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SHAPE-DRIVEN INTERPOLATION WITH DISCONTINUOUS
KERNELS: ERROR ANALYSIS, EDGE EXTRACTION, AND

APPLICATIONS IN MAGNETIC PARTICLE IMAGING∗
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Abstract. Accurate interpolation and approximation techniques for functions with discontinu-
ities are key tools in many applications, such as medical imaging. In this paper, we study a radial
basis function type of method for scattered data interpolation that incorporates discontinuities via
a variable scaling function. For the construction of the discontinuous basis of kernel functions, in-
formation on the edges of the interpolated function is necessary. We characterize the native space
spanned by these kernel functions and study error bounds in terms of the fill distance of the node
set. To extract the location of the discontinuities, we use a segmentation method based on a classi-
fication algorithm from machine learning. The results of the conducted numerical experiments are
in line with the theoretically derived convergence rates in case that the discontinuities are a priori
known. Further, an application to interpolation in magnetic particle imaging shows that the pre-
sented method is very promising in order to obtain edge-preserving image reconstructions in which
ringing artifacts are reduced.
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1. Introduction. Data interpolation is an essential tool in medical imaging.
It is required for geometric alignment, registration of images, enhancing the quality
on display devices, or reconstructing the image from a compressed amount of data
[7, 26, 42]. Interpolation techniques are needed in the generation of images as well
as in postprocessing steps. In medical inverse problems as computerized tomography
(CT) and magnetic resonance imaging (MRI), interpolation is used in the reconstruc-
tion process in order to fit the discrete Radon data into the back-projection step.
In single-photon emission computed tomography, regridding the projection data im-
proves the reconstruction quality while reducing acquisition times [41]. In magnetic
particle imaging (MPI), the number of calibration measurements can be reduced by
interpolation methods [23].

In a general interpolation framework, we are given a finite number of data values
sampled from an unknown function f on a node set X ∈ Ω, Ω ⊆ Rd. The goal of
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SHAPE-DRIVEN INTERPOLATION WITH VSDKs B473

every interpolation scheme is to recover, in a faithful way, the function f on the entire
domain Ω or on a set of evaluation points. The choice of the interpolation model plays
a crucial role for the quality of the reconstruction. If the function f belongs to the
interpolation space itself, f can be recovered exactly. On the other hand, if the basis
of the interpolation space does not reflect the properties of f , artifacts will usually
appear in the reconstruction. In two-dimensional images such artifacts occur, for
instance, if the function f describing the image has sharp edges, i.e., discontinuities
across curves in the domain Ω. In this case, smooth interpolants get highly oscillatory
near the discontinuity points.

This is a typical example of the so-called Gibbs phenomenon. This phenomenon
was originally formulated in terms of overshoots that arise when univariate functions
with jump discontinuities are approximated by truncated Fourier expansions; see [45].
Similar artifacts arise also in higher-dimensional Fourier expansions and when inter-
polation operators are used. In medical imaging like CT and MRI, such effects are
also known as ringing or truncation artifacts [9].

The Gibbs phenomenon is also a well-known issue for other basis systems like
wavelets or splines; see [20] for a general overview. Further, it appears also in the
context of radial basis function (RBF) interpolation [17]. The effects of the phenom-
enon can usually be softened by applying additional smoothing filters to the inter-
polant. For RBF methods, one can, for instance, use linear RBFs in regions around
discontinuities [21]. Furthermore, postprocessing techniques, such as the Gegenbauer
reconstruction procedure [19] or digital total variation [33], are available.

Main contributions. In this work, we study a shape-driven method to interpo-
late scattered data sampled from discontinuous functions. More precisely, we consider
variably scaled kernels (VSKs) [4, 31] to model edges (known or estimated) of a func-
tion. Starting from a classical kernel K, it is possible to define a basis that reflects
discontinuities in the data. These basis functions, referred to as variably scaled discon-
tinuous kernels (VSDKs) [11], strictly depend on the given data and provide tailored
interpolants to avoid overshoots near the edges of the underlying function. The goal
of this work is to present a theoretical analysis of the interpolation spaces and the
approximation errors related to these discontinuous basis functions. In the literature,
the usage of discontinuous kernels for approximation purposes is rather rare. An al-
ternative construction of discontinuous kernels based on a Mercer decomposition is
given in [35].

If the edges of the function f are explicitly known, we show in this work that
the given interpolation model outperforms the classical RBF interpolation and avoids
Gibbs artifacts. From the theoretical point of view, we provide two main results. If the
kernel K is algebraically decaying in the Fourier domain, we characterize the native
space of the VSDK as a piecewise Sobolev space. This description allows us to derive
in a second step convergence rates of the discontinuous interpolation scheme in terms
of a given fill distance for the node set in the domain Ω. The VSDK convergence rates
are significantly better than the convergence rates for standard RBF interpolation.
Numerical experiments confirm the theoretical results and indicate that even better
rates are possible if the kernel K involved in the definition of the VSDK is analytic.

In applied problems, such as medical imaging, the edges of f are usually not
a priori known. In this case, we need reliable edge detection or image segmentation
algorithms that estimate the position of the edges from the given data. For this reason,
we encode in the interpolation method an additional segmentation process based on a
classification algorithm that provides the edges via a kernel machine. As labels for the
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B474 DE MARCHI, ERB, MARCHETTI, PERRACCHIONE, AND ROSSINI

classification algorithm, we can use thresholds based on function values or on RBF
coefficients [30]. The main advantage of this type of edge extraction process is that
it works directly for scattered data, in contrast to other edge detection schemes, such
as Canny or Sobel detectors, that usually require an underlying grid (cf. [8, 37]).

Outline. In section 2, we recall the basic notions on kernel-based interpolation.
Then in section 3, we present the theoretical findings on the characterization of the
VSDK native spaces (if the discontinuities are known) and Sobolev-type error esti-
mates of the corresponding interpolation scheme. In section 4, numerical experiments
underpin the theoretical results and reveal that if the edges are known, the VSDK
interpolant outperforms the classical RBF interpolation. We show how the VSDK
interpolant behaves with respect to jump parameters and spatial perturbations of
the scaling function that models the discontinuities. We review image segmentation
via classification and machine learning tools in section 5 and summarize our new
approach. In section 6, the novel VSDK interpolation technique incorporating the
segmentation algorithm is applied to MPI. Conclusions are drawn in section 7.

