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Abstract

Motivation: Low-dimensional representations of high-dimensional data are routinely employed in

biomedical research to visualize, interpret and communicate results from different pipelines. In this

article, we propose a novel procedure to directly estimate t-SNE embeddings that are not driven by

batch effects. Without correction, interesting structure in the data can be obscured by batch effects.

The proposed algorithm can therefore significantly aid visualization of high-dimensional data.

Results: The proposed methods are based on linear algebra and constrained optimization, leading

to efficient algorithms and fast computation in many high-dimensional settings. Results on artificial

single-cell transcription profiling data show that the proposed procedure successfully removes multiple

batch effects from t-SNE embeddings, while retaining fundamental information on cell types. When

applied to single-cell gene expression data to investigate mouse medulloblastoma, the proposed method

successfully removes batches related with mice identifiers and the date of the experiment, while pre-

serving clusters of oligodendrocytes, astrocytes, and endothelial cells and microglia, which are expected

to lie in the stroma within or adjacent to the tumors.

Availability: Source code implementing the proposed approach in R and Julia is available at the

link https://github.com/emanuelealiverti/BC tSNE, including a tutorial to reproduce the simulation

studies.

Contact: aliverti@stat.unipd.it
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Recent technological improvements in transcriptome analysis have lead to many valuable insights into

complex biological systems, with single-cell RNA transcription profiling (scRNAseq) analysis being one

of the most popular tools to investigate intricate cellular processes (Hwang et al., 2018). In biostatistical

analysis, low-dimensional representations of high-dimensional scRNAseq data are ubiquitous, playing

a central role during multiple phases of scientific investigation. For example, visualisation tools are

used during normalisation, correction and dimensionality reduction to evaluate success of the pipelines,

and in downstream analysis to illustrate results from intermediate procedures such as clustering (e.g.

Luecken and Theis, 2019; Lun et al., 2016; Vieth et al., 2019).

A wide variety of methods for linear and non-linear dimensionality reduction and data visualisation

are available, with t-distributed Stochastic Neighbor Embedding (t-SNE, Maaten and Hinton, 2008)

and Uniform Manifold Approximation and Projection (UMAP, McInnes et al., 2018) being of great

utility in analyzing scRNAseq data. Such methods allow one to describe the dataset in 2-3 dimen-

sions via graphical representations, highlighting the main structure of the data and preserving relevant

properties such as the presence of isolated clusters (Kobak and Berens, 2019). During pre-processing,

low-dimensional representations are fundamental for identifying potential issues in the data; for ex-

ample, inadequate data integration or the presence of batch effects (Luecken and Theis, 2019; Lun

et al., 2016). Indeed, without explicit adjustment, variations in the low-dimensional summaries may

be driven by nuisance covariates — such as batches due to different devices used for an experiment

— instead of the primary factors of scientific interest — such as cell types. In intermediate analyses,

such batch effects can limit the utility of the low-dimensional graphical representations in visualizing,

interpreting and communicating results from downstream processes conducted at the cell level; for

example, clustering, cell annotations or compositional analysis (Wagner et al., 2016).

In a typical workflow, standardized pipelines proceed sequentially, with low-dimensional embeddings

estimated after several steps involving normalisation, integration, batch-correction and feature selection

from raw data; see Luecken and Theis (2019) and references therein for a recent detailed review.

However, such processing might lead to propagation of errors and unreliable representations. For

example, over-correction of batch effects might also remove important biological features, and lead to

low-dimensional embeddings which are not driven by such biological factors (e.g. Lun et al., 2016). Such

an issue will be entirely propagated to downstream processes, leading to low-dimensional embeddings

which cannot highlight information on factors of interest and might provide misleading evidence.

