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Powers of the Szego Kernel and
Hankel Operators on Hardy Spaces

ALINE BoNnAMI, MARCO M. PELOSO,
& FREDERIC SYMESAK

In this paper we study the action of certain integral operators on spaces of holo-
morphic functions on some domains@. These integral operators are defined

by using powers of the Szegd kernel as integral kernel. We show that they act like
differential operators, or like pseudo-differential operators of not necessarily in-
tegral order. These operators may be used to give equivalent norms for the Besov
spacesB,, of holomorphic functions. As a consequence we prove that, when 1

p < oo, the small Hankel operatofs on Hardy and weighted Bergman spaces
are in the Schatten class if and only if the symbolf belongs toB,,.

The type of domains we deal with are the smoothly bounded strictly pseudo-
convex domains iC" and a class of complex ellipsoids @*. Our results for
strictly pseudo-convex domains depend on Fefferman’s expansion of the Szegd
kernel. In this case, its powers act like a power of the derivation in the normal di-
rection. The ellipsoids we consider are the simplest examples of domains of finite
type. In this case, the symmetries of the domains can be exploited to use methods
of harmonic analysis and describe the pseudo-differential operators involved.

1. Basic Notation and Statement of the Main Results

LetD = {z: p(z) < 0} be a smoothly bounded domain@t, with p € C*®(D)
andVp # 0onaD. For p > 0 let H?(D) denote the Hardy space of holomorphic
functions orD, with norm given by

1Lf 150 py = SUP | fw)|” do(w),
e>0 Js(w)=¢
wheres(w) := —p(w) is equivalent to the distance to the boundary asds the

surface measure. LQTS(") andsS, denote the Szeg0 projection and the Szego ker-
nel respectively:

PO = [ 5. 080 doto)
D

for g € L2(3D). We are interested in the (small) Hankel opermﬁﬁ)r with symbol
f, defined forg € L?(dD) as
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h(8) = P (fP57(8))- @)

Moreover, forp > 0, we define the Besov spaces of holomorphic functions
B"/P(D) by setting

B} (D) := {geu(p) : / 16'V'g|”B(z,2) dV (2) < oo},
D

where B(z, w) denotes the Bergman kernel @h dV is the Lebesgue measure
onD, and! is some integer such that > 2. For simplicity of notation, we shall
write B, for BL"/"(D). We also set

1/p
lgls, = lgllr + [ fD 18'V'g|PB(z, 2) sz)} :

When D is the unit ball inC", the Szegd kernef is known explicitly and
S(z,¢) = ¢,(1—z-2)~". In this case, it is quite often useful to study the ac-
tion of integral operators defined by using powers of the Szegt kernel. The action
of these operators is usually expressed in terms of Besov norms, and it is easily
understood via the relation

(1 + %)S(z, ) = Sz, 0y, (2)

whereN is the differential operatoE’;:lzjazj. Thus, equation (2) shows a link
between powers of the Szegd kernel and differential operators.

Using identity (2) and iterations of it, Feldman and Rochberg [FR] proved that
in the case of the unit ball, whend p < oo, the Hankel operatdi; belongs to
the Schatten clasS, if and only if f isin B,. Recall that forp > 0, given a com-
pact operatof” on a Hilbert space, we say thAtbelongs to the Schatten claSs
if >, s}” < 00, where

sj = {inf |T — E| :rankE < j }.

Such results generalized the now classical results of Peller [Pe] and Coifman and
Rochberg [CR] for the unit disc. It is natural to ask whether these results are valid
in a more general setting.

In order to present the results in this paper we need to introduce some more no-
tation. We begin with the case of the ellipsoids.

Letq be a positive integer, and &, be the ellipsoid irC?2 given by

Q, ={z€C?: |z1)? + |z2* < 1}.

On these ellipsoids, we first replace the surface measuriey the measurdu
defined next, for which explicit computations are available. Precisely, idie
the unique measure @12, such that, for positive”,

/F(Z)dV(Z)=/ / F(rz1, r¥92,) du(z)r*t2/4 dr. (3)
c? o Joaq,
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The measuréu is equivalent to the surface measudre and the densitylu/do
is aC> strictly positive function. We shall denote W' and S, the Szeg6 pro-
jection and the Szegd kernel related to the meaguraespectively. The Hankel
operatorh}’“‘) is defined as in (1), usingy' instead ofP¢. Notice that, in the case
of the unit ball, the measurel. anddo coincide.

The identity (2) is no longer valid in the case of ellipsoids, even in an approxi-
mate way. BufS, is known explicitly, and we shall prove an identity for the powers
of S,(z, ¢) that involves some kind of pseudo-differential operators. Specifically,
we prove the following results.

THEOREM 1.1. Let p > 0 and letA be a real number such that > 1/p. Then
there exists: = ¢(p, ) > O such that, for allg € B,, we have

1
= P
I8l _/Q

Notice that the condition ok ensures that the weight is an integrable function, and
thatA can be takento be 1jf > 1. Thus, the middle term in the foregoing display
defines an equivalent norm dh,. We shall also prove the analog of Theorem 1.1
for integral powers of the Szegd kerrigl.

As an application of Theorerm1, weshall obtain a necessary and sufficient
condition fora "’ andh;” to belong to the Schatten claSs when 1< p < co.

In [Syl] and [Sy3] it was proved that the conditighe B, is a sufficient con-
dition for i, to belong toS, (1 < p < oo) for finite-type domains irC2, for
strictly pseudo-convex domains @, and also for ellipsoids if©". The neces-
sity of the condition was left open. Here we show that the condition is necessary
when we restrict to the class of ellipsoids that we have defined, and also for strictly
pseudo-convex domains.

Using the method of [FRY], it was also mentioned in [Sy1] that for 1, h}’” €
S, implies

J

In the case of the unit ball, condition (4) is immediately seen to be equivalent to
the fact thatg is in the space,,. The reason for this is the link betwe#f and a
derivative ofS, given by (2).

Our result in the case of the ellipsoids is as follows, whigretands for both

(1) (@)
h > andhf .

S,f“(z, ) P
T N B p
/mq 7z, 2) g()du(Q)| B(z,2)dV(z) = cliglly,

q

14
500 [ SHe0f@du)| Beodv@ <. (@)
09,

q

THEOREM 1.2. Letl < p < oco. Theniy € S, is equivalent tof € B,,.