2. Preliminaries on kernel-based interpolation and VSKs. Kernel-based
methods are powerful tools for scattered data interpolation. In the following, we give
a brief overview over the basic terminology. For the theoretical background and more
details on kernel methods, we refer the reader to [6, 16, 44].

2.1. Kernel-based interpolation. For a given set of scattered nodes X =
{x1, . . . ,xN} ⊆ Ω, Ω ⊆ Rd, and values fi ∈ R, i ∈ {1, . . . , N}, we want to find a
function Pf : Ω→ R that satisfies the interpolation conditions

(2.1) Pf (xi) = fi, i ∈ {1, . . . , N}.

We express the interpolant Pf in terms of a kernel K : Rd × Rd → R, i.e.,

(2.2) Pf (x) =

N∑
k=1

ckK (x,xk) , x ∈ Ω.

If the kernel K is symmetric and strictly positive definite, the matrix A = (Aij)
with the entries Aij = K (xi,xj), 1 ≤ i, j ≤ N , is positive definite for all possible sets
of nodes. In this case, the coefficients ck are uniquely determined by the interpolation
conditions in (2.1) and can be obtained by solving the linear system Ac = f , where
c = (c1, . . . , cN )

ᵀ
and f = (f1, . . . , fN )

ᵀ
.

Moreover, there exists a so-called native space for the kernel K that is a Hilbert
space NK(Ω) with inner product (·, ·)NK(Ω), in which the kernel K is reproducing;
i.e., for any f ∈ NK(Ω) we have the identity

f(x) = (f,K(·,x))NK(Ω), x ∈ Ω.

Following [44], we introduce the native space by defining the space

HK(Ω) = span {K(·,y), y ∈ Ω}

equipped with the bilinear form

(2.3) (f, g)HK(Ω) =

N∑
i=1

M∑
j=1

aibjK(xi,yj),

where f, g ∈ HK(Ω) with f(x) =
∑N
i=1 aiK(x,xi) and g(x) =

∑M
j=1 bjK(x,yj). The
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SHAPE-DRIVEN INTERPOLATION WITH VSDKs B475

space (f, g)HK(Ω) equipped with (f, g)HK(Ω) is an inner product space with reproduc-

ing kernel K (see [44, Theorem 10.7]). The native space NK(Ω) of the kernel K is then
defined as the completion ofHK(Ω) with respect to the norm ‖·‖HK(Ω) =

√
(·, ·)HK(Ω).

In particular, for all f ∈ HK(Ω) we have ‖f‖NK(Ω) = ‖f‖HK(Ω).

In this paper we consider radial kernels K : Rd × Rd → R of the form

(2.4) K(x,y) = φ(‖x− y‖2), x,y ∈ Ω,

based on a continuous scalar function φ : [0,∞)→ R. The function φ is usually called
RBF.

2.2. VSKs. VSKs were introduced in [4]. They depend on a scaling function
ψ : Rd → R.

Definition 2.1. Let K : Rd+1 × Rd+1 → R be a continuous strictly positive
definite kernel. Given a scaling function ψ : Rd → R, a VSK Kψ on Rd × Rd is
defined as

(2.5) Kψ(x,y) := K((x, ψ(x)), (y, ψ(y))

for x,y ∈ Rd.

The so-given VSK Kψ is strictly positive definite on Rd. Suitable choices of the
scaling function ψ allow improving stability and recovery quality of the kernel-based
interpolation as well as preserving shape properties of the original function; see, e.g.,
the examples in [4], [11], and [31]. As we assume that the kernel K in Rd+1 is defined
in terms of an RBF φ, the VSK has the form

(2.6) Kψ(x,y) = φ

(√
‖x− y‖22 + |ψ(x)− ψ(y)|2

)
.

2.3. VSKs with discontinuities. Our goal is to introduce interpolation spaces
based on discontinuous basis functions on Ω. For the definition of these spaces, we
use a piecewise continuous scaling function ψ. The associated VSK Kψ(x,y) is then
also only piecewise continuous and denoted as VSDK.

We consider the following setting.

Assumption 2.2. We assume the following:
(i) The bounded set Ω ⊂ Rd is the union of n pairwise disjoint sets Ωi, i ∈
{1, . . . , n}.

(ii) The subsets Ωi have a Lipschitz boundary.
(iii) Let Σ = {α1, . . . , αn}, αi ∈ R. The function ψ : Ω→ Σ is piecewise constant

so that ψ(x) = αi for all x ∈ Ωi. In particular, the discontinuities of ψ appear
only at the boundaries of the subsets Ωi. We assume that αi 6= αj if Ωi and
Ωj are neighboring sets.

We point out that the Lipschitz condition in Assumption 2.2(ii) implies an in-
terior cone condition for the subdomains Ωi (cf. [1, page 84]). This is an important
prerequisite, in particular for Proposition 3.3 below. The kernel function Kψ(x,y)
based on a piecewise constant scaling function ψ is well defined for all x,y ∈ Ω. If x
and y are contained in the same subset Ωi ⊂ Ω, then Kψ(x,y) = φ(‖x − y‖2); i.e.,
inside the subdomains Ωi, Kψ can be seen as an ordinary RBF kernel based on the
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RBF φ. We denote the graph of the function ψ with respect to the domain Ω by

Gψ(Ω) = {(x, ψ(x)) | x ∈ Ω} ⊂ Ω× Σ.

To have a more compact notation for the elements of the graph Gψ(Ω), we use
the shortcuts x̃ = (x, ψ(x)) and ỹ = (y, ψ(y)). In the same way as in (2.2), we can
define an interpolant for the nodes X̃ = {x̃1, . . . , x̃N} on the graph Gψ(Ω). Using the
kernel K on Gψ(Ω) ⊂ Ω× Σ ⊂ Rd+1, we obtain an interpolant of the form

(2.7) Pf (x̃) =

N∑
k=1

ckK(x̃, x̃k).

Based on this interpolant on Gψ(Ω), we define the VSDK interpolant Vf on Ω as

(2.8) Vf (x) = Pf (x̃) =

N∑
k=1

ckKψ(x,xk), x ∈ Ω.

The coefficients c1, . . . , cN of the VSDK interpolant Vf (x) in (2.8) are obtained
by solving the linear system of equations

(2.9)

K(x̃1, x̃1) · · · K(x̃1, x̃N )
...