Motivated by the above considerations, the focus of this article is on producing batch-corrected mod-

ifications of t-SNE that can be used to remove associations with multiple batches from low-dimensional

2



embeddings. Our methods are based on linear algebra results and modification of gradient descent

optimisation, therefore providing simple and scalable tools in high-dimensional problems. The pro-

posed procedure directly estimates low-dimensional embeddings, which are not driven by systematic

batch-effects including batch-correction, and provides a synthetic representation to correctly visualise

results from different pipelines.

Several approaches are available in the literature for batch-correction and data integration, covering

a wide range of methods which encompass linear modelling via Empirical-Bayes (Johnson et al., 2007),

canonical correlation analysis (Butler et al., 2018) and Mutual Nearest Neighbors (MNN, Haghverdi

et al., 2018); see Büttner et al. (2019) and references therein for a recent comparison, and the scater

package (McCarthy et al., 2017) for a convenient implementation. Differently from routine corrections

for scRNAseq data, our approach is not targeted to correct the entire set of high-dimensional data, but

only its low-dimensional representation obtained via t-SNE. Therefore, the proposed approach directly

relates to the framework of “removal of unwanted variations” (RUV. See Grün and van Oudenaarden,

2015; Risso et al., 2014; Leek and Storey, 2007), where interest is on measuring latent variables which

are not affected by batch-effects and experimental conditions, but are only driven by relevant biological

factors.

Specifically, we introduce a novel modification of t-SNE to integrate batch correction into estimation

of low-dimensional embeddings. Such an approach is not intended as a substitute to the canonical

pipelines for downstream analysis; which, for example, focus on estimating clusters in the k-NN graph

of the PCA subspace (e.g. Wolf et al., 2019). Instead, the proposed contribution serves as a parallel tool

to provide a robust visualisation of scRNAseq data, which is less subject to propagation of errors and

can be used to validate results from different pipelines, or to identify potential pitfalls. Although there

is some evidence that clustering in the t-SNE subspace can provide insights on the community structure

of the data (Linderman and Steinerberger, 2019), such a procedure is generally not recommended in

the analysis of scRNAseq data and is beyond the scope of the current article; see Kobak and Berens

(2019) for further discussion. The proposed algorithm allows joint correction for multiple batches and

leverages two different adjustments, to handle both linear and non-linear effects. Linear correction is

achieved adapting the strategy of Aliverti et al. (2018), while correction for non-linear effects leverages

a projection step during t-SNE optimisation, related to the locally linear correction implemented in

Haghverdi et al. (2018). A full implementation of the method is publicly available in a mixed R and

Julia implementation, at the link https://github.com/emanuelealiverti/BC tSNE.
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2 METHODS

2.1 Notation & problem formulation

Consider a data matrix X � txTi u
n
i�1 with observations xi � pxi1, . . . , xipq. In many biological ap-

plications, the number of features p is tremendously large and it is of interest to provide accurate

low-dimensional representation of such high dimensional data. Dimensionality reduction techniques fo-

cus on finding low-dimensional counterparts yi � pyi1, . . . , yiqq of each xi, preserving as much structure

as possible with q ! p components; generally, q � 2 or q � 3 for the ease of graphical visualisation.

Original observations xi can potentially lie in a complex and highly non-linear manifold; for example,

wrapped spaces such as rolls (e.g Lee and Verleysen, 2005). In contrast, the desired low-dimensional em-

bedding lie on a standard q-dimensional Euclidean space, and yi determines the position of observation

i in such an embedded space.

Low-dimensional representations are constructed in order to preserve some specific structure of

the original data; some examples include preserving Euclidean distances (Multidimensional Scaling,

Kruskal, 1964), variances (Principal Component Analysis), neighborhood graphs (Local Linear Em-

bedding and Isomap, Roweis and Saul, 2000; Tenenbaum et al., 2000) or local similarities among points

(Stochastic Neighbor Embedding, Hinton and Roweis, 2003). Many methods estimate an explicit

function between the original data and their embeddings; for example, the PCA solution is a linear

combination of the columns of X. More recently, focus has shifted to obtaining yi without explicitly

defining such a map, thus allowing a greater flexibility and range of application. In this article, we focus

on the t-SNE methodology for dimensionality reduction and data visualisation (Maaten and Hinton,

2008). t-SNE attempts to find low-dimensional representations that preserve local similarities among

data points, with similarities parameterized as conditional probabilities of belonging to the same lo-

cal neighborhood. In the following paragraphs, we review the standard formulation of t-SNE before

introducing our adjustments for batch effects.

