iff is inBp. Recall that forp > 0, given a com-
pact operatorT on a Hilbert space, we say thatT belongs to the Schatten classSp
if
∑

j s
p

j <∞, where

sj := { inf ‖T − E‖ : rankE ≤ j }.
Such results generalized the now classical results of Peller [Pe] and Coifman and
Rochberg [CR] for the unit disc. It is natural to ask whether these results are valid
in a more general setting.

In order to present the results in this paper we need to introduce some more no-
tation. We begin with the case of the ellipsoids.

Let q be a positive integer, and let�q be the ellipsoid inC2 given by

�q := { z∈C2 : |z1|2 + |z2|2q < 1}.
On these ellipsoids, we first replace the surface measuredσ by the measuredµ
defined next, for which explicit computations are available. Precisely, letdµ be
the unique measure on∂�q such that, for positiveF,∫

C2
F(z) dV(z) =

∫ ∞
0

∫
∂�q

F(rz1, r
1/qz2) dµ(z)r

1+2/q dr. (3)
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The measuredµ is equivalent to the surface measuredσ, and the densitydµ/dσ
is aC∞ strictly positive function. We shall denote byP µ

S andSµ the Szegö pro-
jection and the Szegö kernel related to the measuredµ, respectively. The Hankel
operatorh(µ)f is defined as in (1), usingP µ

S instead ofP σ
S . Notice that, in the case

of the unit ball, the measuresdµ anddσ coincide.
The identity (2) is no longer valid in the case of ellipsoids, even in an approxi-

mate way. ButSµ is known explicitly, and we shall prove an identity for the powers
of Sµ(z, ζ) that involves some kind of pseudo-differential operators. Specifically,
we prove the following results.

Theorem 1.1. Let p > 0 and letλ be a real number such thatλ > 1/p. Then
there existsc = c(p, λ) > 0 such that, for allg ∈Bp, we have

1

c
‖g‖pBp ≤

∫
�q

∣∣∣∣∫
∂�q

Sλ+1
µ (z, ζ)

Sλµ(z, z)
g(ζ) dµ(ζ)

∣∣∣∣pB(z, z) dV(z) ≤ c‖g‖pBp .
Notice that the condition onλ ensures that the weight is an integrable function, and
thatλ can be taken to be 1 ifp > 1. Thus, the middle term in the foregoing display
defines an equivalent norm onBp. We shall also prove the analog of Theorem 1.1
for integral powers of the Szegö kernelSσ .

As an application of Theorem1.1, weshall obtain a necessary and sufficient
condition forh(µ)f andh(σ)f to belong to the Schatten classSp when 1≤ p <∞.

In [Sy1] and [Sy3] it was proved that the conditionf ∈ Bp is a sufficient con-
dition for hf to belong toSp (1 ≤ p < ∞) for finite-type domains inC2, for
strictly pseudo-convex domains inCn, and also for ellipsoids inCn. The neces-
sity of the condition was left open. Here we show that the condition is necessary
when we restrict to the class of ellipsoids that we have defined, and also for strictly
pseudo-convex domains.

Using the method of [FR], it was also mentioned in [Sy1] that, forp > 1, h(µ)f ∈
Sp implies∫

�q

∣∣∣∣S−1
µ (z, z)

∫
∂�q

S2
µ(z, ζ)f(ζ) dµ(ζ)

∣∣∣∣pB(z, z) dV(z) <∞. (4)

In the case of the unit ball, condition (4) is immediately seen to be equivalent to
the fact thatg is in the spaceBp. The reason for this is the link betweenS2

σ and a
derivative ofSσ given by (2).

Our result in the case of the ellipsoids is as follows, wherehf stands for both
h
(µ)

f andh(σ)f .

Theorem 1.2. Let1≤ p <∞. Thenhf ∈Sp is equivalent tof ∈Bp.

In the case ofh(µ)f , Theorem 1.2 follows directly from Theorem 1.1 and [Sy1] for
p > 1. We give a new proof, which extends to the casep = 1. We also prove that
Theorem 1.2 is still valid for the Hankel operators based on weighted Bergman
projections.
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We next turn to the case of a strictly pseudo-convex domain. We prove the
analogs of Theorems 1.1 and 1.2 in this case. In this context the identity (2), which
we wrote for the ball, holds in an approximate way. This is an easy consequence
of Fefferman’s expansion for the Szegö kernel. Although these results on strictly
pseudo-convex domains all follow from somewhat standard techniques, it seems
that they never appeared in print before. The idea of approximate identities is also
used to deduce the two main theorems in the case of the surface measuredσ on
the ellipsoids.

We mention that the charaterization of bounded and compact Hankel operator is
known in the case of a strictly pseudo-convex domain. In the case of the unit ball
[CRW] and in general [KL] it has been shown thathf is bounded if and only iff ∈
BMO and is compact if and only iff ∈H 2∩VMO. We also mention that charac-
terizations of symbols of big Hankel operators have been obtained in [KLR1] and
[BeLi], and that related results appear in [KLR2].

The paper is organized as follows. Sections 2, 3, and 4 are devoted to the prob-
lem on ellipsoids with measuredµ. In Section 2 we study the powers of the Szegö
kernel, and in Section 3 we prove Theorem1.1on equivalence of norms inBp(�q).

We believe that these results, and the techniques involved, may have applications
beyond what is offered here. In Section 4 we prove Theorem 1.2. In Section 5, we
prove the corresponding results for weighted Bergman spaces on�q. In Section 6
we consider the case of a smoothly bounded strictly pseudo-convex domain, and
in Section 7 we conclude by indicating how to translate the results proved on the
ellipsoids to the case of the surface measure.

Finally, we mention that in an upcoming paper [BPS] we study the question
of factorization of Hardy spaces as well as characterization of bounded and com-
pact Hankel operators on a class of finite type domains inCn that includes the
ellipsoids.

2. Powers of the Szegö Kernel

The next three sections deal with the Szegö kernel and the Hankel operator related
to the measuredµ, so we shall omit all indices or exponents and write simplyS

(resp.hf) instead ofSµ (resp.h(µ)f ). We shall also write� instead of�q. With
respect to the surface measuredµ on the boundary∂� (see (3)), the Szegö kernel
S(z, ζ) has expression

S(z, ζ) = c
∑
m

0
(
m1+ m2

q
+1+ 1

q

)
0(m1+1)0

(m2

q
+ 1

q

)zmζ̄m
= c(1− z1ζ̄1)

−(1+1/q)

(
1− z2ζ̄2

(1− z1ζ̄1)1/q

)−2

.

(see [BoLo]). We recall that the Bergman kernel also has an explicit expression
of this type, which allows us to considerdµ as a natural measure on∂�.

We want to study the integral operatorMλ (λ > 0), given by

f 7→
∫
∂�

Sλ+1(·, ζ)f(ζ) dµ(ζ),
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when acting on holomorphic functions. We can write

S(z, ζ) =
∑
m

γ−1
m z

mζ̄m,

with γm =
∫
∂�
|ζm|2 dµ(ζ). We are going to writeSλ+1(z, ζ) in the same way.

