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Abstract. The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum
information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and
many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been
properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev.
A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations
due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the
quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for
quantum information processing.ar
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1. Introduction

Quantum Information Processing (QIP) is a fundamental
resource for the next generation of technological devices
based on quantum principles. The field of QIP
is attracting a continuously increasing interest since
its birth, a few decades ago, and branches into
several subfields: quantum computation, quantum
communication, quantum algorithms, and quantum
cryptography, just to name a few [1]. Possible broad-
reaching applications of such devices are triggering
experimental and theoretical efforts, which aim at
controlling and manipulating the systems on a quantum
scale and characterizing their many-body properties.

In this paper, we focus on Quantum State
Transfer (QST), perhaps the simplest communication
protocol, designed to send a quantum state through
interconnected on-chip architectures, from one node
to another. QST can be useful in short distance
communications to avoid interfacing problems with flying
qubits. In its simplest version, a QST task is performed
between parties connected via quantum spin channels,
that is, 1D interacting spin- 12 chains working as data
buses, see Fig. 1.
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Γ

Figure 1. (Color online) The quantum state |Ψ(0)〉1, encoded
on spin A, and residing on the first site of a spin chain, is meant
to be transferred to spin B, which resides on site N , at some time
t∗, by exploiting the coherent dynamics of the quantum channel
Γ.

Since the seminal paper by Bose [2], numerous
protocols acting on spin- 12 chains have been proposed
and investigated in order to achieve a high QST fidelity.
These can be classified into two broad groups, namely
time-dependent and time-independent protocols (see
Refs. [3] and references therein for review). In the former
protocols, the transfer operation is performed by a time-
modulation of the interaction parameters of the spin
model; whereas, in the latter scenario, the interaction
parameters are kept fixed during the execution of the
QST protocol. Notwithstanding the rapid improvement
of the ability to control the interactions between quantum
spins (especially in cold atom set-ups [4]), the accuracy
required to perform time-dependent protocols seems to
be still out of reach. Hence, in this paper, we will focus
on time-independent QST protocols.

As far as the transfer of the quantum state of a
single qubit is concerned, it has been shown [5] that
perfect-QST and perfect entanglement distribution are
completely equivalent. In other words, if a quantum
channel is capable of transferring a quantum state
with unit fidelity from a sender to a receiver, then
it will also allow for a maximally entangled state to
be distributed between these two parties. A high-

fidelity QST data bus can be employed as an entangling
gate between two spins [6], producing, e.g., any one of
the maximally entangled Bell states with two qubits:
|Ψ±〉= 1√

2
(|01〉± |10〉) and |Φ±〉= 1√

2
(|00〉± |11〉), here

expressed in the (logical) basis of eigenstates of the
Pauli matrix σz. The shared entangled state can
be then exploited, via the celebrated teleportation
protocol (TP) [7], as a resource to teleport an unknown
quantum state from one location to another, thus
achieving the desired QST. The TP requires the sender
to perform a two-qubit measurement, followed by the
transmission of two bits of classical communication to
the receiver, which report the result of the measurement.
Finally, a conditional unitary operation on the target spin
is carried out by the receiver himself. As a consequence,
one-qubit QST can be achieved deterministically by the
use of a two-qubit Bell state teleportation channel.

Unfortunately, there is not such a clear-cut
equivalence when multipartite QST is addressed, that is,
when the quantum state to be transferred has n ≥ 2
qubits. The reason for this difficulty in connecting the
n-QST with multipartite entangled states, which would
be useful as a resource for implementing a teleportation
channel, is mainly due to the in-equivalence of entangled
states in the multipartite regime. For instance, the
entanglement of teleportation ET [8] has been adopted
as a quantifier of the capability of an entangled state
to act as a teleportation channel. It turned out
that 4-qubits GHZ-states, |GHZ〉 = 1

2 (|0000〉+ |1111〉),
have ET = 1

2 and only special classes of 2-qubit
states can be deterministically teleported [9]. On the
other hand, a different class of maximally entangled 4-
qubit entangled states, the so-called W-states, |W 〉 =
1
2 (|0001〉+ |0100〉+ |0100〉+ |1000〉), have ET = 0, and
no deterministic 2-QST is possible. Actually, it is possible
to teleport a 2-qubit state by using a 4-qubit entangled
state [10], and an explicit protocol for generic n-QST has
been introduced in terms of the so-called 2n generalized
Bell states [8], which, indeed, have unit teleportation
entanglement.