...
K(x̃N , x̃1) · · · K(x̃N , x̃N )


 c1

...
cN

 =

 f1

...
fN

 .

In fact, the so-obtained coefficients are precisely the coefficients for the interpolant
(2.7) for the node points X̃ on the graph Gψ(Ω). Since the kernel K : Gψ(Ω) ×
Gψ(Ω) → R is strictly positive definite, the system (2.9) admits a unique solution.
For the kernel K : Gψ(Ω)×Gψ(Ω)→ R and the discontinuous kernel Kψ : Ω×Ω→ R
we can further define the two inner product spaces

HK(Gψ(Ω)) = span {K(·, ỹ), ỹ ∈ Gψ(Ω)} ,
HKψ (Ω) = span {Kψ(·,y), y ∈ Ω} ,

with the inner products given as in (2.3). For both spaces, we can take the completion
and obtain in this way the native spaces NK(Gψ(Ω)) and NKψ (Ω), respectively. We
have the following relation between the two native spaces.

Proposition 2.3. The native spaces NK(Gψ(Ω)) and NKψ (Ω) are isometrically
isomorphic.

In the same way as in [4, Theorem 2], Proposition 2.3 follows from the fact that
the two inner product spaces HK(Gψ(Ω)) and HKψ (Ω) are isometric. Then the same
holds true for their respective completion.

3. Approximation with discontinuous kernels.

3.1. Characterization of the native space for VSDKs. Based on the de-
composition of the domain Ω described in Assumption 2.2 we define for s ≥ 0 and
1 ≤ p ≤ ∞ the following spaces of piecewise smooth functions on Ω:

WPsp(Ω) :=
{
f : Ω→ R | fΩi ∈Ws

p(Ωi), i ∈ {1, . . . , n}
}
.

D
ow

nl
oa

de
d 

06
/1

0/
20

 to
 8

2.
52

.1
58

.9
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHAPE-DRIVEN INTERPOLATION WITH VSDKs B477

Here, fΩi denotes the restriction of f to the subregion Ωi, and Ws
p(Ωi) denote the

standard Sobolev spaces on Ωi. As norm on WPsp(Ω) we set

‖f‖pWPsp(Ω) =

n∑
i=1

‖fΩi‖
p
Ws
p(Ωi)

.

The piecewise Sobolev space WPsp(Ω) and the corresponding norm strongly depend
on the chosen decomposition of the domain Ω. However, for any decomposition of
Ω in Assumption 2.2, the standard Sobolev space Ws

p(Ω) is contained in WPsp(Ω).
In the following, we assume that the radial kernel K defining the VSDK Kψ has a
particular Fourier decay:

(3.1) φ̂(‖ · ‖)(ω) ∼ (1 + ‖ω‖22)−s−
1
2 , s >

d− 1

2
.

In order to characterize the native space NKψ (Ω), we need some additional results
regarding the continuity of trace and extension operators. The following Lemma 3.1
summarizes some relevant facts from the literature and adapts them to the scope of
this article.

Lemma 3.1. We have the following relations for extension and trace operators in
the native spaces (a) and in the Sobolev spaces (b):

(a) Every f ∈ NK(Gψ(Ω)) has a natural extension Ef ∈ NK(Rd+1). Further,

‖Ef‖NK(Rd+1) = ‖f‖NK(Gψ(Ω)).

For every g ∈ NK(Rd+1), the trace TGψ(Ω)g is contained in NK(Gψ(Ω)).
Further,

‖TGψ(Ω)g‖NK(Gψ(Ω)) ≤ ‖g‖NK(Rd+1).

(b) Let s > 1
2 . For every g ∈ Ws

2(Rd+1), the trace TGψ(Ω)g is contained in

W
s−1/2
2 (Gψ(Ω)), and the trace operator TGψ(Ω) : Ws

2(Rd+1)→W
s−1/2
2 (Gψ(Ω))

is bounded.
Further, there exists a bounded extension operator E : W

s−1/2
2 (Gψ(Ω)) →

Ws
2(Rd+1) such that TGψ(Ω)Ef = f for all f ∈W

s−1/2
2 (Gψ(Ω)).

Proof. (a) The proof can be found in [44, Theorems 10.46 and 10.47] or [34,
section 9].

(b) This statement is as well mainly based on known results from the literature.
We consider the sets Gαi(Ωi) = Ωi × {αi} as subsets of the hyperplane Rd × {αi} ⊂
Rd+1. As we assume that Ωi has a Lipschitz boundary, there exists a continuous

extension from W
s−1/2
2 (Gαi(Ωi)) to W

s−1/2
2 (Rd × {αi}) [32] (this is known as the

Calderón extension). As also the corresponding restriction operator is bounded, the
trace theorem (see [43, section 2.7.2]) guarantees that statement (b) of lemma holds
true with Gψ(Ω) replaced by Gαi(Ωi). As Gψ(Ω) is the disjoint union of the separated
sets Gαi(Ωi), i ∈ {1, . . . , n} (by Assumption 2.2(iii)), we can finally use a partition
of unity argument to obtain (b). Note that the results in [32] and [43] are formulated
in terms of general Besov and Triebel–Lizorkin spaces. The corresponding results for
the simpler Sobolev spaces Ws

2(Rd+1) are therein obtained with p = q = 2. For s ∈ N,
simplified versions of the Calderón extension theorem and the trace theorem are given
in [1, Theorems 5.28 and 7.39].
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We are now ready to prove the following theorem.

Theorem 3.2. Let Assumption 2.2 hold true, and assume that the continuous
strictly positive definite kernel K : Rd+1 × Rd+1 → R based on the RBF φ satisfies
the decay condition (3.1). Then, for the discontinuous kernel Kψ, we have

NKψ (Ω) = WPs2(Ω),

with the norms of the two Hilbert spaces being equivalent.

Proof. We consider the following forward and backward chain of Hilbert space
operators:

NKψ (Ω)
P5

�
Q1

NK(Gψ(Ω))
P4

�
Q2

NK(Rd+1)
P3

�
Q3

W
s+1/2
2 (Rd+1)

P2

�
Q4

Ws
2(Gψ(Ω))

P1

�
Q5

WPs2(Ω).