2.2 Standard t-SNE algorithm

In the original input space, t-SNE defines dissimilarities among points as symmetric probabilities pij �

ppi|j � pj|iq{2n, with

pi|j �
exp

�
�0.5||xi � xj ||

2{σ2
i

�°
k,k�i exp p�0.5||xi � xk||2{σ2

i q
. (1)

Equation 1 can be interpreted as the probability that point i picks j as its neighbor, under a Gaussian

kernel centered at xi and with standard deviation equal to σi. The intuition behind the introduction

of pij comes from averaging pi|j and pj|i to reduce the relative impact of outliers and define a sym-

metric dissimilarity metric (Maaten and Hinton, 2008). The parameter σ2
i determines the width of

the Gaussian kernel and, indirectly, the number of local neighbors associated with each point i, with
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i � 1, . . . , n. Defining σ2
i is a primary step in producing t-SNE embeddings, with the selection deter-

mining the perplexity of the resulting distribution (Maaten and Hinton, 2008; Hinton and Roweis, 2003).

Large values of σ2
i correspond to a larger number of local neighbors and greater perplexity, while default

values of perplexity range in the interval t10, 50u (Maaten and Hinton, 2008). Embeddings generally

show robustness to moderate changes in perplexity (Maaten, 2014).

Dissimilarity among points yi in the embedded space is defined through the kernel of a t-distribution

with 1 degree of freedom, setting

qij �

�
1 � ||yi � yj ||

2
��1°

k,k�i p1 � ||yi � yk||
2q
�1 . (2)

The t-SNE embeddings yi are selected minimizing the Kullback-Leibler divergence between pij and

qij ; note that pij does not depend on y and is a fixed value given the input data. Let y � py1, . . . ,ynq

and highlight the dependency of qij on the embeddings y in Equation 2 as qijpyq. Formally, t-SNE is

the solution to the following optimisation problem.

argmin
y

tLpyqu � argmin
y

�

#
ņ

i�2

i̧

j�1

pij log
pij

qijpyq

+
(3)

The objective function Lpyq can be optimized through gradient methods. Indeed, the partial derivative

of the loss functions in Equation 3 with respect to yi is equal to

∇Lpyiq �
BL

Byi

� 4
ņ

j�1
j�i

ppij � qijqqijZpyi � yjq;

Z �
¸
l�k

�
1 � ||yl � yk||

2
��1

;

(4)

see Maaten and Hinton (2008, Appendix A) for the complete derivation.

Therefore, the generic gradient descent step with momentum correction for updating yi at iteration

t� 1 sets

y
pt�1q
i � y

ptq
i � ηptq∇Lpyptqi q � αptq

�
y
ptq
i � y

pt�1q
i

	
, (5)

with ηptq indicating the learning rate and αptq the momentum term; see Maaten and Hinton (2008) for

practical advices on the choice of such functions.

2.3 Batch-corrected t-SNE

Let Z denote an additional variable which contains batch information. We refer to the proposed method

as BC-t-SNE (Batch-Corrected t-SNE) in the sequel. When the number of features p is extremely large

and when it exceeds the number of observations n, direct application of t-SNE on the raw data X
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can be challenging, computationally inefficient, and lead to poor results. Therefore, it is generally

advised to perform a preliminary dimensionality reduction, and then apply t-SNE over such reduced

representation to improve the results (Maaten, 2014). For example, default software implementation

estimates t-SNE embeddings on the first k principal components, with k in the range r30 � 50s (e.g.