Lemma 2.1. For l > 0 we have

S l(z, ζ) = cl
∑
m

γ−1
m A

(l)
m z

mζ̄m,

where the sum is taken overm∈Z2, m1, m2 ≥ 0, and

A(l)m =
0
(
m1+ m2

q
+ (1+ 1

q

)
l
)

0
(
m1+ m2

q
+1+ 1

q

) · 0(m2 + 2l )

0(m2 +1)
·

0
(m2

q
+ 1

q

)
0
(m2

q
+ (1+ 1

q

)
l
) .

Proof. We begin by settingS l(z, ζ) =∑m cmz
mζ̄m, and we wish to compute the

coefficientscm. Notice that∫
∂�

S l(z, ζ)ζm dµ(ζ) = cmzm
∫
∂�

|ζm|2 dµ(ζ)

= cmγmzm.
Recalling that

S l(z, ζ) = c l(1− z1ζ̄1)
−l(1+1/q)

(
1− z2ζ̄2

(1− z1ζ̄1)1/q

)−2l

and using Lemma 1.6 in [BoLo], it is easy to see that

A(l)m = cmγm

= c ′l
∫
∂�

(1− w1)
−l(1+1/q)

(
1− w2

(1− w1)1/q

)−2l

w̄
m1
1 w̄

m2
2 dµ(w)

= c ′l
0(m2 + 2l )

0(m2 +1)0(2l )
·

0
(
m1+ m2

q
+ (1+ 1

q

)
l
)

0
(m2

q
+ (1+ 1

q

)
l
)
0(m1+1)

×
0(m1+1)0

(m2

q
+ 1

q

)
0
(
m1+ m2

q
+1+ 1

q

) .
This proves the lemma.

Thus we have shown that, iff(z) =∑m amz
m is inH 2(�), then∫

∂�

Sλ+1(z, ζ)f(ζ) dµ(ζ) = cλ
∑
m

amA
(λ+1)
m zm. (5)

We now define the operators that are our main technical tools.

Definition 2.2. Forλ ≥ 0 we define the operatorsMλ andM̃λ acting on holo-
morphic functions as follows. Letf(z) =∑m amz

m in H 2(�). Then we set
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Mλf(z) :=
∫
∂�

Sλ+1(z, ζ)f(ζ) dµ(ζ) = cλ
∑
m

amA
(λ+1)
m zm (6)

and, with some abuse of notation,

M̃λf(z) :=
∑
m

(
m1+ m2

q
+1

)(1+1/q)λ(
m2

q
+1

)(1−1/q)λ

amz
m. (7)

Notice that, indeed,̃Mλ B M̃λ′ = M̃λ+λ′ .

We have the following result relating the operatorsMλ andM̃λ.

Lemma 2.3. Letλ ≥ 0 and letdν be a finite measure on� that is invariant under
the action ofT2 on� given by

(w1, w2) 7→ (eiθ1w1, e
iθ2w2).

Then, for allp > 0 there existscp > 0 such that, for all holomorphic functions
f ∈H 2(�),

1

cp

∫
�

|Mλf |p dν ≤
∫
�

|M̃λf |p dν ≤ cp
∫
�

|Mλf |p dν.

Proof. We setl := λ+1 and define

αm := α(l)m := A(l)m(
m1+ m2

q
+1

)(1+1/q)(l−1)(m2

q
+1

)(1−1/q)(l−1)
. (8)

From the invariance ofdν, it follows that∫
�

|Mλf |p dν

= 1

(2π)2

∫ 2π

0

∫ 2π

0

∫
�

|Mλf(e
iθ1w1, e

iθ2w2)|p dν(w1, w2) dθ1 dθ1;

the same holds withM̃λ in place ofMλ. If we integrate first inθ1, θ2, we see
that the inequalities will follow from the fact that the operator involved on double
Taylor series is bounded onHp(T2). It therefore suffices to show that the two se-
quences(αm)m∈N2 and(α−1

m )m∈N2 define two bounded Fourier multipliers of the
spacesHp(T2). We shall prove it for the first sequence (the proof for the second
is identical).

If we write αm as a product then we are led to consider sequences of the type

β(1)m =
0(m2 +1+ s)

0(m2 +1)(m2 + q)s ,

β(2)m =
0
(m2

q
+ 1

q

)(m2

q
+ 1

q

)s
0
(m2

q
+ 1

q
+ s) ,

β(3)m =
0
(
m1+ m2

q
+1+ 1

q
+ s)

0
(
m1+ m2

q
+1+ 1

q

)(
m1+ m2

q
+1

)s ,
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where in each cases is a positive number related tol andq. It suffices to show that
each of these three sequences(β

(j)
m ) (j = 1,2,3) gives rise to a bounded Fourier

multiplier. Let us first look at(β(j)m ) for j = 1,2. As these sequences depend only
onm2, we may restrict to problems of multipliers on the torus of dimension 1.

We now recall the sufficient condition of Mihlin type, which ensures that the
sequence(βn)n∈N is a Fourier multiplier ofHp(T). We define the difference op-
erators1k by induction, setting10 = Id and1βn = βn − βn+1. Then the Mihlin
condition may be written as

|1kβn| ≤ Cl(n+1)−k, k = 0,1,2, . . . . (9)

If the sequence(βn)n∈N satisfies (9), then it is a bounded Fourier multiplier of
Hp(T) for all p > 0 (see [St, pp. 115, 245]). It is easy to prove that the sequence
onN which gives rise toβ(1)m satisfies (9), so that it defines a bounded multiplier.

In order to analyze the sequenceβ(2)m , we shall use the following elementary
lemma.

Lemma 2.4. Let (βn)n∈N be a sequence such that, for eachk = 0,1, . . . , q −1,
the sequence(βqn+k)n∈N is a Fourier multiplier ofHp(T). Then(βn)n∈N is a
Fourier multiplier ofHp(T).

Proof. Let ωj (j = 0,1, . . . , q − 1) denote theqth roots of unity, and forf ∈
Hp(T) define

fk(z) := 1

q

q−1∑
j=0

ω̄kjf(ωjz).

Then eachfk is inHp(T)with norm bounded by the norm off, andf =∑q−1
k=0fk.

Moreover,fk may be written aszkgk(zq), wheregk has Fourier coefficients given
by

ĝk(n) = f̂ (nq + k).
Let T be the operator given by the multiplier(βn)n∈N. ThenTfk is given by the
action of the multiplier(βqn+k)n∈N ongk. It follows from the hypothesis thatTfk
belongs toHp(T). Hence,Tf ∈Hp(T).