In the case oh}“), Theorem 1.2 follows directly from Theorem 1.1 and [Sy1] for

p > 1. We give a new proof, which extends to the case 1. We also prove that
Theorem 1.2 is still valid for the Hankel operators based on weighted Bergman
projections.
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We next turn to the case of a strictly pseudo-convex domain. We prove the
analogs of Theorems 1.1 and 1.2 in this case. In this context the identity (2), which
we wrote for the ball, holds in an approximate way. This is an easy consequence
of Fefferman’s expansion for the Szeg6 kernel. Although these results on strictly
pseudo-convex domains all follow from somewhat standard techniques, it seems
that they never appeared in print before. The idea of approximate identities is also
used to deduce the two main theorems in the case of the surface meéasume
the ellipsoids.

We mention that the charaterization of bounded and compact Hankel operator is
known in the case of a strictly pseudo-convex domain. In the case of the unit ball
[CRW]and in general [KL] it has been shown tligtis bounded if and only iff €
BMO and is compact if and only if € H>NVMO. We also mention that charac-
terizations of symbols of big Hankel operators have been obtained in [KLR1] and
[BeLi], and that related results appear in [KLR2].

The paper is organized as follows. Sections 2, 3, and 4 are devoted to the prob-
lem on ellipsoids with measuri:. In Section 2 we study the powers of the Szeg6
kernel, and in Section 3 we prove Theorem 1.1 on equivalence of noBygst, ).

We believe that these results, and the techniques involved, may have applications
beyond what is offered here. In Section 4 we prove Theorem 1.2. In Section 5, we
prove the corresponding results for weighted Bergman spac®g oim Section 6

we consider the case of a smoothly bounded strictly pseudo-convex domain, and
in Section 7 we conclude by indicating how to translate the results proved on the
ellipsoids to the case of the surface measure.

Finally, we mention that in an upcoming paper [BPS] we study the question
of factorization of Hardy spaces as well as characterization of bounded and com-
pact Hankel operators on a class of finite type domain&’irthat includes the
ellipsoids.

2. Powers of the Szegd Kernel

The next three sections deal with the Szeg06 kernel and the Hankel operator related
to the measuréu, so we shall omit all indices or exponents and write simply
(resp.hy) instead ofS,, (resp. h(’”) We shall also write® instead ofQ2,. With
respect to the surface measdmon the boundary (see (3)), the Szego kernel

S(z, ¢) has expression

ml+ +1+ ) mem
CZ r(m1+1)r(’"2 g)z ‘

- 2
T Sk (0] T ) .
- ah) ( (1 — zag)Va

(see [BoLo]). We recall that the Bergman kernel also has an explicit expression
of this type, which allows us to considén as a natural measure 6.
We want to study the integral operatif;, (A > 0), given by

f= fm S O F(©) dp(©),

$(z,¢) =
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when acting on holomorphic functions. We can write
SO =) ya"e",
with y,, = [,1¢™ > du(Z). We are going to writes*1(z, ¢) in the same way.

LEmma 2.1. For!l > Owe have
Sz, 0y = )y, AR,

m

where the sum is taken overe Z2, m1, m, > 0, and

m2

40— Pomit+ P+ @+ D) rmet+2)  T(E+3)
" T(mi+ Z+1+1)  Tme+D  T(Z 4 1+ L))

Proof. We begin by setting’(z, ¢) = Y_,, cnz™¢™, and we wish to compute the
coefficientsc,,. Notice that

/ Sz, O™ du(c) = enz” / P du (o)
0 Q

=cuymz".

Recalling that

- 2
I _ ol — i py (g 2% >
Sz, ¢) = c'(1— z181) ( A= s

and using Lemma 1.6 in [BoLo], it is easy to see that

A(yly,) =CmYVYm
wo 21
_ —1(1+1/q) = mi = m
=¢ asz(l — wy) a (1 T A eV ) w1, dp(w)
. T(ma+21) L(mi+ %2+ (14 2)])

" T+ D@D T(Z + (14 D)) Ty + D)
T(mi+ DT (% + 1)
X .
P(mi+ % +1+ 7)

This proves the lemma. O

Thus we have shown that, ff(z) = Y, a,z™ isin H?(Q), then
[ s 00 dno = Y, ©)
Q2 m

We now define the operators that are our main technical tools.

DEeFINITION 2.2. Fori > 0 we define the operatord; andM* acting on holo-
morphic functions as follows. Lef(z) = ), anz™in H?(2). Then we set
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M; f(2) = / S, O F@) dp() = ¢ ) anAGZ" (6)
Q2 m

and, with some abuse of notation,

A+ A-2/q)
~ m m
M'f(z) = Z(m1+ 72 +1> (72 +1> amz™. (7)
Notice that, indeedi* o M* = M**+*.

We have the following result relating the operatafs and M*.

LeEmMA 2.3. LetA > Oand letdv be a finite measure of2 that is invariant under
the action of T2 on Q given by

(w1, wp) > (ewy, e"2w)).
Then, for allp > 0 there exists;, > 0 such that, for all holomorphic functions
feHXQ),
1 -
—f|fo|”dv S/IM‘fI”dv Scpf|fo|"dv.
Cp Ja Q Q

Proof. We setl ;= A + 1 and define
AD
<1+1/q)<1—1>(

oy = ozﬁ,ll) =

=4

YT (8)
1)
q

(ml-l-%-i-l)

From the invariance afv, it follows that

/lM,\flpdv
Q
1 o o
= (gn)zf / /|fo(€l L, €2w,) | dv(wy, wo) dby dbq;
o Jo Ja

the same holds witt#7* in place of M, . If we integrate first ind,, 6, we see
that the inequalities will follow from the fact that the operator involved on double
Taylor series is bounded ad”(T?). It therefore suffices to show that the two se-
quencesa,,),enz and(a;,b),,cn2 define two bounded Fourier multipliers of the
spaces”(T?). We shall prove it for the first sequence (the proof for the second

is identical).
If we write «,, as a product then we are led to consider sequences of the type
pO — [(mz2+1+45s)
" T(ma+D(m2+q)*
my 1\ /m2 1\$
g TG +)
m m 1
P(Z2+ 7 +s)
m2 1
5o _ D(mi+ 22 +1+4 5 +5)