In the backward direction, the operators P1, . . . , P5 are given as

P1 : P1f = f̃ , with f̃(x̃) = f(x), for all x ∈ Ω,

P2 : P2f = Ef, (Extension in the sense of Lemma 3.1 (b))

P3 : P3f = f,

P4 : P4f = TGψ(Ω)f, (Trace in the sense of Lemma 3.1 (a))

P5 : P5f̃ = f, with f(x) = f̃(x̃), for all x ∈ Ω.

In the forward chain, the operators Q1, . . . , Q5 are similarly defined as

Q1 : Q1f = f̃ , with f̃(x̃) = f(x), for all x ∈ Ω,

Q2 : Q2f = Ef, (Extension in the sense of Lemma 3.1 (a))

Q3 : Q3f = f,

Q4 : Q4f = TGψ(Ω)f, (Trace in the sense of Lemma 3.1 (b))

Q5 : Q5f̃ = f, with f(x) = f̃(x̃), for all x ∈ Ω.

All these 10 operators are well defined and continuous: P5 and Q1 are isometries by
Proposition 2.3. P2, Q2, as well as P4, Q4, are continuous by Lemma 3.1. Since K
satisfies the condition (3.1), the native space NK(Rd+1) is equivalent to the Sobolev
space Ws

2(Rd+1) (see [44, Corollary 10.48]). Therefore, also the identity mappings
P3 and Q3 are continuous. Finally, the Sobolev norm for a function f̃ on the graph
Gψ(Ω) is a reformulation of the norm of f ∈WPs2(Ω). Therefore, also the operators
P1 and Q5 are isometries.

We can conclude that the concatenations P5P4P3P2P1 and Q5Q4Q3Q2Q1 are
continuous operators. Since P5P4P3P2P1 is the inverse to Q5Q4Q3Q2Q1, these two
operators therefore provide an isomorphism between the Hilbert spaces NKψ (Ω) and
WPs2(Ω).

3.2. Error estimates for VSDK interpolation. We state first of all a well-
known Sobolev sampling inequality for functions vanishing on the subsets X ∩ Ωi
which was developed in [28]. For this we introduce the following regional fill distance
hi on the subset Ωi:

hi = sup
x∈Ωi

inf
xi∈X∩Ωi

‖x− xi‖2.

Proposition 3.3 ([28, Theorem 2.12] or [15, Proposition 9]). Let s > 0 as well
as 1 ≤ p <∞ and 1 ≤ q ≤ ∞. Further, let m ∈ N0 such that bsc > m+d/p (for p = 1
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also equality is possible) and u be a function that vanishes on X ∩Ωi. Then there is a
h0 > 0 such that for hi ≤ h0 and for the subregions Ωi satisfying Assumption 2.2(ii)
we have the Sobolev inequality

‖u‖Wm
q (Ωi) ≤ Cih

s−m−d(1/p−1/q)+
i ‖u‖Ws

p(Ωi).

The constant Ci > 0 is independent of hi.

The value h0 in Proposition 3.3 depends on the Sobolev regularity s and on the
interior cone condition of the subsets Ωi; cf. [28]. As we only have n different subsets
Ωi, we can find a single h0 for all i ∈ {1, . . . , n}. The Sobolev sampling inequalities
given in Proposition 3.3 allow us to extract the correct power of the fill distance from
the smoothness of the underlying error function. Based on these inequalities, a similar
analysis can be conducted also on manifolds; see [15]. Further sampling inequalities
that can be used as a substitute for Proposition 3.3 can, for instance, be found in [29,
Theorem 2.1.1].

We define now the global fill distance

h = max
i∈{1,...,n}

hi

and get as a consequence of the regional sampling inequalities in Proposition 3.3 the
following Sobolev error estimate.

Theorem 3.4. Let Assumption 2.2 be satisfied. Further, let s > 0, 1 ≤ q ≤ ∞
and m ∈ N0 such that bsc > m + d

2 . Additionally, suppose that the RBF φ satisfies
the Fourier decay (3.1). Then, for f ∈ WPs2(Ω), we obtain for all h ≤ h0 the error
estimate

(3.2) ‖f − Vf‖WPmq (Ω) ≤ Chs−m−d(1/2−1/q)+‖f‖WPs2(Ω).

The constant C > 0 is independent of h.

Proof. By assumption, the function f is an element of WPs2(Ω). Further, the na-
tive space characterization in Theorem 3.2 guarantees that also the VSDK interpolant
Vf is an element of WPs2(Ω). Therefore, we can apply Proposition 3.3 with p = 2 to
every subset Ωi and obtain

‖f − Vf‖Wm
q (Ωi) ≤ Cih

s−m−d(1/2−1/q)+
i ‖f − Vf‖Ws

2(Ωi), i ∈ {1, . . . , n},

with hi ≤ h0. Now, using the definition of the piecewise Sobolev space WPmq (Ω), we
can synthesize these estimates to obtain

(3.3) ‖f − Vf‖WPmq (Ω) ≤ Cmax h
s−m−d(1/2−1/q)+‖f − Vf‖WPs2(Ω),

where Cmax = max1≤i≤n Ci and h = max1≤i≤n hi. Since WPs2(Ω) is equivalent to the
native space NKψ (Ω), we can use the fact that the interpolant Vf is a projection into
a subspace of NKψ (Ω). This helps us finalize our bound,

‖f − Vf‖WPs2
≤ C ′‖f − Vf‖NKψ (Ω) ≤ C ′‖f‖NKψ (Ω) ≤ C ′C ′′‖f‖WPs2(Ω),

with the two constants C ′, C ′′ describing the bounds for the equivalence of the two
Hilbert space norms. The constant C in (3.2) is then given by C = C ′C ′′Cmax.
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Remark 3.5. The error estimates in Theorem 3.4 provide a theoretical explanation
why VSDK interpolation is superior to RBF interpolation in the spaces WPs2(Ω). In
these spaces the convergence of the interpolant Vf toward f ∈ WPs2(Ω) depends
only on the smoothness s of f in the interior of the subsets Ωi ⊂ Ω and not on the
discontinuities at the boundaries of Ωi. If s is sufficiently large, the corresponding fast
convergence of the interpolation scheme prevents the emergence of Gibbs artifacts in
the interpolant Vf .

4. Numerical experiments.

4.1. Experimental setup. In our main application in MPI, we will use samples
along Lissajous trajectories as interpolation nodes. For this, we will introduce and use
these node sets already for the numerical experiments in this section. As test images
we consider the Shepp–Logan phantom and an additional simple geometric phantom.
We give a brief description of this experimental setup.