We may now return to the sequence(β(2)m ). Using Lemma 2.4, it suffices to show
that, for eachk = 0,1, . . . , q −1, the sequence

η(k)n =
0
(
n+ k+1

q

)(
n+1+ k

q

)s
0
(
n+ k+1

q
+ s)

satisfies (9). Notice that (by the Stirling formula) we obtain the asymptotics

lim
n→∞

0
(
n+ k+1

q

)(
n+1+ k

q

)s
0
(
n+ k+1

q
+ s) = 1,

and1η(k)n may be written asη(k)n · γ (k)n , with
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γ (k)n = 1−
n+ k+1

q

n+ k+1
q
+ s ·

(
n+ 2+ k

q

)s(
n+1+ k

q

)s .
Using these two facts, it is elementary to prove that

|1jγ (k)n | ≤ Cj(n+1)−j ,

which we wanted to prove to conclude for(β(2)m ).
It remains to consider the sequence(β(3)m ). Using the same kind of argument as

in Lemma 2.4, we are lead to consider separately the sequences

δ(k)m =
0
(
m1+m2 + 1+ k+1

q
+ s)(

m1+m2 +1+ k
q

)s
0
(
m1+m2 +1+ k+1

q

)
for k = 0,1, . . . , q−1. Moreover, using the same arguments as before, it is easy to
see thatδ(k)m = ηm1+m2,where(ηn)n∈N is a Fourier multiplier of the spacesHp(T).
In order to conclude the proof, we use the following elementary lemma.

Lemma 2.5. Assume that the sequence(ηn)n∈N is a Fourier multiplier of the
spaceHp(T). Then(δm)m∈N2, defined byδm = ηm1+m2, is a Fourier multiplier of
Hp(T2).

Proof. Let F(θ1, θ2) =
∑

m1≥0,m2≥0 am1,m2e
i(m1θ1+m2θ2) be a polynomial. Then

F(θ1, θ2) = G(θ1, θ2 − θ1)

with
G(θ1, θ2) =

∑
n1≥0

∑
0≤n2≤n1

bn1,n2e
i(n1θ1+n2θ2)

if we choosebn1,n2 = an1−n2,n2. Multiplication by δm for am1,m2 becomes multi-
plication byηn1 for bn1,n2. Therefore, the muliplier acts on the first variable for
G, and the lemma follows from the fact thatF andG have the same norm in
Hp(T2).

This ends the proof of Lemma 2.3.
Roughly speaking, Lemma 2.3 shows that the operatorMλ acts on holomorphic

functions likeM̃λ. In order to understand the action of̃Mλ, recall thatN is the
differential operatorN := z1∂z1 + z2

q
∂z2. For a holomorphic function

f(z) =
∑
m

amz
m,

we have the equalities

(I +N)f(z) =
∑
m

(
m1+ m2

q
+1

)
amz

m,

(
I + z2

q
∂z2

)
f(z) =

∑
m

(
m2

q
+1

)
amz

m.
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Hence, the action of̃Mλ on holomorphic functions may be seen as the product of
fractional powers ofI + N andI + z2

q
∂z2. As it is easier to deal with differen-

tial operators than fractional powers, we shall make use ofM̃ qk (k ∈N, k ≥ 1). A
simple calculation now shows that

M̃ qkf(z) =
∑
m

(
m1+ m2

q
+1

)(1+q)k(
1+ m2

q

)(q−1)k

amz
m

=
(
I + z2

q
∂z2

)(q−1)k

(I +N)(q+1)kf(z),

which is a classical differential operator.
We conclude this section by recalling some geometrical facts about our domains

and kernels.
As is well known, on the boundary∂� of� there exists a non-isotropic pseudo-

metricdb (as defined in [NRSW, Def.(1.1)]) for all finite type domains ofC2. In
our case, one may use a simple expression fordb (see [BoLo]). Thus, we set

db(z, w) =
∣∣=(w̄1(w1− z1)+ qw̄2|w2|2q−2(w2 − z2)

)∣∣
+ |w2|2q−2|w − z|2 + |w − z|2q . (10)

Furthermore, there exists a tubular neighborhood of the boundary∂� such that
eachz∈U has a unique normal projectionπ(z) on ∂�. For z,w ∈U we set

d(z,w) := δ(z)+ δ(w)+ db(π(z), π(w)), (11)

where, we recall,δ(z) := 1− |z1|2 − |z2|2q . Moreover, we set

τ(w, r) := min{r1/2|w2|1−q, r1/2q}. (12)

For the estimates for the Szegö and the Bergman kernels on the diagonal, one
has:

S(z, z) ' (1− |z1|2)−(1+1/q)

(
1− |z2|2

(1− |z1|2)1/q
)−2

, (13)

B(z, z) ' (1− |z1|2)−(2+1/q)

(
1− |z2|2

(1− |z1|2)1/q
)−3

. (14)

These formulas may be found in [BoLo]. They have also been proved in the con-
text of pseudo-convex domains of finite type by Catlin in [Ca]. In order to recover
the well-known Catlin’s estimates—that is,

B(z, z) ' δ(z)−2 · τ(z)−2,

S(z, z) ' δ(z)−1 · τ(z)−2,

where, for convenience of notation, we writeτ(z) := τ(z, δ(z)) (see (12))—it suf-
fices to check that on these ellipsoids one has

τ(z) ' ((1− |z1|2)1/q − |z2|2
)1/2

and δ(z) ' (1− |z1|2)1−1/qτ (z)2. (15)
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3. Equivalence of Norms

In this section we prove the equivalence of norms in the Besov space—that is, The-
orem1.1. Wefirst prove the inequality on the right in Theorem1.1. We dothis by
proving a slightly more general fact. We should emphasize the fact that this part
of Theorem 1.1 is valid in the larger context of domains of finite type inC2 (and
of convex domains of finite type inCn) because it uses only size estimates on the
Szegö kernel. The results of Section 2 will only be used in the reverse inequality.

We recall the notation introduced in (6):

Mλf(z) =
∫
∂�

Sλ+1(z, ζ)f(ζ) dµ(ζ).

On the ellipsoid� we define the differential operator

N := z1∂z1 +
z2

q
∂z2, (16)

and forβ ∈ R we denote byβ∗ the numberβ/2q for β ≥ 0 andβ/2 for β < 0.
Recall that

τβ ≤ cδβ∗ .
Proposition 3.1. Let l be a nonnegative integer,α, β ∈ R, λ ≥ 0, andp > 0.
We assume that the inequalities

α + β∗ + lp +1> 0, λp + α +1+ (2λp + β)∗ > 0

are satisfied. Then there exists a constantc > 0 such that, for all holomorphic
functionsf,∫

�

|Mλf(z)|pS−pλ(z, z)δα(z)τβ(z) dV(z)

≤ c
∫
�

∑
0≤k≤l
|∇kf(z)|pδ lp+α(z)τβ(z) dV(z).

Notice that the conditions onα, β, l, λ, p are equivalent to the integrability of the
weight, and that the right-hand side inequality of Theorem 1.1 corresponds to the
caseα = β = −2.

Proof. The proof of Proposition 3.1 is given in three steps. We first give a new
expression forMλf(z), which is obtained by integrations by parts. Then we con-
sider the casesp > 1 andp ≤ 1 separately. The new expression is based on the
following lemma.