P(mit %2+ 14+ 1) (mi+ %2 +1)°
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where in each cases a positive number related t@ndg. It suffices to show that
each of these three sequen(:ﬁé”) (j =1 2, 3) gives rise to a bounded Fourier
multiplier. Let us first look a(ﬂ,(,{)) for j =1, 2. Asthese sequences depend only
onm,, we may restrict to problems of multipliers on the torus of dimension 1

We now recall the sufficient condition of Mihlin type, which ensures that the
sequencép,) e is a Fourier multiplier ofH”(T). We define the difference op-
eratorsA* by induction, setting\® = Id andAB, = B, — Bn+1. Then the Mihlin
condition may be written as

A%, < Cin+D 7%, k=0,12,.... 9)

If the sequencépg,),cn satisfies (9), then it is a bounded Fourier multiplier of
HP(T) forall p > 0 (see [St, pp. 115, 245]). It is easy to prove that the sequence
on N which gives rise t@? satisfies (9), so that it defines a bounded multiplier.

In order to analyze the sequengf’, we shall use the following elementary
lemma.

LemMma 2.4. Let(B,).en be a sequence such that, foreack 0,1,...,9 — 1,
the sequencép,,«).en is a Fourier multiplier of H?(T). Then(B,),en is a
Fourier multiplier of H?(T).

Proof. Letw; (j = 0,1,...,9 — 1) denote the;th roots of unity, and forf e
HP(T) define

fi(2) =

< |

q—1
> o) f(w;2).
j=0

Then eacly; isin H?(T) with norm bounded by the norm gf and f = Zz;é fx-
Moreover, f; may be written as*g; (z%), whereg; has Fourier coefficients given
by

gk(n) = f(nq + k).
Let T be the operator given by the multipliés,,),en. ThenTf; is given by the

action of the multiplief( 8, +)»en 0N g. It follows from the hypothesis thétf;
belongs toH”(T). Hence,Tf € HP(T). O

We may now return to the sequeng?). Using Lemma 2.4, it suffices to show
that, foreactk = 0,1, ..., g — 1, the sequence

k+1 k\S
T
" l"(n—}—]‘TH—}—s)

satisfies (9). Notice that (by the Stirling formula) we obtain the asymptotics

Tn+5)(n+14%)
lim (n d )Enl q) =1
n—00 F(n + T+ + s)

andAn® may be written ag® - ,® with
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n+tE S (nt24 2y

" _q_ . -
n—l—kT*l—l—s (n—{-l—i—s)“

n

Using these two facts, it is elementary to prove that
1Ay P < Citn+ 17,
which we wanted to prove to conclude fig#?).

It remains to consider the sequeng?®). Using the same kind of argument as
in Lemma 2.4, we are lead to consider separately the sequences

D(mi+mo+1+ 2 +5)

sk —
" (m1+ma+1+ S)SF(ml—l—mz—i—l—i- "TH)

fork =0,1,...,q—1 Moreover, using the same arguments as before, itis easy to
seethab® = 1,,,m,, Where(n,),cy is a Fourier multiplier of the spacé#(T).
In order to conclude the proof, we use the following elementary lemma.

LemMma 2.5. Assume that the sequeneg,),cy is a Fourier multiplier of the
spaceH”(T). Then(s,,),,en2, defined bys,, = n,4m,, iS @ Fourier multiplier of
HP(T?).

Proof. Let F(04, 62) = Zmlzo’mzzoaml,,nze"<m191+m2"2> be a polynomial. Then

F(01,02) = G(61, 05 — 02)
with
G(Ql, 92) = Z Z bnl,nzei(mgﬁ_nzOZ)

n1>0 0<np<ni

if we chooseb,,, ., = @u,—n,.n,- Multiplication by §,, for a,,, ., becomes multi-
plication byn,, for b,, ,,. Therefore, the muliplier acts on the first variable for
G, and the lemma follows from the fact that and G have the same norm in
HP(T?). O

This ends the proof of Lemma 2.3.

Roughly speaking, Lemma 2.3 shows that the oper#ftoacts on holomorphic
functions likeM*. In order to understand the action &f*, recall thatN is the
differential operatotV := z19,, + %8&. For a holomorphic function

f@ =) anz",

we have the equalities

I+ N)f@) = Z(m1+ % + 1>amzm,

m

<1 + %%).f(z) = Z <% + 1)amz’".

m
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Hence, the action aff* on holomorphic functions may be seen as the product of
fractional powers of + N and/ + Zq—zazz. As it is easier to deal with differen-
tial operators than fractional powers, we shall make usédf (k € N, k > 1). A
simple calculation now shows that

A+g)k (g—Dk
~ m m
M f(2) = Z(m1+ 72 + 1) (1+ ;2) 2"

m

72 (g—Dk
- (1 + ;az2> (I + NP,

which is a classical differential operator.

We conclude this section by recalling some geometrical facts about our domains
and kernels.

As is well known, on the boundadg2 of 2 there exists a non-isotropic pseudo-
metricd,, (as defined in [NRSW, Def1.1)]) for all finite type domains of:2. In
our case, one may use a simple expressiodfdsee [BoLo]). Thus, we set

dp(z, w) = |I(D1(w1 — 1) + qWa|wo[*! *(wp — 22))|
+ |w2|2‘1’2|w—z|2+|w—z|2‘1. (10)

Furthermore, there exists a tubular neighborhood of the bourtdarsuch that
eachz € U has a unique normal projectianz) on Q2. Forz, w € U we set

d(z, w) i=68(z) + 8(w) + dp((2), T(w)), (11)
where, we recall§(z) := 1 — |z1]?> — |z2]??. Moreover, we set
T(w, r) = min{rY?w, |14, FY24}, (12)

For the estimates for the Szegd and the Bergman kernels on the diagonal, one
has:

2 -2
1 2y-a (1 12l
S(z,2) =~ (1 —1z1]%) (1 - Izllz)l/‘?> , (13)
B( Y~ (1— 2)*(2+l/q) 1— & - (]_4)
7,2) |z4] APV )

These formulas may be found in [BoLo]. They have also been proved in the con-
text of pseudo-convex domains of finite type by Catlin in [Ca]. In order to recover
the well-known Catlin’s estimates—that is,