4.1.1. Lissajous interpolation nodes. For a vector n = (n1, n2) ∈ N2 with
relatively prime frequencies n1, n2 and ε ∈ {1, 2}, the generating curves for the
Lissajous nodes are given as

(4.1) γ(n)
ε (t) =

(
cos(n2t), cos

(
n1t− ε−1

2n2
π
))

.

The Lissajous curve γ
(n)
ε is 2π-periodic and contained in the square [−1, 1]2. If ε = 1,

this curve is degenerate; i.e., it is traversed twice in one period. Further, γ
(n)
1 with

n = (n, n + 1), n ∈ N, are the generating curves of the Padua points [2, 13]. If

ε = 2, then the curve is nondegenerate. If n1 + n2 is odd, the curve γ
(n)
2 (t) in (4.1)

can be further simplified in terms of two sine functions and gives a typical sampling

trajectory encountered in MPI; see [12, 14, 24, 25]. Using γ
(n)
ε as generating curves,

we introduce the Lissajous nodes as the sampling points

(4.2) LS(n)
ε =

{
γnε

(
πk

εn1n2

)
, k = 0, . . . , 2εn1n2 − 1

}
.

In our upcoming tests, we will use the points LS
(n)
2 , with n1, n2 relatively prime and

n1 + n2 odd as underlying interpolation nodes. These node sets were already used

in [10, 14, 23] for applications in MPI. The number of points is given by #LS
(n)
2 =

2n1n2 + n1 + n2; see [12, 14]. The fill distance

h
LS

(n)
2

= max
y∈[-1,1]2

min
x∈LS

(n)
2

‖x− y‖2

for the nodes LS
(n)
2 in the square [−1, 1]2 can be computed as

(4.3)

h
LS

(n)
2

=
1

2
max


√
S2
n1

+

(
S2
2n1

+S2
2n2
−Sn1

S2n1

S2n2

)2

,

√
S2
n2

+

(
S2
2n1

+S2
2n2
−Sn2

S2n2

S2n1

)2


by using the shortcut Sn = sin(π/n). This allows us to express the fill distance of

LS
(n)
2 directly in terms of the frequency parameters n1 and n2. Further, we have the

estimates

1

2
max {Sn1

, Sn2
} ≤ h

LS
(n)
2
≤ max {S2n1

, S2n2
} ≤ max

{
π

2n1
,
π

2n2

}
.
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Fig. 1. The Shepp–Logan phantom (left), a geometric phantom (middle left), as well as the

Lissajous nodes LS
(33,32)
2 (middle right) and LS

(10,11)
2 (right).

For n = (33, 32) and n = (10, 11), the nodes LS
(n)
2 are illustrated in Figure 1 (right).

Note that in the interpolation with the VSDKs, only the information at the nodes

LS
(n)
2 is of interest, whereas the additional structure of the Lissajous trajectory itself

is not relevant.

4.1.2. Shepp–Logan phantom. As a main test phantom with sharp edges, we
use the Shepp–Logan phantom fSL on Ω = [−1, 1]2 as introduced in [38]. The function
fSL : [−1, 1]2 → [0, 1] is defined as a composition of 10 step functions determined by
elliptic equations. A discretization of fSL on an equidistant M ×M grid, M = 150,
is displayed in Figure 1 (left).

4.1.3. Geometric phantom. As a second phantom we use a geometric com-
position fG of an ellipse E = {x | 2(x2 + x1 + 0.05)2 + 9(x2 − x1 − 0.75)2 ≤ 1},
a rectangle R = {x | |x1 − 0.5| ≤ 0.3, |x2 − 0.3| ≤ 0.28}, and a bounded parabola
P = {x | x2 ≤ −0.4, x2 + 0.7 ≥ 0.6(x1 − 0.1)2}, discretized on a M ×M grid of size
M = 150. The function fG on Ω = [−1, 1]2 is given as fG = χE + 1.5χR + 2χP, where
χE, χR and χP denote the characteristic functions of E, R, and P, respectively. The
phantom fG is illustrated in Figure 1 (middle left).

4.1.4. Kernels. For RBF interpolation in Rd, as well as for the VSDK inter-
polation scheme which requires a kernel in Rd+1, we use the following RBFs (cf. [16,
Tables 3.1 and 3.2]):

(i) The C0-Matérn function φMat,0(r) = e−r. The native space of the corre-
sponding kernel is exactly the Sobolev space Ws

2(Rd) with s = d+1
2 . We have

W
d+1
2

2 (Rd) ⊂ C0(Rd).
(ii) The C2-Matérn function φMat,2(r) = (1+r)e−r. The native space of φMat,2(‖x‖2)

is the Sobolev space Ws
2(Rd) with s = d+3

2 . Functions in W
d+3
2

2 (Rd) are con-
tained in C1(Rd).

(iii) The C4-Matérn function φMat,4(r) = (3 + 3r + r2)e−r. The radial function

φMat,4(‖x‖2) generates the Sobolev space Ws
2(Rd) with s = d+5

2 . W
d+5
2

2 (Rd) is
contained in C2(Rd).

(iv) The Gauss function φGauss(r) = e−r
2

. This is an analytic function. The native
space for the Gauss kernel is contained in every Sobolev space Ws

2(Rd), s ≥ 0.

With decreasing separation distance of the interpolation nodes, the calculation
of the coefficients in (2.9) can be badly conditioned when solving the linear system
directly. This is particularly the case when using the Gaussian as underlying kernel.
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Fig. 2. Convergence rates for interpolating the Shepp–Logan phantom on the nodes LS
(n)
2 using

the VSDK scheme with a priori known scaling function ψδ, δ = 0.01, (left) and the RBF scheme

(middle). The L2-error for interpolation on the nodes LS
(33,32)
2 for increasing separation distance

δ is shown on the right-hand side.

In order to stabilize the calculation, we regularized the system (2.9) by adding a small
multiple λ > 0 of the identity to the interpolation matrix (we chose λ = 10−12 in our
calculations). Note, however, that in the literature there exist more sophisticated
ways to avoid this bad conditioning; see, for instance, [16, Chapters 11–13].