Krijthe et al., 2018). Reducing the dimensionality from p to k speeds up computation and reduces

noise without affecting local similarities among observations (Maaten and Hinton, 2008).

The first step of BC-t-SNE is motivated by the above considerations, and focuses on processing

the data with the approach introduced in Aliverti et al. (2018) to explicitly obtain the optimal low-

rank approximation of a matrix X in Frobenius norm under an orthogonality constraint between such

approximation and the batch variable Z. Therefore, the method removes linear effects between the

reduced data and the variables in Z with minimal information loss. Such an approach is based on

computing the residuals from a multivariate regression among the left singular vectors of X and Z,

and is therefore comparable with standard PCA in terms of computational requirements, providing a

practical alternative to perform dimensionality reduction while simultaneously achieving batch removal.

Although such a procedure is optimal in removing the linear influence of batches, effects beyond linearity

might still affect t-SNE embeddings. In practical applications such higher order effects are often small in

magnitude, and second order adjustment often lead to satisfactory results in terms of batch-correction

(e.g. Aliverti et al., 2018). However, since the t-SNE embeddings yi are a complex non-linear functional

of the original xi, inclusion of higher-order constraints provides a reasonable conservative choice.

The second step of BC-t-SNE adjustment can be better motivated by introducing some details on

gradient descent, which can be interpreted as an optimisation to minimize the linearisation of the loss

function (Kullback-Leibler divergence for t-SNE) around the current estimates, including a smoothing

penalty that penalises abrupt changes (e.g. Hastie et al., 2015). To see that, consider the gradient

descent step in Equation 5, setting without loss of generality αptq � 0. The following alternative

representation holds.

y
pt�1q
i � argmin

yiPRq

"
Lpy

ptq
i q � x∇Lpyptqi q,yi � y

ptq
i y�

1

ηptq
||yi � y

ptq
i ||22

*
.

(6)

This view of gradient descent facilitates the introduction of further constraints. Indeed, this aim

is achieved by restricting the solution yi P C, with C denoting a constrained region of the original

space Rq. Such a constraint can be easily imposed by performing a standard gradient step, and then

projecting the result back into the constrained set C, leading to a procedure referred to as projected

gradient descent; see, for example, Hastie et al. (2015, Sec 5.3.2) for further details. The choice of the

constrained set C covers a central role in the optimisation, since the projection should be computed
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Algorithm 1: Batch-corrected-t-SNE with projected gradient

Apply OG (Aliverti et al., 2018) to extract the first k components of X and remove linear batch
effects. Denote the n� k reduced and adjusted matrix as X̂ for i � 1, . . . , n do

Perform binary search to find the value σ2i that achieves desired level of perplexity (Maaten
and Hinton, 2008)

end

Compute the pairwise similarities pij in Equation 1 from X̂ and tσ2i u
n
i�1 for t � 1, . . . , T do

Compute affinities qij defined in Equation 2 for i � 1, . . . , n do

Update y
pt�1q
i (the i-th row of Ypt�1q) as

y
pt�1q
i � y

ptq
i � ηptq∇Lpyptqi q � αptq

�
y
ptq
i � y

pt�1q
i

	

end

Compute βpt�1q Ð solvepZᵀZ,ZᵀYpt�1qq Compute projected gradient update, setting

Ỹ
pt�1q

� Ypt�1q � Zβpt�1q

end

Output: Return Ỹ
pT q

.

easily in order to make the method practical in high-dimensional applications. With this motivation in

mind, we propose a computationally simple solution and restrict Y � tyᵀ
i u

n
i�1 such that it is orthogonal

with the subspace spanned by the columns of Z. This constraint can be easily imposed with linear

regression, computing at each iteration a projected gradient step which constructs an update Ỹ
pt�1q

that projects the unconstrained solution Ypt�1q, making it orthogonal with the batch variables Z.