B(z,2) ~8(2) 7% - t(z) 72
S(z,2) =87 t(2) 7%

where, for convenience of notation, we writ€) := 1(z, §(z)) (see (12))—it suf-
fices to check that on these ellipsoids one has

1) = (L= z1PY — |22)Y? and 8(2) = Q- [P Ve (2 (15)
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3. Equivalence of Norms

In this section we prove the equivalence of norms in the Besov space—that s, The-

oreml1.1. Wefirst prove the inequality on the right in Theordm. We dathis by

proving a slightly more general fact. We should emphasize the fact that this part

of Theorem 1.1 is valid in the larger context of domains of finite typ€#nand

of convex domains of finite type i@") because it uses only size estimates on the

Szego kernel. The results of Section 2 will only be used in the reverse inequality.
We recall the notation introduced in (6):

M@ = [ 570 0 du).
On the ellipsoid we define the differential operator
N =210, + i]—zazz, (16)
and forg € R we denote bys* the numbers/2q for § > 0 andg/2 for 8 < O.

Recall that .
P < e8P,

ProrosiTiON 3.1. Let/ be a nonnegative integex, 8 € R, A > 0, andp > 0.
We assume that the inequalities
a+p +lp+1>0,  Ap+ta+l+@rip+p)*>0

are satisfied. Then there exists a constant 0 such that, for all holomorphic
functionsf,

/ |M; f(2)I7S Pz, 2)8%() TP (2) dV (2)
Q
<c| Y IV@IPTT @R AV ().

Q2 o<k=I
Notice that the conditions am, 8, [, A, p are equivalent to the integrability of the
weight, and that the right-hand side inequality of Theorem 1.1 corresponds to the
casewx = f = —2.

Proof. The proof of Proposition 3.1 is given in three steps. We first give a new
expression fo; f(z), which is obtained by integrations by parts. Then we con-

sider the casep > 1 andp < 1 separately. The new expression is based on the
following lemma.

Lemma 3.2. Let f, g be holomorphic functions i#/2(2). Then if we seD, =
N+ (1+ "qil)l for all nonnegative integet, the following identities hold

/a . fw)gw) du(u) = ¢ /Q f)Dogu)dV (u), a7)

/ fw)gw)s™(u)dV(u) = c, / fw)D,g)s" ™ u)dV(u).  (18)
Q Q
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Proof. We only prove the identity (17), the proof for (18) being analogous. This
identity, once given the Taylor series gfandg, is an easy consequence of (3).
Indeed, recall that

mo+1
'mqi+ 1)F(ZT)
[(my+14 224
(see [BoLo]). Writef(u) =), anu™ andgu) =Y, b,u™. Then

/B . fw)g @) duu) = co ;amém ™ 12 2 4

2
”um ”Lz(d;L) = Co

m m _1
Moreover,u™(|2,, ., = c1l(m1+ 1)1"(27”)[1“(m1 +1+ 27“ +1)] " and
YR 4 A ma + 1 m
f f@)Dog)dV(w) = c§ Y dub (ml +14+ =2 )nu 12 20av)-
Q m
Recalling that"(z + 1) = zI'(z), we obtain (17). O

If we use Lemma 3.2 + [ times, starting from the definition @#, f(z), we ob-
tain the following.

Lemma 3.3. Letk,! € N. Then there exist€) ; such that, forf € HZ(Q), the
following identity holds

M, f(2)

=Ciy f Dic - Do Sz, ©)Diys - Disaf(©)8 () av(). (19)
Q

We now prove Proposition 3.1 ford p < co. Denote byT,f” the integral oper-
ator defined by

TMg(2) = §*(2) 1% (2) / Dy Do SNz, 0)g(0)8%(0) Vv (Q).
Q

It is sufficient to show that, fok large enough and for some constantve have

f ITMg(2)|P8%(2)tP(2)dV(z) < ¢ / 12(2)|78%(2) TP (2) AV (2).
Q Q

for all (not necessarily holomorphic) functiogs In order to prove such an esti-
mate, it suffices to show that the integral kernel of the ope@%nnL"(é“rf‘dV)
satisfies the assumptions of Schur’s lemma. Notice that the k&iiel ¢) has
expression

Ki(z,¢) = 8" (@)t (@) Dic - - Do S* Pz, )8 ()t P(0).  (20)
From the estimates in [NRSW], we know that
|Di¢ -+ Do SNz, O < ed(z, 0) " Fr(z,dz, ) 2%, (21)

whered(z, u) is defined as in (11). We can apply Schur’s lemma with the function
8%t® by using the following lemma, which relies on the estimates (21).
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LeEmMA 3.4. Under the condition
Ap+a+1l+@ip+p8)* >0,

for k large enough one can find » such that

/ |Ki(z, ©)8P () T () dV (C) < 87 (2) T (2),
Q

/ |Ki(z, O)18PT(2) TP (2) dV (z) < e8P (§) TP ().
Q

Proof. The lemma is an elementary consequence of the following inequality,
whose proof may be found in [Sy2]:

/ d(z,0)"t(z,d(z, )8 TP () dV(C) < e8*T ()PP H2(r)  (22)
Q

under the conditions
a+pB*+1>0 and —a—a—-2+(—-B—-b—-2)*>0.
We recall that from (20) and (21) we have the estimate
Ki(z, DI < 8" (@)t ()d(z, §) 2 (2, d(z, 0) 22840 P(©).
Thus, according to (22), we must show that there exist$) such that
—ap’ + A+ (=bp' +21)* > 0,
ap+a+r+bp+p+20)"+1>0.

If these two conditions are satisfied then the previous two are also satisfied for
large enough.

Now (a, b) satisfies the first condition if it is in a convex cone whose vertex is
the point(x/p’, 21/p’). Analogously, the second condition is satisfietuifb) is
inside a convex cone having vertex(iy, bo), where

a+r+1 B+ 2x
apg=——, bo=— .
p p

In order for these two regions to intersect, it suffices that the vertex of first cone

belongs to the second one:

o 2 *
;P+a+k+<?p+ﬂ+2k) +1>0;

that is,
Apta+@rip+B)*+1>0,

which is what we wished to show. O
This finishes the proof of Proposition 3.1in the case p < oo.