4.2. Experiment 1—Convergence for a priori known discontinuities.

4.2.1. Description. For n ∈ {4, 8, 12, . . . , 40} we interpolate the Shepp–Logan

phantom at the Lissajous nodes LS
(n+1,n)
2 . We use the four kernels introduced in

section 4.1 and compute RBF as well as VSDK interpolants for all sets of Lissajous
nodes. In a log-log diagram we plot the fill distance h = h

LS
(n)
2

given in (4.3) against

the L2-error between the original Shepp–Logan function fSL and the interpolant. As
an approximation of the continuous L2-error we use the root-mean-square error on the
equidistant M×M discretization grids of the phantoms. The six possible function val-
ues fi, i ∈ {0, . . . , 5} of the Shepp–Logan phantom are given as {0, 0.1, 0.2, 0.3, 0.4, 1}.
As a scaling function for the VSDK interpolant, we use

ψδ(x) = δ i if fSL(x) = fi,

with the separation parameter δ ≥ 0. The scaling function ψδ gives a δ-dependent
equidistant separation between the regions Ωi = {x | fSL(x) = fi}, in which the phan-
tom is constant. The log-log diagrams for δ = 0.01 and δ = 0 (which corresponds to
standard RBF interpolation) are given in Figure 2. In Figure 2 (right), we display the
behavior of the interpolation error for increasing values of δ. The slopes of the error re-
gression lines for δ ∈ {0, 0.01, 0.1, 1} are listed in Table 1. The VSDK reconstructions

at the nodes LS
(33,32)
2 using the C2-Matérn kernel are shown in Figure 3.

4.2.2. Results and discussion. This first numerical experiment underpins the
theoretical estimates given in Theorem 3.4 and gives further insights into the impact
of the scaling function ψδ on the interpolation. In particular, the influence of the
separation parameter δ gets visible.

The slope of the regression line for the RBF interpolation (corresponding to δ = 0
in the VSDK scheme) is for all four kernels between 0.12 and 0.25. This is in line with
the low-order smoothness of the Shepp–Logan phantom fSL which is contained in the
Sobolev space Ws

2([−1, 1]2) only for s < 1/2. On the other hand, with the choice
ψδ, δ > 0, the Shepp–Logan phantom is contained in all piecewise Sobolev spaces
WPs2([−1, 1]2), s ≥ 0. As can be seen in Figures 2 and 3 as well as in Table 1, the
VSDK scheme is superior to the RBF scheme already for small values of δ. For larger
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Table 1
The slopes of the regression lines for the computed logarithmic L2-errors. For the parameters

δ = 0.01 and δ = 0 the corresponding log-log diagrams are displayed in Figure 2 (left) and (middle).

Kernel Smoothness s Slope VSDK Slope VSDK Slope VSDK Slope RBF
(theoretical slope) δ = 1 δ = 0.1 δ = 0.01 δ = 0

C0-Matérn 1.5 2.2569 1.9131 0.8933 0.2493
C2-Matérn 2.5 2.9859 2.5753 1.1715 0.2403
C4-Matérn 3.5 3.1380 2.5331 1.8237 0.2355
Gauss analytic 3.3858 2.8668 2.4959 0.1260

Fig. 3. Reconstruction of the Shepp–Logan phantom for given sampling data at the nodes

LS
(33,32)
2 using the VSDK schemes with scaling function ψδ, δ ∈ {1, 0.1, 0.01} (three images on the

left) and the RBF interpolation (right). For all schemes, the C2-Matérn kernel is used.

separation values δ, the quality of the interpolation increases even more. For δ > 0,
Theorem 3.4 predicts a theoretical convergence rate for the L2-error in order of the
smoothness s of the applied kernel. This impact of the smoothness is visible in the
experimentally obtained slopes in Table 1 and Figure 2 but also a dependence on the
separation parameter δ of the scaling function. For small values δ, the slopes for the
calculated logarithmic errors are still moderate, while they get larger with increasing
δ. For large values δ & 10, the resulting VSDK interpolant stops depending on the
parameter δ. This dependence of the VSDK interpolation on δ is at first glance not
visible in the asymptotic error estimate of Theorem 3.4. Nevertheless, as the proof
of Theorem 3.4 is based on the equivalence of the native space in Theorem 3.2, the
constant C in the error estimate inherently depends on the scaling function ψδ and
thus on the parameter δ.

Note that for a better comparison between the interpolation schemes we used the
fill distance h

LS
(n)
2

given in (4.3) in our experiments, whereas the fill distance h used

in Theorem 3.4 depends on the decomposition of the domain Ω in the disjoint subsets
Ωi. In general, we have h

LS
(n)
2
≤ h.

4.3. Experiment 2—Perturbations of the scaling function.

4.3.1. Description. In the second computational experiment, we test the sen-
sitivity of the VSDK interpolation with respect to shifts of the scaling function ψ.
For this experiment, we consider the geometric phantom fG and interpolate it with

differing scaling functions at the Lissajous nodes LS
(10,11)
2 using the C0-Matérn ker-

nel. The corresponding reconstructions are displayed in Figure 4. Starting from the
correct scaling function (left), i.e., using ψ = fG, the rectangle in the scaling function
ψ is slowly shifted toward the center (in Figure 4, from left to right). The correspond-
ing interpolation errors with respect to the original function fG are shown in Figure
5.
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Fig. 4. Reconstruction of the geometric phantom by the VSDK scheme with differing scaling

functions. The set of interpolation nodes is LS
(10,11)
2 .

Fig. 5. The differences of the VSDK interpolants in Figure 4 to the original phantom.

4.3.2. Results and discussion. The outcome of the VSK interpolation de-
pends sensitively on the choice of the scaling function ψ. All reconstructions in Fig-
ure 4 interpolate the function values on the Lissajous nodes. If the scaling function is
correctly chosen (left) or only slightly shifted (middle left), no artifacts are visible in
the interpolation. However, the larger the shift of the rectangle in the scaling function
ψ gets, the stronger the artifacts are. In particular, we see that if the values of ψ
do not correspond to the data values on the interpolation nodes, Gibbs-type artifacts
appear. Therefore, if the VSDK interpolation scheme is applied in a setting in which
the edges are not known, a robust edge estimator is needed. In the next section, we
will discuss some possibilities for such an estimator.