Notwithstanding the possibility to teleport an n-
qubit state by means of suitable entangled states, shared
by the sender and the receiver, in this paper we address
the question in terms of the transport of the state. This
presents some advantages with respect to the use of a
teleportation channel: first of all, in order to perform the
n-QST via TP, there is the need to implement generalized
Bell measurements, which up to now seem to be highly
non-trivial; furthermore, sender and receiver need to
protect efficiently their shared pure entangled state from
the environment, as the entanglement of teleportation has
to be unity in order to achieve a successful TP. If this is
not the case, little can be said. Indeed, to be best of
our knowledge, an analysis of n-QST via TPs employing
mixed states has yet to be performed, and not much is
known about the efficiency of such tasks. Therefore, we
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consider the case of QST in a setting where the state is
encoded at one end of the spin chain. Then, by exploiting
the natural dynamics of the quantum channel, we aim at
retrieving the same state (up to some unitaries) at the
other end, as shown schematically in Fig. 2.

|AB . . . F 〉 Γ |AB . . . F 〉

Figure 2. (Color online) The quantum state |AB...F 〉 of the
sender qubits is aimed at being transferred to the receiver spins
via the quantum channel Γ.

The paper is organized as follows: in Sec. 2 we review
some of the main single-qubit QST mechanisms based on
spin chains; in Sec. 3 we solve the many-body dynamics
for our model, which will be used in Sec. 4 to present our
main results on the QST fidelity. Finally, in Sec. 5 we
draw some conclusions.

2. Overview of single-qubit quantum state
transfer protocols

In this Section, we will focus on 1-QST as performed
by means of an open and finite spin- 12 chain, like the
one depicted in Fig. 1. The Hamiltonian describing its
dynamics is taken to be of the XX-Heisenberg type, with
nearest-neighbour interactions only, plus a magnetic field
along the z-axis:

H = −
N∑
l=1

Jl(σ
x
l σ

x
l+1 + σyl σ

y
l+1) +

N∑
l=1

hlσ
z
l . (1)

The initial state, encoded on the sender spin A, reads
|ψ(0)〉 = a |0〉 + b |1〉, with |a|2 + |b|2 = 1, whereas the
rest of the chain, including the quantum channel Γ and
the receiver B, is initialized in |Γ〉|B〉 = ⊗Nj=2 |0〉j . The

evolution of the overall state is |Ψ(t)〉 = a ⊗Nj=1 |0〉j +

b e−iHt |1〉1 ⊗Nj=2 |0〉j . By tracing out all of the spins but
B, one obtains the (generally mixed) state of the receiver
spin on site N : ρB(t) = Tr6=N (|Ψ(t)〉〈Ψ(t)|). The fidelity
between the state transferred to the receiver on site N ,
and the state encoded initially on spin 1 by the sender,
is given by [11]:

F (|ψ(0)〉〈ψ(0)|A , ρB(t)) =
√
A〈ψ(0)| ρB(t) |ψ(0)〉A . (2)

The quality of a QST-bus, however, cannot be simply
evaluated by considering the fidelity of the transfer of
a single, specific input state, but rather by an average
QST-fidelity obtained over some classes of states. We
will consider here the average fidelity F̄ (t), evaluated
by integration over the Bloch sphere of all possible pure
input states, as a QST figure of merit. In Ref. [2] it has
been shown that the average fidelity is given (up to a
phase that can be adjusted by a suitable magnetic field)
by the expression

F̄ (t) =
1

2
+
|fN1(t)|

3
+
|fN1(t)|2

6
, (3)

where fN1(t) is the transition amplitude of the
excitation (or, equivalently, of the spin-flipped state |1〉)
from site 1 to site N . The total magnetization along the
z-axis commutes with the hamiltonian given by Eq. 1,
then, the subspaces with a fixed number of excitations
are invariant under its action. As a consequence, the
amplitude is straightforwardly evaluated via

fN1(t) = 〈N | e−iHt |1〉 =

N∑
k=1

〈N |ak〉〈ak |1〉 e−iλkt , (4)