Lemma 3.2. Letf, g be holomorphic functions inH 2(�). Then if we setDn =
N + (1+ n+1

q

)
I for all nonnegative integern, the following identities hold:∫
∂�

f(u)g(u) dµ(u) = c ′0
∫
�

f(u)D0g(u) dV(u), (17)∫
�

f(u)g(u)δn(u) dV(u) = c ′n
∫
�

f(u)Dng(u)δ
n+1(u) dV(u). (18)
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Proof. We only prove the identity (17), the proof for (18) being analogous. This
identity, once given the Taylor series off andg, is an easy consequence of (3).
Indeed, recall that

‖um‖2
L2(dµ)

= c0

0(m1+1)0
(
m2+1
q

)
0
(
m1+1+ m2+1

q

) ,
(see [BoLo]). Writef(u) =∑m amu

m andg(u) =∑m bmu
m. Then∫

∂�

f(u)g(u) dµ(u) = c0

∑
m

amb̄m‖um‖2L2(dµ)
.

Moreover,‖um‖2
L2(dV )

= c10(m1+1)0
(
m2+1
q

)[
0
(
m1+1+ m2+1

q
+1

)]−1
, and∫

�

f(u)D0g(u) dV(u) = c ′′0
∑
m

amb̄m

(
m1+1+ m2 +1

q

)
‖um‖2

L2(dV )
.

Recalling that0(z+1) = z0(z), we obtain (17).

If we use Lemma 3.2k + l times, starting from the definition ofMλf(z), we ob-
tain the following.

Lemma 3.3. Let k, l ∈ N. Then there existsCk,l such that, forf ∈ H 2(�), the
following identity holds:

Mλf(z)

= Ck,l
∫
�

D̄k,ζ · · · D̄0,ζ S
λ+1(z, ζ)Dk+l · · ·Dk+1f(ζ)δ

k+l(ζ) dV(ζ). (19)

We now prove Proposition 3.1 for 1< p <∞. Denote byT (λ)k the integral oper-
ator defined by

T
(λ)
k g(z) = δλ(z)τ 2λ(z)

∫
�

D̄k,ζ · · · D̄0,ζ S
λ+1(z, ζ)g(ζ)δk(ζ) dV(ζ).

It is sufficient to show that, fork large enough and for some constantc, we have∫
�

|T (λ)k g(z)|pδα(z)τβ(z) dV(z) ≤ c
∫
�

|g(z)|pδα(z)τβ(z) dV(z).

for all (not necessarily holomorphic) functionsg. In order to prove such an esti-
mate, it suffices to show that the integral kernel of the operatorT

(λ)
k onLp(δατβdV )

satisfies the assumptions of Schur’s lemma. Notice that the kernelKk(z, ζ) has
expression

Kk(z, ζ) = δλ(z)τ 2λ(z)D̄k,ζ · · · D̄0,ζ S
λ+1(z, ζ)δk−α(ζ)τ−β(ζ). (20)

From the estimates in [NRSW], we know that

|D̄k,ζ · · · D̄0,ζ S
λ+1(z, ζ)| ≤ cd(z, ζ)−2−λ−kτ (z, d(z, ζ))−2−2λ, (21)

whered(z, u) is defined as in (11). We can apply Schur’s lemma with the function
δaτ b by using the following lemma, which relies on the estimates (21).
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Lemma 3.4. Under the condition

λp + α +1+ (2λp + β)∗ > 0,

for k large enough one can finda, b such that∫
�

|Kk(z, ζ)|δap ′+α(ζ)τ bp ′+β(ζ) dV(ζ) ≤ cδap ′(z)τ bp ′(z),∫
�

|Kk(z, ζ)|δap+α(z)τ bp+β(z) dV(z) ≤ cδap(ζ)τ bp(ζ).

Proof. The lemma is an elementary consequence of the following inequality,
whose proof may be found in [Sy2]:∫

�

d(z, ζ)aτ (z, d(z, ζ))bδα(ζ)τβ(ζ) dV(ζ) ≤ cδα+a+2(z)τβ+b+2(z) (22)

under the conditions

α + β∗ +1> 0 and − α − a − 2+ (−β − b − 2)∗ > 0.

We recall that from (20) and (21) we have the estimate

|Kk(z, ζ)| ≤ cδλ(z)τ 2λ(z)d(z, ζ)−2−λ−kτ (z, d(z, ζ))−2−2λδk−α(ζ)τ−β(ζ).

Thus, according to (22), we must show that there exists(a, b) such that

−ap ′ + λ+ (−bp ′ + 2λ)∗ > 0,

ap + α + λ+ (bp + β + 2λ)∗ +1> 0.

If these two conditions are satisfied then the previous two are also satisfied fork

large enough.
Now (a, b) satisfies the first condition if it is in a convex cone whose vertex is

the point(λ/p ′,2λ/p ′). Analogously, the second condition is satisfied if(a, b) is
inside a convex cone having vertex in(a0, b0), where

a0 = −α + λ+1

p
, b0 = −β + 2λ

p
.

In order for these two regions to intersect, it suffices that the vertex of first cone
belongs to the second one:

α

p ′
p + α + λ+

(
2λ

p ′
p + β + 2λ

)∗
+1> 0;

that is,
λp + α + (2λp + β)∗ +1> 0,

which is what we wished to show.

This finishes the proof of Proposition 3.1 in the case 1< p <∞.
Now let 0 < p ≤ 1. Let (w(j)) denote a sequence of points such that poly-

discs of typeQj = Q(w(j), ηδ(w(j)) give a Whitney covering of� as well as
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2Qj := Q(w(j),2ηδ(w(j))). If we write g = Dk+l · · ·Dk+1f(ζ) then we see that
|Mλf(z)| is equivalent to the sum overj of

d(z,w(j))−2−λ−kτ (z, d(z,w(j)))−2−2λδk+l(w(j))
∫
Qj

|g(ζ)| dV(ζ).

We have used the fact that all functionsd(z, ·), δ, τ are essentially constant in-
sideQj. It follows from the subharmonicity ofg (and the fact thatp ≤ 1) that
|Mλf(z)|p can be majorized by a constant times∑

j

d(z, w(j))(−2−λ−k)pτ (z, d(z,w(j)))(−2−2λ)pδ(k+l )p(w(j))

× (Vol(Qj )
)p−1

∫
2Qj

|g(ζ)|p dV(ζ).

Now, for k large enough, we can apply inequality (22) to obtain the bound∫
�

d(z,w(j))(−2−λ−k)pτ (z, d(z,w(j)))(−2−2λ)pδλp+α(z)τ 2λp+β(z) dV(z)

≤ cδ−(k+2)p+α+2(w(j))τ−2p+β+2(w(j)).

From these two last inequalities and using the Whitney property of the covering
2Qj, we see that∫

�

|Mλf(z)|pδλp+α(z)τ 2λp+β(z) dV(z)

≤ c
∑
j

δ lp+α(w(j))τ β(w(j))
∫

2Qj

|g(ζ)|p dV(ζ)

≤ c
∫
�

|δ(z)g(z)|pδα(z)τβ(z) dV(z).

This finishes the proof of Proposition 3.1.

Now we make use of our work in Section 2 relating the operatorsMλ andM̃λ. The
proof of the next result is an immediate consequence of Lemma 2.3 and Proposi-
tion 3.1.