Pseudo-code illustrating the method is reported in Algorithm 1.

3 SIMULATION STUDY

A simulation study is conducted to evaluate the performance of the proposed method on artificial

scRNAseq data. Artificial single-cell RNA sequencing data were generated with the BioConduc-

tor library splatter, which provides an interface to create complex datasets with several realis-

tic features (Zappia et al., 2018). Specifically, a dataset consisting of p � 10000 genes measured

over n � 800 cells was generated with 4 batch effects and 4 different cell types. A complete tu-

torial to reproduce the artificial data and simulation study in R and julia is available at the link

https://github.com/emanuelealiverti/BC tSNE.

The focus of the simulation is on assessing the success of BC-t-SNE at removing unwanted associ-

ations while retaining information of the scientific factors of interest, which correspond to cell types in

this particular example. The adjusted approach is also compared with a standard implementation of

t-SNE, available with R package Rtsne (Krijthe, 2015), and with routine methods for batch-correction.

In particular, we apply the recently proposed MNN (Haghverdi et al., 2018) and Harmony (Korsunsky
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et al., 2019) methods for batch-correction, available through the R packages batchelor and harmony.

In order to properly compare the methods, parameters of BC-t-SNE were fixed to the default configu-

ration of the package Rtsne, which corresponds to setting the number of iterations T � 1000, a value of

perplexity equal to 30 and ηptq � 200, t � 1, . . . T and αptq � 0.5 for t   250 and αptq � 0.8 for t ¥ 250;

see also Maaten and Hinton (2008).

Figure 1 compares results from unadjusted t-SNE and the proposed method, respectively in the

upper and lower panels; both approaches are estimated over a k � 30 reduced components. Results

for the unadjusted case confirm the presence of strong batch effects. Indeed, cells are divided into

4 main clusters corresponding to the different batches, denoted with different point shapes. Within

each cluster, smaller groups of cells of the same type are present; however, it is clear that the main

clusters are driven by batch information instead of cell types. Therefore, results from the upper panel

of Figure 1 do not allows us to properly identify regions of the space of partitions which are consistent

with the factors of scientific interest. The bottom panels of Figure 1 illustrate results for BC-t-SNE,

Harmony and MNN and show that, after adjustment, the effect of unwanted batches is effectively

removed from the t-SNE embeddings. Indeed, different point shapes are uniformly spread across the

four main clusters, which now correspond to the different cell types denoted with different colors. From

visual inspection, all the competitors achieve satisfactory results in terms of removing batch effects while

preserving cell types, with BC-t-SNE highlighting the presence of different clusters more distinctly than

the competitors. Such preliminary findings are quantitatively evaluated in Table 1, where the ability of

the methods in removing batches and preserving cell types is evaluated in terms of silhouette coefficients,

using the scone software (Cole et al., 2019), kBET test metric (Büttner et al., 2019), average LISI score

(Korsunsky et al., 2019) and PC regression using scater (McCarthy et al., 2017). All the measures have

been normalised and rescaled in r0�1s, with 0 indicating perfect separation across groups and 1 perfect

integration; note that the interpretation of such metrics is different depending on the partitioning under

investigation. Specifically, good performance in terms of batch effect removal corresponds to large values

of the proposed metrics, while adequate preservation of cell types is associated with small values (e.g.

Korsunsky et al., 2019). Table 1 indicates that all the methods achieve good performance in terms

of batch-removal, with BC-t-SNE being most accurate in terms of kBET, average LISI and highly

competitive in terms of rescaled silhouette coefficient. Coherency with Figure 1, the second half of

Table 1 shows that BC-t-SNE outperforms the competitors in terms of conservation of cell types.

4 APPLICATION

4.1 Dataset description

Medulloblastoma is among the most frequent malignant brain tumors in children. Recent studies

have observed that the Sonic Hedgehog (SHH) signaling pathway is hyperactivated in 30% of human
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Figure 1: Simulation study. The color of points varies according to cell types, while shapes vary with
batch groups. Upper plot shows the unadjusted t-SNE coordinates, while results after adjustment are
reported in the bottom panels.