where {λk, |ak〉} are the single-particle eigenvalues and
eigenvectors of Eq. 1. Now, the average fidelity F̄ (t)
depends (monotonically) only on the modulus of the
excitation transition amplitude |fN1(t)| from site 1 to
site N . Besides, fN1(t) (Eq. 4) is a sum of products of
the overlaps of any (single particle) eigenstate with the
initial and final states |1〉 and |N〉. Each these overlaps
bring in a phase factor determined by the eigenvalues
λk and the k-sum in Eq. 4 runs over all the eigenstates
of Eq. 1. It turns out that the different components of
fN1(t) interfere destructively. Accordingly, a very low
quality of 1-QST is obtained for uniformly coupled spins
in long chains, unless a specific procedure [3] is applied
to single-out some of the terms in the sum given in Eq. 4.

From Eq. 3 it is evident that, as far as 1-QST
is concerned, high-fidelity protocols aim at maximizing
the transfer of the spin-flipped state |1〉 from site 1
to site N . In order to maximize fN1(t), within time-
independent hamiltonian protocols, several strategies
have been adopted, which can be broadly classified in:
a.) couplings-engineering methods [12, 13, 14, 15], b.)
ballistic transfer [17, 18, 19, 20, 21, 22], and c.) Rabi-like
dynamics [16, 23, 24, 25, 26, 27, 28].

In protocols relying on methods of the a.)-type, the
nearest-neighbor spin couplings are chosen in such a way
that the energy spectrum becomes linear, thus allowing
a dispersion-less transfer of the excitation; an instance
of such a coupling set is given by Jn =

√
n (N − n),

which yields a perfect QST, that is F = 1. With
regards to ballistic transfer settings of the b.)-type, the
main idea is to modify only the couplings of the sender
and the receiver to the rest of the spin chain. These
couplings are chosen in such a way that, even tough
the overall energy spectrum is non linear, most of the
modes prominently involved in the dynamics reside in a
portion of the spectrum, which is approximately linear.
For example, by tuning J1 = JN−1 = cN−

1
6 (with c

reading c = 1.030 for N � 1) average fidelities higher
than 99% are achieved [18]; furthermore, allowing also
for modulations of the second and last-but-one couplings,
F̄ gets as high as 99.9% in arbitrarily long chains [19].
Finally, methods of c.)-type consist in restricting the
dynamics to just two (or three) modes of the spectrum
in such a way that effective Rabi oscillations of the
excitations take place between the endpoints of the chain.
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Figure 3. (Color online) The state of qubit A is transferred to
qubit B by means of Rabi-like oscillations between eigenstates
localized on A and B, due to a strong magnetic field on the
neighboring “barrier” spins.

Up to now, these schemes have been applied mainly
to the QST of a single qubit (even if this does not mean,
in general, that the dynamics is restricted to the single
excitation subspace, as the chain could be initialized in
a state different from |0〉⊗N , [30]). However, it would be
of uttermost importance to have a single channel able to
perform different QIP tasks, such as, for instance, a QST
of arbitrary n-qubits or a QST involving more than just
a single sender and receiver.

In the next section we will focus on a specific Rabi-
like 1-QST protocol (Fig. 3), presented in Ref.[23], with
the idea to investigate its capability to be used as an n-
QST bus. The relevant feature of the protocol is given
by the presence of (strong) magnetic fields applied only
on the spins sitting at sites 2 and N − 1, whereas the
spin-spin coupling is assumed to be uniform. These
strong magnetic fields on the next-neighboring spins to
the sender and the receiver, named hereafter barrier
spins, play a crucial role in effectively decoupling the end-
spins from the rest of the chain. Then, an effective Rabi-
like hamiltonian HR ' ω1 |Ψ1〉〈Ψ1| + ω2 |Ψ2〉〈Ψ2| can be
written down, with the two modes |Ψi〉 bi-localized on
sender and receiver: |Ψ1,2〉 ' 1√

2
(|01〉 ± |10〉)1N . In the

following, we will investigate if such a scheme succeeds
also in the n-QST scenario.

It is worth mentioning that such a setup has been
already extended in Ref. [29] to perform a one-to-many
routing protocol.