Corollary 3.5. Let l be a nonnegative integer,α, β ∈ R, λ ≥ 0, andp > 0.
Suppose that the inequalities

α + β∗ + lp +1> 0 and λp + α +1+ (2λp + β)∗ > 0

are satisfied. Then there exists a constantc > 0 such that, for all holomorphic
functionsf,∫

�

|M̃λf(z)|pS−pλ(z, z)δα(z)τβ(z) dV(z)

≤ c
∫
�

∑
0≤k≤l
|∇kf(z)|pδ lp+α(z)τβ(z) dV(z).
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We now prove the left inequality in Theorem1.1. Assume that∫
�q

|Mλg(z)|pS−λp(z, z)B(z, z) dV(z) <∞.

Then the same is valid with̃Mλ instead ofMλ. We recall that

M̃λ B M̃λ′ = M̃λ+λ′ .

Using Corollary 3.5 withλ replaced bykq−λ,with f replaced byM̃λg, and with
l = 0 andα, β suitably chosen, fork large enough we find that∫

�q

|M̃kqg(z)|pδkqp−2(z)τ 2kqp−2 dV(z) <∞.

Remember that̃Mkq = (I+ z2
q
∂z2

)(q−1)k
(I+N)(q+1)k. In order to be able to prove

thatg is in the Besov spaceBp with control of the norm, it suffices to prove the
following lemma.

Lemma 3.6. Let α, β ∈ R such thatα + β∗ + 1 > 0. Given anyp > 0, there
exists a constantc > 0 such that, for all holomorphic functionsg,∫

�

|g(z)|pδα(z)τβ(z) dV(z) ≤ c
∫
�

|(I + z2∂z2)
kg(z)|pδα(z)τβ+2kp(z) dV(z).

Proof. It suffices to prove the lemma fork = 1. Using the estimate (15), we have∫
�

|g(z)|pδα(z)τβ(z) dV(z)

≤ c
∫
|z1|<1

(1− |z1|2)α(1−1/q)

×
∫
|z2|2<(1−|z1|2)1/q

(
(1− |z1|2)1/q − |z2|2

)α+β/2|g(z)|p dV(z2) dV(z1).

Then, by applying Hardy’s lemma in the inner integral (see e.g. [AFJP, Thm. 6]),
we see that the integral∫

|z2|2<(1−|z1|2)1/q
(
(1− |z1|2)1/q − |z2|2

)α+β/2|g(z)|p dV(z2)

is bounded by a constant times∫
|z2|2<(1−|z1|2)1/q

(
(1− |z1|2)1/q − |z2|2

)α+β/2+p|(I + z2∂z2)g(z)|p dV(z2).

Therefore,∫
�

|g(z)|pδα(z)τβ(z) dV(z) ≤ c
∫
�

|(I + z2∂z2)g(z)|pδα(z)τβ+2p(z) dV(z),

as follows again from the estimate (15).
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4. Necessary Conditions for Schatten Class
Hankel Operators

We now prove Theorem 1.2 for the operatorhf = h(µ)f . For 1< p < ∞ it fol-
lows immediately from results in [Sy1, Sec. 4]. We now give another proof, which
holds also forp = 1. We shall prove that

‖hf‖pSp ≥ c
∫
�

∣∣∣∣S−3(z, z)

∫
∂�

S 4(z, ζ)f(ζ) dµ(ζ)

∣∣∣∣pB(z, z) dV(z).
Recall that, for 1≤ p < +∞, any bounded operatorT, and any orthonormal

sequence(aj ), we have that∑
j

|〈Taj, aj〉|p ≤ ‖T ‖pSp . (23)

Moreover, it holds that

‖XT Y‖Sp ≤ ‖X‖‖T ‖Sp‖Y‖, (24)

for any bounded operatorsX, Y.
As before, let(w(j)) be a sequence of points such thatQj := Q(w(j), ηδ(w(j)))

is a Whitney covering of� andQ̃j = Q(w(j), ηδ(w(j))/C0) are pairwise dis-
joint. The size ofQj in the complex transverse directionNw(j) is ηδ(w(j)), and
it is ητ(w(j)) in the complex tangential direction (see [Sy1]). LetBj = π(Qj),
whereπ denotes the normal projection of a tubular neighborhood of the bound-
ary onto the boundary itself. InsideQj, the quantityS−3(z, z)B(z, z) is of the
orderµ(Bj )3 · Vol(Qj )−1. Moreover, using the mean value property, from stan-
dard techniques it follows that—forη small enough andα, β fixed in such a way
thatα + β∗ +1> 0—for F holomorphic one has the equivalence∫

�

|F(z)|pδα(z)τβ(z) dV(z) '
∑
j

|F(w(j))|pδα(w(j))τ β(w(j))Vol(Qj ) (25)

(see [CRW] in the case of the unit disk and [Sy2] for its generalization in our con-
text). In particular, we have∫

�

∣∣∣∣S−3(z, z)

∫
∂�

S 4(z, ζ)f(ζ) dµ(ζ)

∣∣∣∣pB(z, z) dV(z)
≤ c

∑
j

µ(Bj )
3p

∣∣∣∣∫
∂�

S 4(w(j), ζ)f(ζ) dµ(ζ)

∣∣∣∣p. (26)

If we setej := µ(Bj )3/2S2(·, w(j)), the right-hand side of (26) is equal to

c
∑
j

∣∣∣∣∫
∂�

hf (ej )ej dµ

∣∣∣∣p = c∑
j

|〈hf (ej ), ej〉|p.

Now we claim that the sequence(ej ) is the image under a bounded operator
Y : L2(dV )→ L2(∂�)of an orthogonal system(aj ) inL2(dV ),with‖aj‖L2(dV ) '
1. Assuming the claim for the moment, we finish the proof.
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By Theorem1.1,(23), (24), and (26), we have that

‖f ‖pBp ≤ c
∫
�

∣∣∣∣S−3(z, z)

∫
∂�

S 4(z, ζ)f(ζ) dµ(ζ)

∣∣∣∣pB(z, z) dV(z)
≤ c

∑
j

|〈Y ∗hfY(aj ), aj〉|p

≤ c‖Y ∗hfY‖pSp
≤ c‖hf‖pSp .

Thus, we need only prove the claim. Forg ∈L2(dV ) we set

Yg(ζ) :=
∫
�

δ1/2(w)τ 2(w)S2(ζ, w)g(w) dV(w).

Notice that

ej := µ(Bj )3/2S2(·, w(j))

= µ(Bj )
3/2

Vol(Q̃j )

∫
Q̃j

S2(·, w) dV(w)

= µ(Bj )
3/2

Vol(Q̃j )
Y(δ−1/2τ−2χQ̃j ).

If we define

aj(w) := µ(Bj )
3/2

Vol(Q̃j )
δ−1/2(w)τ−2(w)χQ̃j(w),

then(aj ) has the required properties to be an orthogonal sequence such that the
norms‖aj‖L2(dV ) ' 1, sinceδ andτ are almost constant oñQj.