Now let 0 < p < 1 Let (w'”) denote a sequence of points such that poly-
discs of typeQ; = Q(w', ns(w'?) give a Whitney covering of2 as well as
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20; = QWY 2n8(w')). If we write g = Dy - - - Drt1f(¢) then we see that
M, f(z)| is equivalent to the sum ovegrof

d(z, w92 e (z,d(z, w D)) "2 (D) / 1g(O1dV(©).
Qj

We have used the fact that all functioi&, -), 8, t are essentially constant in-
side Q;. It follows from the subharmonicity o¢ (and the fact thap < 1) that
M, f(z)|? can be majorized by a constant times

Zd(z’ w(j))(—Z—?»—k)PT(Z’ d(z, w(j)))(—2—2?»)175(k+1)17(w(j))
J

x (Vol(@)))"™ / lg(OI” v (©).
20,
Now, for k large enough, we can apply inequality (22) to obtain the bound
/ d(z, w(.i))(—Z—A—k)pT(Z’ d(z, w(./')))(—2—2?»)115?»P+0l(z).[2)»P+f3(z) dv(z)
Q
< 8 kT Dprat2 () (1)) =20B+2(y, (D)

From these two last inequalities and using the Whitney property of the covering
20;, we see that

/ |M; f(2)|P8*7T(2)T?*P TP (2) AV (z)
Q

< czal"”(w(f))rﬁ(w(f)) /2 Q'|g<;>|"dV(;)
J J

=< C/ 18(z)g(2)178%(z) TP (2) AV (2).
Q
This finishes the proof of Proposition 3.1. O

Now we make use of our work in Section 2 relating the operatfyrandi*. The
proof of the next result is an immediate consequence of Lemma 2.3 and Proposi-
tion 3.1.

CoroLLARY 3.5. Let/ be a nonnegative integew, 8 € R, » > 0, andp > O.
Suppose that the inequalities

a+B*+Ilp+1>0 and Ap+a+1+Q2rip+p)*>0

are satisfied. Then there exists a constant 0 such that, for all holomorphic
functionsf,

f |M*f(2)|PS ™" (z, 2)8%(z) TP(2) AV (2)
Q

<c [ DIV @) tP) dv(2).

Q o<k<l
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We now prove the left inequality in Theoreld. Assume that

|M;.g(2)|”S P(z,2) B(z, z) dV(z) < o0.
Qq

Then the same is valid with/* instead ofM; . We recall that
A2A<>A2N =:AZA+N.

Using Corollary 3.5 with replaced bytg — A, with f replaced by*¢, and with
[ = 0 and, B suitably chosen, fok large enough we find that

/ |M* g (2)|P8* 1P =2 (2)T?*9P=2 4V (z) < o0.

2q

Remember tha?*? = (I + 2—28@)("_1)]((1 + N)@+Dk In order to be able to prove

that g is in the Besov spacB, with control of the norm, it suffices to prove the
following lemma.

LEmMa 3.6. Lete, B8 € R such thate + g* + 1 > 0. Given anyp > 0, there
exists a constant > 0 such that, for all holomorphic functiong

/ 18(2)1P8%(2) TP (2)dV(z) < ¢ f I(I + 220.,)* g (2)|78%(2) T 727 (2) AV (2).
Q Q
Proof. It suffices to prove the lemma fér= 1. Using the estimate (15), we have
f 1g(2)|78%(2) TP (2) dV (2)
Q

< C/ 1- |Z1|2)0t(1—1/¢1)
|z1]<1

o 2
x f (@— 122D = 122122117 dV (22) AV (z1).
lz212<(A~|z12) Y4

Then, by applying Hardy’s lemma in the inner integral (see e.g. [AFJP, Thm. 6]),
we see that the integral

/22|2<(1—|21|2)1/q((1_ l2al?) 7 |Z2|2)a+ﬁ/2|g(z)|” dV(z2)
is bounded by a constant times
/z22<<1—zlz>w((l_ 21l —1222) P EN(1 + 20.,) @I dV (22).
Therefore,
/Q|g(z)|”5°‘(z)fﬁ(z) dv(z) < C/;2|(I +220.,)8(2) |89 (2) TP (2) AV (2),

as follows again from the estimate (15). O
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4. Necessary Conditions for Schatten Class
Hankel Operators

We now prove Theorem 1.2 for the operatgr= h{"’. For 1< p < oo it fol-
lows immediately from results in [Syl, Sec. 4]. We now give another proof, which
holds also forp = 1. We shall prove that

p
Islls, = ¢ /Q ‘S*(m) /m $4z. O f(©) du(©)| Bz, 2)dV(2).

Recall that, for 1< p < 400, any bounded operatdr, and any orthonormal
sequencéqa;), we have that

Y Taj,a)l” <IITIS, . (23)
J
Moreover, it holds that

IXTYlls, < IXINT s, 1Yl (24)

for any bounded operato?s, Y.

As before, le{w'/)) be a sequence of points such tigt:= Q(w, ns(w))
is @ Whitney covering of2 and Q; = Q(w", ns(w)/Co) are pairwise dis-
joint. The size ofQ; in the complex transverse directiav, is nd(w'), and
it is nt(w') in the complex tangential direction (see [Syl]). Bt= 7(Q;),
wheresr denotes the normal projection of a tubular neighborhood of the bound-
ary onto the boundary itself. Insid@;, the quantityS —3(z, z) B(z, z) is of the
order/L(Bj)3 . VoI(Qj)‘l. Moreover, using the mean value property, from stan-
dard techniques it follows that—far small enough and, g fixed in such a way
thata + 8* +1 > 0—for F holomorphic one has the equivalence

/ IF@)1P8%(@) P (2) dV(2) = Y [Fw' )78 (w )t (w ) Vol (Q))  (25)
§ J

(see [CRW]in the case of the unit disk and [Sy2] for its generalization in our con-
text). In particular, we have

J

P
B(z,2)dV(z)

) /8 S 0@ dne)

. p
<c ) uBH¥ / S, 0 F(©) du(@)| . (26)
F aQ

If we sete; := (B;)¥25%(-, w'"), the right-hand side of (26) is equal to
Y| [ hrerean

j 0
Now we claim that the sequence;) is the image under a bounded operator

Y: L?(dV) — L?(9Q) of anorthogonal systefa;) in L2(dV), with [|a; |l 24y =
1. Assuming the claim for the moment, we finish the proof.