3. Dynamics in the many-body regime

In the usual single qubit QST scenario (sketched in
Fig. 1), a pure state |Ψ〉 is encoded at time t = 0 in a spin
located at site 1 (the sender). The aim is to retrieve, at
some time t = t∗, the very same state in a spin located at
site N (the receiver), via the natural (coherent) dynamics
of the channel ruled by H. As the number of excitations
(flipped spins) remains constant during the evolution, the
dynamics takes place in the single excitation subspace,
as witnessed by Eqs. 3 and 4. Though, one of the
applications of the QST protocol is, for instance, to
transfer the output of a QIP task, performed by a
quantum processor, to another quantum device, and often
it is the case that such an output consists of more than
just one qubit. As a consequence, the output has to
be encoded in a larger Hilbert space, say, that of n
spins; so the resulting dynamics of the n-QST may take
place simultaneously in all the subspaces with m ≤ n
excitations. These components of the initial state have

to evolve in such a way that there exists a certain time t∗

at which the initial state is rebuilt at the n receiver spins.
It is evident that not only the analytical, or numerical,
complexity of the problem increases exponentially with
the number of spin flipped in the initial state, but also
the achievement of high-quality transfer may become
considerably more difficult w.r.t. the 1-QST case.

One way to circumvent the problem would be to
employ n identical , non-interacting quantum channels,
each transferring one component of the state [5].
However, there are some drawbacks in this configuration:
all of the n channels have to posses exactly the same
technical specifics, as each of the component of the whole
n-qubit quantum state has to be delivered at the same
time t = t∗ to the corresponding receiver. Unfortunately,
experimental imperfections are likely to modify the
coupling strength between spins in the different chains,
thus yielding different optimal transfer times t∗. These
times could also depend on the state to be transferred,
thus making the n-qubit QST a quite involved task in the
presence of disorder; see, e.g., Refs. [31]. Furthermore, in
order to fulfil the assumption of coherent dynamics, the
n quantum channels have to be efficiently protected from
detrimental environmental effects, which may result in
a demanding technical (and economical) request. Also
endowing the QIP devices by moving parts give rise
to easily presumable difficulties. It would be therefore
interesting to explore the possibility to use a single
quantum channel to perform arbitrary n-qubit QST, as
shown schematically in Fig. 2.

To achieve this goal, we now turn our attention to
a detailed analysis of the dynamics in the many-body
regime. Let’s consider the spin model given in Eq. 1,
with uniform couplings (Ji = J , ∀i). This model can be
mapped to a spinless fermion model via a Jordan-Wigner
transformation [32]

Ĥ = −2

N∑
i=1

ĉ†i ĉi+1 + h.c.−
∑

i=b1,b2

2hĉ†i ĉi . (5)

where we have taken J = 1 as our energy unit. Notice
that the magnetic field is zero everywhere but at the
barrier spins, on sites b1 = n + 1 and b2 = N − n − 1,
where it takes the same value h > 0. The most general
initial n-qubit pure state reads [33]

|Ψ(0)〉12..n =a0 |0〉+
n∑

n1=1

an1
|n1〉+

n∑
n1<n2=1

an1n2
|n1n2〉+...

...+

n∑
n1<n2<...<nj=1

an1n2...nj
|n1n2...nj〉+

. . .+ an1n2...nn |n1n2...nn〉 , (6)

The last spin n of the sender string is coupled to the
first barrier spin on site n + 1, which is the first spin
of the quantum channel Γ, made out of N − 2n spins;
the last spin of Γ (the second barrier) is coupled to
the first spin of the n receiver string, located at the
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other end of the chain. In Fig. 4 an instance of such
a setting is shown for n = 2. Finally, both the spin bus
Γ and the receiver spins are initialized in |0〉. We now
derive the time-evolved state of the whole system, sender
spins, quantum channel, and receiver spins. Because Ĥ
commutes with the total number of excitations, each n-
fermions sector is an invariant subspace, and the analysis
can be performed separately in each subspace. A lengthy
but straightforward calculation shows that

|Ψ(t)〉12..N =a0 |0〉+
N∑

n1,m1,k1=1

an1
(t)Dk1

n1
Um1

k1
|m1〉 (7)

+

N∑
n1<n2;k1<k2;n,m=1

an1n2
(t)Dk1k2

n1n2
Um1

k1
Um2

k2
|m1m2〉+...

...+

N∑
n↑=1

N∑
k↑=1

N∑
mi=1

an↑Dn↑

k↑i
U
k↑i
mi

∣∣∣{m↑i }〉 .