It remains to show thatY : L2(dV ) → H 2(�) is a bounded operator. LetY ∗

be given by

Y ∗φ(z) = δ1/2(z)τ 2(z)

∫
∂�

S2(z, ζ)φ(ζ) dµ(ζ) = δ1/2(z)τ 2(z)M1φ(z).

It suffices to show thatY ∗ : H 2(�)→ L2(dV ) is bounded, since its Hilbert space
adjoint isY.

It is well known (see [Be, Thm. 1.4]) thatH 2(�) can be identified with the
space of holomorphic functionsφ such that∫

�

|∇φ(z)|2δ(z) dV(z) <∞.

The fact thatY ∗ is bounded follows from Proposition 3.1 withα = −1 andβ = 0.
This finishes the proof of Theorem 1.2.
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5. Hankel Operators on Weighted Bergman Spaces

In this section we study the case of weighted Bergman spaces on the complex ellip-
soids�q, which we denote by� as before, and we prove the analog of Theorems
1.1 and 1.2 in the present context.

Let α > −1. We denote byA2(δαdV ) the weighted Bergman space, that is, the
closed subspace ofL2(δαdV ) consisting of the holomorphic functions. We de-
note byPα the weighted Hilbert space orthogonal projection ofL2(δαdV ) onto
A2(δαdV ). The small Hankel operator with symbolf ∈A2(δαdV ) is defined for
g ∈L2(δαdV ) by setting

hαf g = Pα
(
fPαg

)
.

Mutatis mutandis,for the weighted Bergman spaces we have the following ana-
log of Theorem1.1.

Theorem 5.1. Let p > 0 and α > −1, and letλ be a real number such that
(λ− α −1)p + (2λp)∗ +1> 0. Then, for allg ∈A2(δαdV ), we have

‖g‖pBp '
∫
�

∣∣∣∣∫
�

Sλ+1(z, ζ)

Sλ(z, z)
δ(z)−α−1g(ζ)δ(ζ)α dV(z)

∣∣∣∣pB(z, z) dV(z).
We now have the following result.

Theorem 5.2. Let 1≤ p <∞. Thenhαf ∈Sp is equivalent tof ∈Bp.
Proof. For the sufficient condition, the proof given in [Sy3] for finite-type do-
mains inC2 can be extended to this context.

For the necessary condition we use the relations (23) and (24). We consider the
family of holomorphic functions inA2(δαdV ),

ej(z) = µ(Bj )k−1/2δ(w(j))−(1+α)/2S k(z, w(j)),

wherek ∈N is large enough andQ(w(j), ηδ(w(j))) a Whitney covering of�. The
functionej is the image under the operatorYα of the almost orthonormal family

aj(w) = µ(Bj )
k−1/2

Vol(Q̃j )
δ(w(j))−(α+1)/2δ(w)2−kτ (w)2(1−k)χQ̃j(w).

The operatorYα is defined by

Yαg(z) =
∫
�

Kα(z,w)g(w)δ(w)
α dV(w),

whereKα(z,w) = δ(w)k−2−ατ (w)2(k−1)S k(z, w). We remark that there exists a
c > 0 such that

|Kα(z,w)| ≤ c

d(z,w)2+ατ (z, d(z,w))2
.

Therefore,Yα is a bounded operator inL2(δαdV ). As for the proof of Theorem1.2,
we have
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‖hαf ‖pSp ≥ c
∑
j

|〈hαf ej, ej〉α|p =
∑
j

|〈f, e2
j 〉α|p

≥ c
∫
�

∣∣∣∣∫
�

Sλ+1(z, ζ)

Sλ(z, z)
δ(z)−α−1g(ζ)δ(ζ)α dV(z)

∣∣∣∣pB(z, z) dV(z)
≥ c‖f ‖pBp .

Hencef is inBp.

6. The Case of a Strictly Pseudo-Convex Domain

In this section we denote byD ⊂ Cn a smoothly bounded strictly pseudo-convex
domain defined byD = { z ∈ Cn, ρ(z) < 0 }, whereρ is a C∞(D̄) strictly
plurisubharmonic function and|∇ρ(z)| = 2 on∂D. We define as before the sur-
face measuredσ, the Szegö kernelS, and the Hankel operatorhf . We claim that,
in this context, analogous theorems hold true.

Theorem 6.1. Let D ⊂ Cn be a smoothly bounded strictly pseudo-convex do-
main. Let0 < p < +∞ andm ∈ N such thatm > 1/p. Then, there exists a
constantc > 0 so that, forf ∈Bp,

1

c
‖f ‖pBp ≤

∫
D

∣∣∣∣∫
∂D

Sm+1(z, w)

Sm(z, z)
f(w) dσ(w)

∣∣∣∣pB(z, z) dV(z)+ ‖f ‖Lp
≤ c‖f ‖pBp .

Theorem 6.2. LetD ⊂ Cn be a smoothly bounded strictly pseudo-convex do-
main. Let1≤ p < +∞. Thenhf ∈Sp is equivalent tof ∈Bp.

Let us first fix some notation. LetN :=∑n
i=1∂z̄i ρ(z)∂zi be the complex normal

direction and let

∂γ := ∂ |γ |

∂w
γ1
1 · · · ∂wγnn

where γ = (γ1, . . . , γn).

Notice that, by our normalization,Nρ = 1 on∂D. As on the ellipsoids, we define
δ := −ρ, we denote bydb the Koranyi distance on the boundary, and, as in (11),
we write

d(z,w) := δ(z)+ δ(w)+ db(π(z), π(w)) (27)

for z,w in a neighborhood of∂D. The proof of Theorem 6.1 is based on the as-
ymptotic expansion of the Szegö kernel, as obtained by Fefferman [Fe]. We recall
that there existδ0 > 0 andε0 > 0 such that, forρ(w) < δ0 and|z− w| < ε0/2,

S(z, w) = a(z)9(z,w)−n + E0(z, w), (28)

wherea := CD detLρ and
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9(z,w)

= −ρ(w)−
n∑
i=1

∂wi ρ(w)(zi − wi)−
1

2

∑
i,k

∂2
wiwk

ρ(w)(zi − wi)(zk − wk).

Moreover, if1 is the boundary diagonal, thenE0 is in C∞(D̄ × D̄ \1) and, for
every multi-indexγ, satisfies the estimates

|∇γE0(z, w)| ≤ cγ d(z,w)−n+1/2−|γ |. (29)

Here derivatives are taken in thez orw variable.
We use identity (28) to give a similar description for the kernelSm+1(z, w),

m ≥ 1. Form a positive integer we define the functionam(z) by setting

am(z) := (nm−1)!

(n−1)!
a(z)n−1.

It is immediate thatam does not vanish in̄D. We define the kernelEm(z,w) by
setting

Em(z,w) = Sm+1(z, w)− am(z)Nnm
z S(z,w).

The following proposition gives a pointwise estimate forEm(z,w) and its
derivatives.

Proposition 6.3. Let m be a positive integer. ThenEm ∈ C∞(D̄ × D̄ \ 1).
Moreover, for every multi-indexγ, there existscγ > 0 such that for(z, w) ∈
D̄ × D̄ \1,

|∂̄γwEm(z,w)| ≤ cγ d(z,w)−n(m+1)+1/2−|γ |.