5. Extracting edges from the given data. We use algorithms from machine
learning to obtain a segmentation of the domain Ω. In particular, we focus on so-
called support vector machines (SVMs) and refer the reader to [36, 39] for a general
overview. The main reason to use kernel machines for segmentation is that they can be
applied directly to scattered data. Note, however, that the literature on segmentation
of images and edge detection is very extensive and gives a lot of further interesting
possibilities to obtain a segmentation. We refer to [40] for a general introduction.

5.1. Segmentation of an image by classification algorithms. In order to
obtain a classification of the entire domain Ω, we separate the data values (xi, fi)
into n classes S1, . . . ,Sn such that all nodes xi in one class Sj are precisely contained
in Ωj , j ∈ {1, . . . , n}. We link every class Sj to a value αj ∈ R and set the label
zi = ψ(xi) = αj if (xi, fi) is contained in Sj . From the labels Z = {z1, . . . , zN} of
the points in X , we want to derive now a classification for every x ∈ Ω.

We give a short description of SVM classification; a more precise introduction can
be found, for instance, in [36, 39]. To simplify the considerations, we assume that we
only have two classes with possible label values α1 = −1 and α2 = 1. In this case, a
decision function z that allows us to assign to every x an appropriate label is given
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by
z(x) = sign(h(x)),

where h = 0 describes a hyperplane separating the given measurements. The hy-
perplane is set up with the help of the so-called kernel trick. By virtue of Mercer’s
theorem [27], any kernel K can be decomposed as

(5.1) K(x,y) = Θ(x)ᵀΘ(y) =

∞∑
j=1

Θj(x)Θj(y), x,y ∈ Ω,

where Θj are eigenfunctions of the integral operator g →
∫

Ω
K(x,y)g(y)dy. The ker-

nel trick consists in mapping the points xi via Θ into a (possible) infinite-dimensional
Hilbert space and describing the separating hyperplane as

h(x) = Θ(x)ᵀw + b.

The weight w, i.e., the unit normal vector to the hyperplane, and the bias b can be
determined by maximizing the gap to both sides of this hyperplane. One standard
way to obtain this hyperplane is by solving the optimization problem

max
β

(
N∑
k=1

βk −
1

2

N∑
k=1

N∑
i=1

βkβizkziK(xk,xi)

)
subject to the constraints { ∑N

k=1 βkzk = 0,
0 ≤ βi ≤ B, i ∈ {1, . . . , N}.

Here, the box constraint B is simply a regularization parameter [16]. Based on the
maximizer of this problem, the decision function z of the SVM classifier is then given
as

(5.2) z(x) = sign(h(x)) = sign

(
N∑
i=1

βiziK(x,xi) + b

)
.

The bias b can be determined as

b =

N∑
k=1

βkzkK(xk,xj),

where j denotes the index of a coefficient βj which is strictly between 0 and B.
The classification function z(x) in (5.2) gives now the desired segmentation of

Ω: The two sets Ω1 and Ω2 are defined such that for x ∈ Ωi we have z(x) = αi,
i ∈ {1, 2}. The corresponding discontinuous scaling function ψ on Ω is given as

(5.3) ψ(x) =

{
α1 if z(x) = α1,
α2 if z(x) = α2,

It is straightforward to extend this classification scheme if α1, α2 6= ±1. There are
also several strategies to extend this scheme to the case that the number of classes is
n ≥ 2. In the literature, this is known as multiclass SVM classification. One usual
approach here is to divide the single multiclass problem into multiple binary SVM
classification problems.
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5.2. Strategies to set the labels for classification. In general, the choice of
a labeling strategy depends on the application aimed. In the following, we specify a
few simple heuristic strategies to extract the labels Z from a given data set (X ,F).

5.2.1. Using thresholds on the data values. If the function f has disconti-
nuities, these are visible as deviations in the data set F . A very simple strategy is
therefore to use thresholds for the definition of the labels. If a0 < a1 < · · · < an and
supp(F) is contained in the interval [a0, an), we can define n classes S1, . . . ,Sn by
assigning (xi, fi) to Sj if aj−1 ≤ fi < aj , j ∈ {1, . . . , n}.

5.2.2. Using thresholds on interpolation coefficients. In [30], it is shown
that variations in the expansion coefficients of an RBF interpolation can be used to
detect the edges of a function. Thus, in the same way as in the previous strategy,
thresholds on the absolute value of the RBF coefficients can be applied to determine
the labeling aimed at.

5.2.3. Automated strategies using k-means clustering. The given data
(X ,F) can also be segmented using an automated procedure using k-means clustering.
If the size n of classes is known, this method provides n pairwise disjoint classes
S1, . . . ,Sn by minimizing the functional

n∑
j=1

∑
(x,h)∈Sj

|h− h̄j |.

The value h̄j denotes the mean of all function values h inside the class Sj . Note that
in this case the position x of the data is not used to determine the labels.

5.3. Algorithm for VSDK interpolation with unknown edges. In the
following Algorithm 5.1, we summarize the entire scheme for the computation of a
shape-driven interpolant from given function values on a node set X and unknown
discontinuities. For the interpolation, the VSDK scheme introduced in section 2.3 is
used. To estimate the edges of f , we use the segmentation and labeling procedures
described in sections 5.1 and 5.2.

Algorithm 5.1 Shape-driven interpolation with discontinuous kernels.

INPUTS: Set of interpolation nodes

X = {xi, i = 1, . . . , N} ⊆ Ω,

a corresponding set of data values

F = {fi = f(xi), i = 1, . . . , N},
and the desired evaluation point(s) x ∈ Ω.

OUTPUTS: VSDK interpolant Vf (x),

Step 1: Extract the labels Z for X using F with a strategy of section 5.2.

Step 2: Train the kernel machine in section 5.1 with the points X and the labels

Z to obtain a prediction (5.3) for the scaling function ψ.

Step 3: Calculate the coefficients ci, i ∈ {1, . . . , N}, of the VSDK interpolation

by solving (2.9).

Step 4: Evaluate the interpolant Vf (x) in (2.8) at x ∈ Ω.D
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Fig. 6. Comparison of RBF interpolation (left) with the VSDK scheme given in Algorithm 5.1

(right). The interpolation is performed on the nodes LS
(33,32)
2 . In the second and the fourth images

(from the left) the respective differences to the original phantom are displayed.