Here the arrow in x↑ indicates that the set of x’s are
ordered with the location label increasing from left to

right, i.e., x↑≡x1<x2<...<xN , whereas U
k↑i
mi=U

k1
m1
...UkNmN

and an1n2
(t)=

∏
i e
−itEki . Dn1...nr

k1...kr
is the determinant of

the minor made up by taking the {n1, ..., nr} rows and the
{k1, ..., kr} columns of the matrix U , which diagonalizes
theN×N hamiltonian matrix given by Eq. 5, in the single

particle sector, while Eki denotes the ki-th eigenvalue.
Finally, by tracing out all of the spins but the receivers,
the reduced density matrix ρ(N−n+1,...,N)(t), describing
the spins located on sites m = N − n + 1, ..., N and
embodying the QST target string, is obtained. Its fidelity
with the state given by Eq. 6 can be evaluated via Eq. 2.

4. Results

In this Section we apply the above formalism to the
first non-trivial case, i.e., the transfer of a 2-qubit state
residing at sites 1 and 2, |Ψ(0)〉12 = α |00〉 + β |01〉 +
γ |10〉+δ |11〉, to the spins located at the other end of the
chain, m = N − 1, N . To this purpose, we modify the
scheme depicted in Fig. 3 by shifting the strong magnetic
field on qubits 3 and N − 2, with the idea to perform a
2-QST, as shown in Fig. 4.

. . .
Γh h

Figure 4. (Color online) 2-QST via Rabi-like mechanism
between the two ends of the spin chain.

The reduced density matrix of the last two spins reads


GN−1N G∗N−1N F∗N−1GN−1N F∗NGN−1N α∗GN−1N

FN−1G∗N−1N |GmN−1|2 + |FN−1|2 GmN−1G∗mN + FN−1F∗N F∗mGmN−1 + α∗FN−1
FNG∗N−1N GmN G∗mN−1 + FNF∗N−1 |GmN |2 + |FN |2 F∗NGmN + α∗FN
αG∗N−1N FmG∗mN−1 + αF∗N−1 FmG∗mN + αF∗N 1− |GmN−1|2 − |GmN |2 − |FN−1|2 − |FN |2

 (8)

Here the matrix elements Fr=β 〈r|U |1〉+γ 〈r|U |2〉 and
Grs=δ 〈s, r|U |1, 2〉 depend on the time-evolution operator
U=e−iHt and the m-sum is intended to range between 1
and N−2.

In order to obtain the average fidelity over all
possible pure initial states, we conveniently adopt the
following parametrization for 2-qubit pure states

|Ψ(0)〉12 = R1R2

(√
s+1

2
|00〉+

√
s−1

2
|11〉

)
(9)

where R1,2 are local rotations acting on the first and
second spins, and s characterize the initial amount of
entanglement (as the concurrence is given by C =√

1− s2).

4.1. Average Fidelity for general states

With the reduced density matrix written above, we
obtained an analytic expression for the average fidelity
F̄ (t) (not reported here for the sake of brevity). The
results are shown in Fig. 5, where we report the maximum
average fidelity F̄ (t) achieved at an optimal time t∗,
scanned over the time interval [0, tmax], for different

values of the magnetic field h on the barrier spins. The
length of the quantum channels chosen in the figures is
a minimal one, that is N = 7 and N = 8, in order to
demonstrate a proof-of-principle of the setup. Longer
chains will be addressed in the following subsection.
We see that the fidelity increases if larger and larger
values values of h are taken, and that spin-buses with an
odd number of sites perform better that even-numbered
ones, both because they require smaller barrier magnetic
fields and because the optimal times where the maximum
fidelity is achieved are shorter.

4.2. Average Fidelity for subsets of states

In the previous subsection we dealt with the transfer
of the most general two-qubit state, and the dynamics
of the chain involved all of these (invariant) subspaces,
in presence of n = 0, 1, 2 excitations. We now switch
to cases where the quantum state to be transferred is
not completely unknown, but it belongs to a known
subset. We will see that the above results can be further
improved and, in addition, the analytical formula for
the average fidelity simplifies. Indeed, for states of the
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Figure 5. (Color online) Maximum average fidelity F̄ for the
2-QST through chains made of N=7 and N=8 spins, for time
scans t∈[0, 2 × 104] and t∈[0, 6 × 104], respectively (upper and
lower panels). Notice how the presence of strong magnetic fields
greatly enhances the transfer efficiency both for even and odd
chains. Nevertheless, the protocol requires weaker magnetic fields
and less time in order to be performed on odd-N chains.

form |Ω1(0)〉12 = b |01〉 + c |10〉 and |Ω2(0)〉12 = a |00〉 +
d |11〉, the QST exploits the invariance of the respective
subspaces, and interference effects in the average fidelity
are strongly suppressed.