P
= ¢ lhs(ep). el
J
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By Theoreml.1,(23), (24), and (26), we have that

p
115 <e /Q ‘S%z) /d S 0S@du©)| B2 dv ()

< cD(Y*th(a,), a)|”

J

<l YY1}
< cllhgll% .

Thus, we need only prove the claim. Fpe L?(dV) we set

Yg(¢) == / 8Y2(w) T2 (w) S%(¢, w) g(w) AV (w).
Q
Notice that

ej 1= u(B)* 282 w'”)

N3/2
=%[ S2(.. w) dV(w)
j) YO
:“(Bj)a/z —1/2_-2
=207y - ).
Vol (Q;) @7 )

If we define
_ w(B)¥?
© \Wol(Q))

then(a;) has the required properties to be an orthogonal sequence such that the
norms||a; | 2vy = 1, sinces andr are almost constant o@j.

It remains to show that : L2(dV) — H?(R) is a bounded operator. L&t*
be given by

aj(w) 52wt 2 (w) xg,(w),

Y*¢(z) = 8Y2(2)1%(2) /d . 5%(z, 0)p(¢) du(o) = 8Y2(2)T%(2) Mg (2).

It suffices to show that *: H?(Q) — L?(dV) is bounded, since its Hilbert space
adjointisY.

It is well known (see [Be, Thm. 1.4]) thaf2(Q2) can be identified with the
space of holomorphic functiossuch that

/ Vo (2)[28(z) dV(z) < oo.
Q

The fact thatr* is bounded follows from Proposition 3.1 with= —1 andg = 0.
This finishes the proof of Theorem 1.2. O
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5. Hankel Operators on Weighted Bergman Spaces

In this section we study the case of weighted Bergman spaces on the complex ellip-
s0ids$2,, which we denote b¥2 as before, and we prove the analog of Theorems
1.1 and 1.2 in the present context.

Leta > —1. We denote byd?(§*dV) the weighted Bergman space, that is, the
closed subspace df?(5*dV) consisting of the holomorphic functions. We de-
note by P, the weighted Hilbert space orthogonal projectionf3fs*dV) onto
A?(8*dV). The small Hankel operator with symbgle A%(5§*dV) is defined for
g € L?(8*dV) by setting L

h?g = Pa(fpag)-

Mutatis mutandisfor the weighted Bergman spaces we have the following ana-

log of Theorent.1.

THEOREM 5.1. Letp > Oando > —1, and leti be a real number such that
(A—a—1p+ (2rp)*+1> 0. Then, forallg € A?(8%dV), we have
S)”+1(Z ;—) 14
P~ ’ —a—1 o
lell, = [ | [ 2o s V)| B2 ave)

We now have the following result.

THEOREM 5.2. Letl < p < co. Thenhf € S, is equivalent tof € B,,.

Proof. For the sufficient condition, the proof given in [Sy3] for finite-type do-
mains inC? can be extended to this context.

For the necessary condition we use the relations (23) and (24). We consider the
family of holomorphic functions imM?(§*dV),

¢j(2) = (B V28w THN 25k, '),
wherek € N is large enough an@(w'/, né(w'”’)) a Whitney covering of2. The
functione; is the image under the operatty of the almost orthonormal family

B2 B
aj(w) — I’L\/OIJTj)S(w(J)) ¢ +1)/25(w)2 kl.(w)Z(l k)XQj(w)'

The operatoV,, is defined by
Yug(2) :/ Ko(z, w)g(w)d(w)* dV(w),
Q

whereK, (z, w) = 8(w)* 227 (w)>*~V5¥(z, w). We remark that there exists a
¢ > 0 such that
C

Kelz Wl = G o G dG )2

Thereforey, is abounded operator ¥ (5%dV). As for the proof of Theorem 1.2,
we have
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IBE1G = ¢ Y (e eal” = D 14f, eal”
J J

= [
Q

> cll 115,

Hencef isin B,. O

S)H—l , p
/ S s @80 V)| B V)
Q (z,2)

6. The Case of a Strictly Pseudo-Convex Domain

In this section we denote 9 ¢ C”" a smoothly bounded strictly pseudo-convex
domain defined byD = {z € C", p(z) < 0}, wherep is aC>®(D) strictly
plurisubharmonic function and/p(z)| = 2 ondD. We define as before the sur-
face measuréo, the Szego kerned, and the Hankel operatar. We claim that,

in this context, analogous theorems hold true.

THEOREM 6.1. LetD C C" be a smoothly bounded strictly pseudo-convex do-
main. Let0 < p < 4oo0 andm € N such thatm > 1/p. Then, there exists a

constani > 0 so that, forf € B,,

1 Sm+1 Z,w p
21715, < / / W) fy do(w)| Bz 2)dVE) + I fllur
c ? plJop $™(z,2)

<clfilf,.

THEOREM 6.2. LetD c C”" be a smoothly bounded strictly pseudo-convex do-
main. Letl < p < +oo. Theni; € S, is equivalent tof € B,,.

Let us first fix some notation. Le¥ := ) ", 3, p(2)9;, be the complex normal
direction and let
y glv! h
0/ '= ————— Wherey = ey Vi)
qwlt - dw)” = v)

Notice that, by our normalizatiolNp = 1 ondD. As on the ellipsoids, we define
8 := —p, we denote by, the Koranyi distance on the boundary, and, as in (11),
we write

d(z, w) :=8(z) +8(w) +dp((2), w(w)) (27)

for z, w in a neighborhood 0dD. The proof of Theorem 6.1 is based on the as-
ymptotic expansion of the Szegd kernel, as obtained by Fefferman [Fe]. We recall
that there exisy > 0 andeg > 0 such that, fop (w) < §o and|z — w| < g¢/2,

S(z, w) = a(x)¥(z, w)™" + Eo(z, w), (28)

wherea := Cp detL, and
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W(z, w)

n

1

= —p(w) = D, pw)i —wi) = 5 Y85, (W)@ — wi) ek — wy).
i=1 ik

Moreover, ifA is the boundary diagonal, thefy is in C*°(D x D \ A) and, for

every multi-indexy, satisfies the estimates

IVYEo(z, w)| < ¢,d(z, w) ™" T2 7l (29)

Here derivatives are taken in th®r w variable.
We use identity (28) to give a similar description for the ker§igt(z, w),
m > 1. Form a positive integer we define the functiap(z) by setting
. (nm —=1)! nel
am(z) == =1 a()"
It is immediate that,, does not vanish ifD. We define the kernek,,(z, w) by
setting
E,(z, w) = 8"z, w) — aw(2) N S(z, w).