5.4. Numerical example.

5.4.1. Description. On the node set LS
(33,32)
2 , we interpolate the geometric

phantom fG using an ordinary RBF interpolation and the VSDK scheme from Al-
gorithm 5.1. In both cases, we use the C0-Matérn function as underlying kernel.
The applied edge estimator in Algorithm 5.1 is based on the segmentation method
of section 5.1 and the automated labeling described in section 5.2.3. The resulting
RBF interpolant and the error with respect to the original phantom are displayed in
Figure 6 (left). In Figure 6 (right) the outcome of Algorithm 5.1 and the respective
error with respect to fG are shown.

5.4.2. Results and discussion. In this example, in which we do not use the
a priori knowledge of the discontinuities, the VSDK scheme in combination with the
edge estimator gives a higher reconstruction quality than an ordinary RBF interpola-
tion. In particular, in the VSDK interpolation the Gibbs phenomenon is not visible,
and the errors are more localized at the boundaries of the geometric figures. For a
more quantitative comparison, we compute the relative discrete L1-errors of the two
reconstructions. We obtain

‖fG − PfG‖1
‖fG‖1

≈ 0.1647,
‖fG − VfG‖1
‖fG‖1

≈ 0.1011;

i.e., the VSDK interpolant gives a slightly better result with respect to the L1-norm.
Again, we want to point out that in case that the discontinuities are not a priori

given, the output of the VSDK interpolation strongly depends on the performance of
the edge detector. If the edges are detected in a reliable way, also the final VSDK
interpolation has a good overall quality. For this compare Figure 6 also with the
reconstruction in Figure 4 (left), in which the scaling function with the correct infor-
mation of the edges was used. On the other hand, as discussed in section 4.3, if the
scaling function ψ is badly chosen, the final reconstruction is also seriously affected
by artifacts.

6. Applications in MPI. In the early 2000s, B. Gleich and J. Weizenecker [18],
invented at Philips Research in Hamburg a new quantitative imaging method called
MPI. In this imaging technology, a tracer consisting of superparamagnetic iron oxide
nanoparticles is injected and then detected through the superimposition of different
magnetic fields. In common MPI scanners, the acquisition of the signal is performed
following a generated field free point along a chosen sampling trajectory. The deter-
mination of the particle distribution given the measured voltages in the receive coils
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Fig. 7. Comparison of different interpolation methods in MPI. The reconstructed data on the

Lissajous nodes LS
(33,32)
2 (left) are first interpolated using the polynomial scheme derived in [12]

(middle left). Using a scaling function ψ constructed upon the classification algorithm in section 5.1
(middle right) the second interpolation is performed by the VSDK scheme in Algorithm 5.1 (right).

is an ill-posed inverse problem that can be solved only with proper regularization
techniques [24].

Commonly used trajectories in MPI are Lissajous curves [25]. To reduce the
amount of calibration measurements, it is shown in [23] that the reconstruction can be
restricted to particular sampling points along the Lissajous curves, i.e., the Lissajous

nodes LS
(n)
2 introduced in (4.2). By using a polynomial interpolation method on the

Lissajous nodes [12] the entire density of the magnetic particles can then be restored.
These sampling nodes and the corresponding polynomial interpolation can be seen as
an extension of a respective theory on the Padua points [2, 3].

If the original particle density has sharp edges, the polynomial reconstruction
scheme on the Lissajous nodes is affected by the Gibbs phenomenon. As shown in [10],
postprocessing filters can be used to reduce oscillations for polynomial reconstruction
in MPI. In the following, we demonstrate that the usage of the VSDK interpolation
method in combination with the presented edge estimator effectively avoids ringing
artifacts in MPI and provides reconstructions with sharpened edges.

6.1. Description. As a test data set, we consider MPI measurements conducted
in [23] on a phantom consisting of three tubes filled with Resovist, a contrast agent
consisting of superparamagnetic iron oxide. By the procedure described in [23] we

then obtain a reconstruction of the particle density on the Lissajous nodes LS
(33,32)
2 .

This reduced reconstruction on the Lissajous nodes is illustrated in Figure 7 (left).
A computed polynomial interpolant of these data is shown in Figure 7 (middle left).
In this polynomial interpolant some ringing artifacts are visible. In order to obtain
the labeling for the classification algorithm, we use the simple thresholding strategy
described in section 5.2.1 using one-fifth of the maximal signal strength as a threshold
for a binary classification. The scaling function ψ for the VSDK scheme is then
obtained by using the classification algorithm of section 5.1 with a Gauss function for
the kernel machine. The resulting scaling function is visualized in Figure 7 (middle
right). Using the C0-Matérn kernel for the VSDK interpolation, the final interpolant
for the given MPI data is shown in Figure 7 (right). For a better visualization of the
ringing artifacts, we provide a second illustration of the second and fourth images in
Figure 7 with diagonal view direction from the lower left to the upper right corner of
the respective image. These illustrations of all cross sections of the polynomial and
the VSDK interpolant along this diagonal direction are given in Figure 8.

6.2. Results and discussion. In the polynomial interpolation shown in Fig-
ure 7 (middle left) ringing artifacts are visible. These artifacts could be removed
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Fig. 8. Comparison of polynomial (left) and VSDK interpolation (right) in MPI. Illustrated
are the interpolants in Figure 7 (middle left) and Figure 7 (right) with diagonal view from the lower
left to the upper right corner.

by using Algorithm 5.1 for the MPI data instead. As an alternative to the applied
manual thresholding strategy, it is also possible to use the automated strategy given
in section 5.2.3, in which the k-means algorithms gives the labeling of the data. This
second strategy yields classification and reconstruction results that are very close to
the ones displayed for the manual strategy in Figure 7.

7. Conclusions. To reflect discontinuities of a function or an image in the in-
terpolation of scattered data we studied techniques based on the use of VSDKs. We
obtained a characterization and theoretical Sobolev-type error estimates for the native
spaces generated by these discontinuous kernels. Numerical experiments confirmed
the theoretical convergence rates and investigated the behavior of the interpolants if
the scaling function describing the discontinuities is perturbed.

Interpolation with discontinuous kernels can only be conducted if the discontinu-
ities of the function are known. If the discontinuities are not known, sophisticated
methods are necessary to approximate the edges from given scattered data. In this
work, we used kernel machines, trained with the given data, to obtain the edges and
the segmentation of the image.

The results of the VSDK method applied to MPI are promising and show that
the Gibbs phenomenon can be sensibly reduced. Work in progress consists in using
kernel machines also for regression with VSDKs. This might be of interest when
approximating time series with jumps.
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