Restricting our considerations to states of the form
|Ω1(0)〉, the average fidelity reads

F̄ (t)=
1

3

(
|fN−1,1|2+|fN,2|2 +

|fN−1,2|2
2

+
|fN,1|2

2

)
+

1

3
Re
[
fN,2f

∗
N−1,1

]
(10)

where fj,i denotes the transition’s amplitude of the
excitation from site i to site j. In Figs. 6 we report the
threshold value of the magnetic field h∗ as a function of
the chain’s length N . This yields an average fidelity, over
the class of input states described by |Ω1〉, larger than
0.95. It turns out that, also for quite long chains, a high-
quality 2-QST can be achieved with our method provided
that suitable values of h are chosen.
Similar results are obtained by restricting the QST to
the states |Ω2〉 (involving the 2-particle subspace). The
average fidelity, in this case, is

F̄ (t)=
1

2
− 1

6

N−2∑
n=1

(
|gn,N−11,2 |2 + |gn,N1,2 |2

)

20 40 60 80 100

N

10
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• • • • •
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•

Figure 6. (Color online) Values of h as a function of N for
which the average fidelity F̄ of the 2-QST of states, belonging
to the subset |Ω1〉, is larger than 0.95. The time scan has been
performed over the interval t∈[0, 1.3× 104].

+
1

3

(
|gN−1,N1,2 |2 +Re

[
gN−1,N1,2

])
, (11)

where gr,s1,2 is the transition’s amplitude in the two
excitations subspace.

Is is worthwhile to mention that the present work,
as far as we are aware of, relates for the first time 2-
QST and transition amplitudes in a functional form via
Eqs. 10 and 11. This is achieved in the very same
spirit as the framework leading to Eq. 3, which relates
functionally 1-QST and single particle excitation transfer
amplitudes. The results presented here, which are valid
for general quantum channels ruled by Eq. 1, may pave
the way to investigate other than Rabi-like protocols for
the achievement of high-quality 2-QST.
Finally, we notice that the two subclasses |Ω1〉 and |Ω2〉
span respectively the two-qubit pure states with {0, 1}-
and {0, 2}-spin flipped, respectively. This means that
the proposed scheme is able to transfer, to the other end
of the spin chain, outputs obtained by a magnetization-
conserving unitary gate on two-qubits. Examples of such
a gate are the Controlled-Z gate, (the target state of) a
Fredkin gate, and arbitrary single- and two-qubit phase
gates.

5. Conclusions

In this paper we addressed the problem of the transfer of
many-body quantum states by means of open, finite 1D
spin- 12 chains, interacting via XX-Heisenberg exchange.
Based on the protocol introduced in Refs. [23] and [29],
we proposed a setting capable to transfer arbitrary 2-
qubit quantum states between the end-points of a spin
chain. The key element of the protocol is the presence
of a strong magnetic field applied on two barrier qubits,
on each side of the sender and receiver strings connected
to the spin bus. This magnetic field effectively decouples
the sender and receiver spins from the quantum channel,
and results in an effective hamiltonian supporting Rabi-
like oscillations of the excitations between the two ends of
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the spin chain. We expressed the average fidelity in terms
of the corresponding excitation transfer amplitude and
found that spin chains made of an odd number of spins
generally perform better than even-numbered chains. By
this we mean that the maximum average fidelity obtained
is higher at fixed intensities of the magnetic field and the
time duration of the protocol is shorter.

We also solved the dynamics for general n-
qubit sender states, with n > 2, and this result
may open the way to investigate n-QST as well as
distribution of multipartite entangled states, relating in
a functional form, amenable to theoretical investigations,
the amplitude for multiple excitation transfer and n-
QST fidelity. In this direction, we reported the explicit
formulas for 2-QST which may trigger the search and
optimization of other QST protocols.
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