Proof. We prove the estimate forγ = 0. It suffices to prove that, forρ(w) < δ0

and|z− w| < ε0/2,

N nm
z S(z,w) = am(z)−1a(z)9(z,w)−(m+1)n + E(1)m (z, w),

with
|E(1)m (z, w)| ≤ cd(z,w)−n(m+1)+1/2.

When computingNnm
z S(z,w), we find derivatives of the error termE0(z, w),

which are directly majorized using (29) and are part ofE(1)m (z, w), as well as
derivatives of the main term. Differentiating each time, the denominator gives

(−1)nmam(z)
−1a(z)(Nz9(z,w))

nm9(z,w)−n(m+1)

while the other derivatives are also majorized bycd(z,w)−n(m+1)+1/2. It remains
to show that

Nz9(z,w) = −1+O(d(z,w)1/2).

This follows from the fact thatNz9 is a smooth function that is identically−1 on
1. Indeed,Nz9(z,w)+1 is bounded, up to a constant, by the distance of(z, w)

to1, which in turn is bounded byc(δ(z)+ δ(w)+ |π(z)− π(w)|). Then we use
the definition ofd(z,w) and the well-known fact that, on the boundary,
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|z− w| ≤ cdb(z, w). (30)

This concludes the proof forγ = 0. The same proof holds in the general case.

Let us now give the idea of the proof of Theorem 6.1 in the context of strictly
pseudo-convex domains. Let us define the operatorMm as before,

Mmf(z) =
∫
∂D
Sm+1(z, w)f(w) dσ(w).

From the definition ofEm, it follows that

Mmf(z) = am(z)Nnmf(z)+ Emf(z), (31)

where the operatorEm defined by

Emf(z) =
∫
∂D
Em(z,w)f(w) dσ(w)

for f in L1(∂D). It is well known [Be, Thm.1.1] that

‖f ‖pBp '
∫
D
|Nnmf(z)|pδ(z)nmpB(z, z) dV(z)+ ‖f ‖pLp . (32)

We shall show that the error termEmf is small compared toNnmf. More pre-
cisely, the following proposition holds true.

Proposition 6.4. Let 0<p<+∞, m∈N, andα∈R such thatα+pmn+1>
0. Then there existsc > 0 such that, forf ∈Bp,∫
D
|Emf(z)|pδ(z)pmn+α dV(z) ≤ c

∫
D

∑
|γ |≤nm

|∂γf(z)|pδ(z)pmn+p/2+α dV(z).

Let us take this proposition for granted, and prove Theorem 6.1. The right inequal-
ity is obtained directly, using equality (31) and the estimate (32).

In order to prove the bound from below, we use (31), (32), Proposition 6.4, and
the fact thatam is bounded below to see that

‖f ‖pBp ≤ c
∫
D
|Mmf(z)|pS(z, z)−pmB(z, z) dV(z)+ ‖f ‖pLp

+ c ′
∫
D

∑
|γ |≤nm

|∂γf(z)|pδ(z)nmp+p/2B(z, z) dV(z).

LetDε := { z ∈D : δ(z) > ε }. If we chooseε so thatc ′δ(z)p/2 is small enough
in D \Dε, then

c ′
∫
D\Dε

∑
|γ |≤nm

|∂γf(z)|pδ(z)nmpB(z, z) dV(z) ≤ 1

2
‖f ‖pBp ,

while ∫
Dε

∑
|γ |≤nm

|∂γf(z)|pδ(z)nmp+p/2B(z, z) dV(z) ≤ c‖f ‖pLp .
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We then have

‖f ‖pBp ≤ c
∫
D
|Smf(z)|pS(z, z)−mpB(z, z) dV(z)+ ‖f ‖pLp +

1

2
‖f ‖pBp .

In order to finish the proof of Theorem 6.1, we need only prove Proposition 6.4.

Proof of Proposition 6.4.The method is the same as for the proof of Proposi-
tion 3.1. It is also given in three steps. We first give a new expression forEmf(z)

which is obtained by integrations by parts. Then we consider the casesp > 1 and
p ≤ 1 separately. The new expression is based on the following lemma.

Lemma 6.5. Let z ∈D andk, l ∈N with l > 0. Then there existbγ,γ ′ ∈ C∞(D̄)
such that, forf ∈H 2(D), one has

Emf(z) =
∑
|γ |≤k

∑
|γ ′|≤l

∫
D
∂̄γEm(z,w)bγ,γ ′(w)∂

γ ′f(w)δ(w)k+l−1dV(w).

Proof. SinceNρ = 1 on∂D, we have that

Emf(z) =
n∑
i=1

∫
∂D
Em(z,w)f(w)∂w̄i ρ(w)∂wi ρ(w) dσ(w).

The functionw 7→ Em(z,w) is an anti-holomorphic function, so Stokes’s formula
gives

Em(z,w) =
∫
D
Em(z,w)

(
1ρ(w)f(w)

4
+Nf(w)

)
dV(w).

Now we use the fact that there exista, b ∈ C∞(D̄) such that

1= a(w)Nρ(w)+ (−ρ(w))b(w) = a(w)N̄ρ(w)+ (−ρ(w))b(w).
The lemma is obtained afterk−1 integrations by parts with respect tow andl in-
tegrations by parts with respect tōw (see [Sy2] for details).

Let 1< p < +∞. To prove Proposition 6.4, we use Lemma 6.5 withl = mn and
estimate each term. In order to do this, it suffices to prove that the operatorKk
defined by

Kkg(z) = δ(z)mn
∫
D
d(z,w)−(m+1)n−k+1/2δ(w)k−3/2g(w) dV(w)

is bounded onLp(δαdV ) for k large enough. As usual, we use Schur’s lemma
with the functionδ−a. We shall not give the details, which rely on the analog of
(22) in this context (i.e.,∫

D
d(z,w)aδα(w) dV(w) ≤ cδa+α+n+1(z)

under the conditionsα > −1 anda + α + n+1< 0).
For 0< p ≤ 1, as for Proposition 3.1 on ellipsoids, we consider a sequence of

points(w(j)) inD such that the polydiscsQj = Q(w(j), ηδ(w(j))) give a Whitney
covering ofD and then proceed in the same way.
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This finishes the proof of the proposition, and therefore also the proof of Theo-
rem 6.1.

Proof of Theorem 6.2.We proceed as in Section 4. We need only prove that the
integral operatorY : L2(dV )→ H 2(D) defined by

Yψ(z) =
∫
D
δ(z)n−1/2S2(z, w)ψ(w) dV(w)

is bounded, or that its adjointY ∗ (obtained formally), given by

Y ∗φ(z) = δ(z)n−1/2
∫
∂D
S2(z, ζ)φ(ζ) dσ(ζ)

= a1(z)δ(z)
n−1/2Nnφ(z)+ δ(z)n−1/2E1φ(ζ),

is bounded fromH 2(D) toL2(dV ). It is well known that, for holomorphic func-
tions (see [Be, Thm. 1.4]),∫

D
(δ(z)n|Nnφ(z)|)2 dV(z)

δ(z)
≤ c‖φ‖2

L2(∂D).