The following proposition gives a pointwise estimate #y,(z, w) and its
derivatives.

PropoSITION 6.3. Letm be a positive integer. Thef,, € C¥(D x D \ A).
Moreover, for every multi-index, there exists:, > 0 such that for(z, w) €
DxD\A,

|5&/}Em(1, w)| < Cyd(Z, w)—n(m+l)+1/2—|1/\_
Proof. We prove the estimate fgr = 0. It suffices to prove that, fop(w) < 8¢
and|z — w| < g9/2,

N"S(z, w) = an(z) ta() W(z, w) """ + ED(z, w),
with
|E(1)(Z, w)| S Cd(Z, w)fn(m+1)+1/2.

m

When computingV"S(z, w), we find derivatives of the error termig(z, w),
which are directly majorized using (29) and are part®¥(z, w), as well as
derivatives of the main term. Differentiating each time, the denominator gives

(—1)nmdm(Z)7la(Z) (N, ¥ (z, w))"W(z, w)fn(m+l)

while the other derivatives are also majorizedddyz, w) """ +tP+Y2 |t remains
to show that
NV(z, w) = =1+ 0(d(z, w)¥?).

This follows from the fact thav, ¥ is a smooth function that is identicallyl on
A. Indeed,N,¥(z, w) + 1is bounded, up to a constant, by the distance o)
to A, which in turn is bounded by(8(z) + §(w) + |7 (z) — 7w (w)|). Then we use
the definition ofd (z, w) and the well-known fact that, on the boundary,
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|z — w| < cdy(z, w). (30)

This concludes the proof fgr = 0. The same proof holds in the general case.

O
Let us now give the idea of the proof of Theorem 6.1 in the context of strictly
pseudo-convex domains. Let us define the operdipras before,

M, f(2) = / §" 3z, w) £ (w) dor(w).
oD
From the definition oft,,, it follows that

My f(2) = an(@) N f(2) + En f(2), (31
where the operataf,, defined by

E,f(z) = fD En(z, w) f(w) do(w)
]
for £ in LY@D). It is well known [Be, Thm1.1]that

I, ~ /DIN”'”f(Z)I’@(Z)"'"”B(Z,Z)dV(Z)+ AN (32)

We shall show that the error teri,, f is small compared t&v""f. More pre-
cisely, the following proposition holds true.

ProPOSITION 6.4. LetO< p <+o0, meN, anda €R such thatw + pmn +1>
0. Then there exists > 0 such that, forf € B,

/ |En fQIP8)"" dV (2) < ¢ f 3 @178 AV (z),
D D

ly|<nm

Let us take this proposition for granted, and prove Theorem 6.1. The rightinequal-
ity is obtained directly, using equality (31) and the estimate (32).

In order to prove the bound from below, we use (31), (32), Proposition 6.4, and
the fact thatz,, is bounded below to see that

115, < C/DIMmf(Z)I”S(Z,z)_””‘B(Z,Z) dv(@) + 1 f1I7

+c / D1 @IP8(2)™ Bz, 2) AV ().
D

ly|=nm

LetD, := {zeD:8(z) > ¢}. If we chooses so thatc's(z)?/? is small enough
in D\ D,, then

1
¢’ 187f(2)|78(2)""PB(z,2) dV(z) < SIIf % -
/D\DS I)/Igr;m 2 K

while
3 @178 2B (2, 2) dV () < cll FIL,.

De |y|<nm



The Szeg6 Kernel and Hankel Operators 245

We then have
1
1N, < C/ IS™f(2)|PS(z,2) " B(z,2) dV(2) + Il fII},» + §||f||1’;p.
D
In order to finish the proof of Theorem 6.1, we need only prove Proposition 6.4.

Proof of Proposition 6.4.The method is the same as for the proof of Proposi-
tion 3.1. Itis also given in three steps. We first give a new expressioH,fgi(z)
which is obtained by integrations by parts. Then we consider the gasesand

p < 1separately. The new expression is based on the following lemma.

LemMa 6.5. Letz e D andk, ! € Nwith/ > 0. Then there exist, ,» € C*(D)
such that, forf € H2(D), one has

Enf)=) > /D I En(z, w)by, (w)d” f(w)s(w) 't aV (w).

lyl<k |y'I<l

Proof. SinceNp = 1 0onaD, we have that
Enf(2)=) / En(z, w) f(w) i, p (W) By, p (w) dor(w).
i=1 YD

The functionw — E,(z, w) is an anti-holomorphic function, so Stokes’s formula

gives
Em(za U)) = / Em(z’ U))<
D

Now we use the fact that there existb € C°°(D) such that
1=a(w)Npw) + (—p(w))b(w) = a(w) Np(w) + (—p(w))b(w).

The lemma is obtained aftér— 1 integrations by parts with respectitoand! in-
tegrations by parts with respectido(see [Sy2] for details). O

B2 | pan) av,

Letl< p < 4o0. To prove Proposition 6.4, we use Lemma 6.5 with mn and
estimate each term. In order to do this, it suffices to prove that the opdfator
defined by

Kig(z) = 8(z)™ / d(z, w)~mHIn=kAY 250\ k=320 (w)) AV (w)
D

is bounded orL?(§*dV) for k large enough. As usual, we use Schur’s lemma
with the functions—“. We shall not give the details, which rely on the analog of
(22) in this context (i.e.,

/ d(Z, w)fl(SOt(w) dV(w) < C(Sa+a+n+1(z)
D

under the conditions > —landa + o +n +1 < 0).

For 0 < p <1, as for Proposition 3.1 on ellipsoids, we consider a sequence of
points(w'/)) in D such that the polydisa8; = Q(w'”, ns(w'”)) give a Whitney
covering ofD and then proceed in the same way.
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This finishes the proof of the proposition, and therefore also the proof of Theo-
rem 6.1.