Table 1: Simulation study. Evaluation of batch removal and cell types preservation. Best performance is
reported in boldface.

SIL kBET LISI PcReg

Batches BC-t-SNE 0.983 0.999 0.741 0.000
Harmony 0.978 0.997 0.733 0.000

MNN 0.984 0.921 0.668 0.000

Cell types BC-t-SNE 0.428 0.294 0.011 1.000
Harmony 0.473 0.314 0.014 1.000

MNN 0.689 0.999 0.043 1.000

medulloblastoma, therefore stimulating novel studies in this direction (Zurawel et al., 2000; Ellison et al.,

2011). Activation of the SHH pathway, which stimulates proliferation of granule cell neurons during

cerebellar development, has been used to create genetically engineered mice for scientific purposes,

with the SmoM2 process being a routinely used pipeline (Rubin and de Sauvage, 2006). Specifically,

SmoM2 mice have a transgenic mutated Smo allele which was originally isolated from a tumor and

can be engineered to be not expressed until acted upon by Cre recombinase (Mao et al., 2006; Helms

et al., 2000; Machold and Fishell, 2005). These mice are mated with genetically engineered matches

that express Cre recombinase in cerebellar granular neuron progenitors, leading to descendants which

develop medulloblastoma with 100% frequency by postnatal day 12.

Data used in this section come from 5 mice at postnatal day 12 created using such a pipeline

and analysed under different sessions. Specifically, mice 1, 2 (Females) on July 2nd, mouse 3 (Male)

on July 25th and mice 4, 5 (Males) on August 18th. Tumors were dissociated and individual cells

co-encapsulated in a microfluidics chamber with primer-coated beads in oil-suspended droplets. All

primers on each bead contained a bead-specific bar code and an unique molecular identifier (UMI),

followed by an oligo-dT sequence, while mRNAs were captured on the oligo-dT, reverse-transcribed and

amplified. Libraries were generated using the Drop-seq protocol V3.1 (Macosko et al., 2015). Following

standard sequencing and preprocessing procedures, individual transcripts were identified by the UMI

9



Figure 2: Unadjusted t-SNE coordinates. Points and shapes vary with batches.

bar code, with cell identity inferred from the bead-specific bar codes. Analysis on the normalised data

has been restricted to cells with more than 500 detected genes. Furthermore, outlier cells with more

than 4 standard deviations above the median number of genes were excluded from the analysis, along

with UMIs and mitochondrial content per cell in order to address the common problems of gene drop

out, unintentional cell-cell multiplexing and premature cell lysis (Vladoiu et al., 2018). The resulting

pre-processed expression matrix X consists of p � 16680 genes measured over n � 17746 different cells;

for each mouse, the number of valid cells was 3381, 3402, 1454, 1647 and 8062, respectively.

The focus of our analysis is on evaluating if the proposed BC-t-SNE method provides a robust data

representation, which is successful at removing batch effects without affecting biological information of

interest; see Ocasio et al. (2019) for an analysis involving cell-annotations on the same dataset.

4.2 Results

The presence of batch effects is investigated via unadjusted t-SNE embeddings, estimated over the

first k � 50 principal components; larger numbers of principal components resulted in less structured

embeddings, and are not reported. The first row of Figure 2 highlights systematic differences with

batch membership, while the second row shows information on cell type. Empirical results confirm the

presence of strong batch effects, with respect to mouse identifier (first row, first column), sex of the

mouse (first row, second column) and date of the experiment (first row, third column). For example,

cells from mouse 1 form a cluster which is clearly distinct from the others. As expected, we observe

some overlap between batch variables due to the experimental design. The second row of Figure 2

highlights differences across cell types, confirming that unadjusted t-SNE produces isolated clusters

which are in agreement with the cell types indicated in Ocasio et al. (2019).