For the second term we use Proposition 6.4 withα = −1.

We could also generalize these results to the case of weighted Bergman spaces.
We shall not go into details.

7. Hankel Operators Related to the
Surface Measure on Ellipsoids

In this section we go back to the complex ellipsoids�. We prove the analog of
Theorem 1.1 when the measuredµ is replaced by the surface measuredσ, as well
as the analog of Theorem 1.2 in this context. We now give the new statement.

Theorem 7.1. Letp > 0 and letm be an integer such thatm > 1/p. Then there
existsc = c(p,m) > 0 such that, for allg ∈Bp, we have

1

c
‖g‖pBp ≤

∫
�

∣∣∣∣∫
∂�

Sm+1
σ (z, ζ)

Smσ (z, z)
g(ζ) dσ(ζ)

∣∣∣∣pB(z, z) dV(z) ≤ c‖g‖pBp .
We denote byλ theC∞ function that gives the densitydµ/dσ. We shall use the
same method as in the previous section, Fefferman’s asymptotic expansion being
replaced by the fact that the projectionP σ

S can be approximated byP µ

S . For this
we use the Kerzman–Stein trick (as used in [BoLo] in this context, or in [NRSW]).
From now on, the scalar product inH 2(�) is defined using the surface measure,
and we also refer to the surface measure when we speak of the kernel of an opera-
tor. For instance, the kernel ofP (µ)S is Sµ(z,w)λ(w), while the kernel of(P (µ)S )∗

is λ(z)Sµ(z,w). From elementary properties of projections, it follows that

P
(σ)
S = (P (µ)S )∗ + (P (µ)S − (P (µ)S )∗

) B P (σ)S .
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It follows from the theory of non-isotropic smoothing operators in [NRSW] that
the second term is a smoothing operator. More precisely, one has

Sσ(z,w) = λ(z)Sµ(z,w)+ E(1)0 (z, w) (33)

with E(1)0 ∈ C∞(�̄× �̄ \1), which is anti-holomorphic inw and satisfies the fol-
lowing estimates for every multi-indexγ :

|∂̄γwE(1)0 (z, w)| ≤ cγ d(z,w)−1−|γ |τ(z, d(z,w))−1. (34)

We can likewise write

Sσ(z,w) = Sµ(z,w)λ(w)+ E(2)0 (z, w) (35)

with E(2)0 ∈ C∞(�̄× �̄ \1), which satisfies the following estimates for all multi-
indicesγ, γ ′:

|∂̄γw∂γ
′

w E
(2)
0 (z, w)| ≤ cd(z,w)−1−|γ |τ(z, d(z,w))−1. (36)

We define

Em(z,w) = Sσ(z,w)m+1− λ(z)mSµ(z,w)m+1λ(w).

We then obtain the following proposition, which is the analog of Proposition 6.3
in this context.

Proposition 7.2. Letm be a positive integer. Then,Em ∈ C∞(�̄ × �̄ \ 1).
Moreover, for all multi-indicesγ, γ ′ there exists ac > 0 such that, for(z, w) ∈
�̄× �̄ \1,

|∂̄γw∂γ
′

w Em(z,w)| ≤ cd(z,w)−(m+1)−|γ |τ(z, d(z,w))−m.

We remark that the only difference with Proposition 6.3 is the fact that this time
the kernelEm(z,w) is no longer anti-holomorphic inw. The important point here
is that, nevertheless, the estimates do not depend on the multi-indexγ ′.

We consider the operatorM(σ)
m defined on holomorphic funtions by

M(σ)
m f(z) =

∫
∂�

Sσ(z, w)
m+1f(w) dσ(w).

Then
M(σ)
m f(z) = λ(z)mMmf(z)+ Emf(z),

whereMm is the operator defined in Section 2 in relation with the measuredµ,

and

Emf(z) =
∫
∂�

Em(z,w)f(w) dσ(w).

In order to prove Theorem 7.1 it suffices to estimate the remainder.

Proposition 7.3. Let l be a nonnegative integer,α, β ∈ R, m ∈ N, andp > 0.
We assume that the inequalities

α + β∗ + lp +1> 0, mp + α +1+ (2mp + β)∗ > 0
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are satisfied. Then there exists a constantc > 0 such that, for all holomorphic
functionsf,∫

�

|Emf(z)|pS−pm(z, z)δα(z)τβ(z) dV(z)

≤ c
∫
�

∑
0≤k≤l
|∇kf(z)|pδmp+α(z)τβ+1(z) dV(z).

Proof. We use integrations by parts as for strictly pseudo-convex domains. Con-
sider the function

ρ(z) = |z1|2 + |z2|2q −1

(|z1|2 + q2|z2|4q−2)1/2
,

so that|∇ρ| = 1 on∂�, and define a new complex normal vector field byN(σ) :=∑n
i=1∂z̄i ρ(z)∂zi . Then, if we integrate by parts as in the proof of Lemma 6.5, we

obtain its analog as follows.

Lemma 7.4. Letz∈� andk, l ∈Nwith l > 0. Then there existbγ,γ ′,γ ′′ ∈ C∞(�̄)
such that, for everyf ∈H 2(�), one has

Emf(z)

=
∑
|γ |≤k

∑
|γ ′|≤l

∑
|γ ′′|≤l

∫
�

∂̄γw∂
γ ′
wEm(z,w)bγ,γ ′,γ ′′(w)∂

γ ′′f(w)δ(w)k+l−1dV(w).

Once this lemma is given, we proceed as in Section 3 (Proposition 3.1). We write
Emf using Lemma 7.4 and obtain control of each term by the same method. We
shall not give the details.

The proof of Theorem 7.1 follows from Proposition 7.3 as in Section 6.
It remains to prove Theorem 1.2 whenhf = h

(σ)
f . We use the same proof as

before. We are led to consider the operatorY ∗ given by

Y ∗φ(z) = δ1/2(z)τ 2(z)

∫
∂�

S2
σ (z, ζ)φ(ζ) dσ(ζ)

= λ(z)mδ1/2(z)τ 2(z)M1φ(z)+ δ(z)n−1/2E1φ(ζ).

HereM1 is the operator related to the measuredµ, and we already know (from
Section 4) that it gives a bounded operator. The rest of it is a consequence of
Proposition 7.3.

Final Remarks. We point out that our results are also valid for Hankel opera-
tors on Hardy and Bergman spaces on the ellipsoids inCn of the form

� = { z= (z ′, zn)∈Cn−1× C : |z ′|2 + |zn|2q <1}.
The main point is that in this case there is also an explicit formula for the Szegö
kernel, which allows the same kind of computations. As we said, in all these cases,
the powers of the Szegö kernel act as fractional pseudo-differential operators. The
structure of the points of non–strict pseudo-convexity, and the symmetries of the
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domain, play a fundamental role to etablish this point. It is clearly very difficult
to have a conjecture for more general domains.

We use other methods to characterize the boundedness and the compactness of
Hankel operators in the forthcoming paper [BPS].
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