Proof of Theorem 6.2We proceed as in Section 4. We need only prove that the
integral operato¥ : L2(dV) — H?(D) defined by

Yy (z) = / 8(2)""Y282(z, w)Y(w) AV (w)
D

is bounded, or that its adjoint* (obtained formally), given by

Y*¢(z) = 8(x)" 2 / 5%(z, )¢ (¢) do(¢)

0D
=a1(2)8(2)"VAN"(2) + 8(2)"V2E19(0),

is bounded fromH 2(D) to L?(dV). It is well known that, for holomorphic func-
tions (see [Be, Thm. 1.4]),

/(5(@ IN"¢(2)])2 8(()) < clplZzp):

For the second term we use Proposition 6.4 witk —1. O

We could also generalize these results to the case of weighted Bergman spaces.
We shall not go into details.

7. Hankel Operators Related to the
Surface Measure on Ellipsoids

In this section we go back to the complex ellipsofds We prove the analog of
Theorem 1.1 when the measute is replaced by the surface measdee as well
as the analog of Theorem 1.2 in this context. We now give the new statement.

THEOREM 7.1. Letp > Oand letm be an integer such that > 1/p. Then there

existsc = ¢(p, m) > Osuch that, for allg € B,, we have
1 Syiiz, §) ?
o, < [ Yo 8O o] B DAV = gl
We denote by the C* function that gives the densitj/do. We shall use the
same method as in the previous section, Fefferman’s asymptotic expansion being
replaced by the fact that the projecti®f can be approximated b§;‘. For this
we use the Kerzman-Stein trick (as used in [BoLo] in this context, or in [NRSW]).
From now on, the scalar product #2(2) is defined using the surface measure,
and we also refer to the surface measure when we speak of the kernel of an opera-
tor. For instance, the kernel &£ is S,,(z, w) (w), while the kernel of P{"")*
is A(z) S,(z, w). From elementary properties of projections, it follows that

(0) (P(“))* (PS(/L) _ (PS(M))*) o P;G).
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It follows from the theory of non-isotropic smoothing operators in [NRSW] that
the second term is a smoothing operator. More precisely, one has
So(z, w) = A(2) Su(z, w) + ES (2, w) (33)

with EY € € (2 x 2\ A), which is anti-holomorphic i and satisfies the fol-
lowing estimates for every multi-index:

18, E @ w)| < ¢yd(zw) ez d(z w) ™ (34)
We can likewise write
So(z, w) = Su(z, WA (W) + EL (2, w) (35)

with E& € (S x )\ A), which satisfies the following estimates for all muiti-
indicesy, y":
18797 EQ (2 w)| < ed(z, w) Ve(z,d(z, w) ™t (36)
We define
Ep(z, w) = Solz, w)"* = 1(2)"S,u(z, w)" A (w).
We then obtain the following proposition, which is the analog of Proposition 6.3
in this context.

PROPOSITION 7.2. Letm be a positive integer. TherE,, € C®(Q x Q\ A).
Moreover, for all multi-indicey, y’ there exists @ > 0 such that, for(z, w) €
QxQ\A,

10797 E,(z, w)| < cd(z, w)~ " We(z, d(z, w))™.

We remark that the only difference with Proposition 6.3 is the fact that this time
the kernelE,,(z, w) is no longer anti-holomorphic im. The important point here
is that, nevertheless, the estimates do not depend on the multisit\dex

We consider the operatd?” defined on holomorphic funtions by

MPf(z) = f So(z, w)" 1 f (w) do(w).
Q2
Then
M f(2) = M2)"My, f(2) + En f(2),

whereM,, is the operator defined in Section 2 in relation with the meagure
and

E,f(z) = / Ey(z, w) f(w) do(w).
191
In order to prove Theorem 7.1 it suffices to estimate the remainder.

ProrosiTION 7.3. Let/ be a nonnegative integex, 8 € R, m e N, andp > 0.
We assume that the inequalities

a+p +ilp+1>0, mp+a+l+Q@Cmp+pB*>0
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are satisfied. Then there exists a constant 0 such that, for all holomorphic
functionsf,

/ |En f(2)|PS "™ (2, 2)8%(2) TP(2) AV (2)
Q

<c | Y IV@PEmT TR AV ().
2 0<k<I

Proof. We use integrations by parts as for strictly pseudo-convex domains. Con-
sider the function

p(2) = |z2l? + |22/ — 1
(1z11? + q?|z2|%~2)¥ 2’
so that|Vp| = 10nd<2, and define a new complex normal vector field¥§ :=

Y r 19zp(2)3,,. Then, if we integrate by parts as in the proof of Lemma 6.5, we
obtain its analog as follows.

LemMma 7.4. Letz e Qandk, e Nwith! > 0. Then there exigt, , ,» € C®(Q)
such that, for every € H2(2), one has

Ey f(2)
=2 > 2 / 8,01 En(z, )by, 1 ()8 f(w) 8(w) L aV (w).
Q

lyl=sk ly'|<l y"|<l

Once this lemma is given, we proceed as in Section 3 (Proposition 3.1). We write
E,. f using Lemma 7.4 and obtain control of each term by the same method. We
shall not give the details. O

The proof of Theorem 7.1 follows from Proposition 7.3 as in Section 6.
It remains to prove Theorem 1.2 whép = h;”’. We use the same proof as
before. We are led to consider the operatérgiven by

Y*¢(z) = 8Y2(2)7%(2) /d . S%(z, )¢ () do(¢)

= M2)"8Y2(2)T?(2) M1 (2) + 8(2)" Y2 E19(0).

Here M is the operator related to the measdyre and we already know (from
Section 4) that it gives a bounded operator. The rest of it is a consequence of
Proposition 7.3.

FINAL REMARKS.  We point out that our results are also valid for Hankel opera-
tors on Hardy and Bergman spaces on the ellipsoid%’iof the form

Q={z=(,2)€C" 1 xC: 1217+ |z,% <1}.

The main point is that in this case there is also an explicit formula for the Szeg6
kernel, which allows the same kind of computations. As we said, in all these cases,
the powers of the Szegd kernel act as fractional pseudo-differential operators. The
structure of the points of non—strict pseudo-convexity, and the symmetries of the



The Szeg6 Kernel and Hankel Operators 249

domain, play a fundamental role to etablish this point. It is clearly very difficult
to have a conjecture for more general domains.

We use other methods to characterize the boundedness and the compactness of
Hankel operators in the forthcoming paper [BPS].
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