Figure 3 refers to adjusted t-SNE coordinates, estimated with Algorithm 1 using the same settings

described in the simulation study. We compare BC-t-SNE with the same approaches used in the
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Figure 3: t-SNE coordinates after correction. Points and shapes vary with batches.

simulation studies. The first row of Figure 3 refers to BC-t-SNE; second and third to Harmony and

MNN, respectively. Results suggest a satisfactory performance in terms of batch effect removal for all

the methods considered. Indeed, BC-t-SNE embeddings from Figure 3 show no evidence of systematic

variation with any of the batch variables under investigation. Such batches are marked by the color and

shape of points in Figure 3, showing that the batches are spread homogeneously across the embedded

space after adjustment.

Following the metrics used in the simulations, Table 2 quantitatively evaluates the success in remov-

ing batch effects. Results indicate that BC-t-SNE achieves a performance which is highly competitive

with the other approaches. Focusing, for example, on mouse identifiers, the normalised silhouette co-

efficient suggests that BC-t-SNE removes batches more effectively than MNN and Harmony; similar

conclusions hold also when kBET is considered. According to iLISI, instead, the baseline data ad-

justment methods perform better than BC-t-SNE. This result is not surprising, since such approaches

optimize objective functions which are directly related to the iLISI metric (Korsunsky et al., 2019).

Lastly, it is important to investigate that after removing batch effects, clusters of cell types asso-

ciated with medulloblastoma are preserved in the low-dimensional coordinates, and similar cells are

close in the embedded space. Figure 4 shows results for BC-t-SNE and the baseline methods. The bulk

of cells in a large central cluster are from tumors having markers within in a range of differentiation

states, ranging from proliferative, undifferentiated cells expressing the SHH-pathway transcription fac-

tor Gli1, to cells in successive states of CGN differentiation, marked by sequential expression of markers

11



Table 2: Evaluation of batch removal.
SIL kBET LISI pcR

BC-t-SNE Sex 0.995 0.166 0.659 1.000
Date 0.980 0.235 0.457 1.000
Mouse 0.975 0.829 0.368 1.000

Harmony Sex 0.997 0.299 0.846 1.000
Date 0.987 0.421 0.540 1.000
Mouse 0.975 0.854 0.498 0.999

MNN Sex 0.999 0.219 0.844 1.000
Date 0.996 0.392 0.546 1.000
Mouse 0.958 0.794 0.502 0.999

Figure 4: t-SNE coordinates after adjustment. Points and shapes vary with cell types.

Ccnd2, Barhl1, Cntn2, Rbfox3, and Grin2b (Ocasio et al., 2019). Clusters of cells surrounded with

colored ellipses correspond to endothelial cells, microglia, oligodendrocytes and astrocytes, which are

common in the stroma within or adjacent to the tumors. Empirical findings suggest that such clusters

are correctly preserved after adjustment; see also Table 3 for a quantitative evaluation.

5 DISCUSSION

In this article we have introduced BC-t-SNE, a novel modification of t-SNE which allows for correc-

tion for multiple batch effects during estimation of the low-dimensional embeddings. The proposed

approach has demonstrated good performance in simulation studies and on an application involving

mouse medulloblastoma, where unwanted variations are successfully removed without removing infor-

mation on differences across cell types.

A possible extension for future development involves adapting the proposed procedure to more

efficient optimisation of the t-SNE loss function, to overcome the computational constraints encountered

with large n (Maaten, 2014). One way to address such an issue involves the use of alternative gradient

methods, with methods based on stochastic gradients being popular in the literature.
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Table 3: Evaluation of cell-type preservation.
SIL kBET iLISI pcR

BC-t-SNE 0.052 0.000 0.000 0.000
MNN 0.056 0.000 0.000 0.000

Harmony 0.031 0.000 0.000 0.000
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