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1. Introduction 

In the last years, big exchanges have taken place concerning automated warehouses both in terms of design and 
application contexts. Many companies, operating in several sectors, such as the steel [1] or automotive [2], decided to 
opt for automation and automated warehouses have spread into new application contexts. Because of this, there are 
now Automated Storage and Retrieval Systems (AS/RSs) [3] completely different from classic pallet warehouses on 
which past research has focused on. These new kinds of automated warehouses are designed for handling 
unconventional load units, such as cars, incandescent metal bars or metal bar’s bundles up to 6 meters long. 
Furthermore, the diffusion of lean thinking had a big impact, not only in manufacturing, but in logistic too [4]. Because 
of one-piece-flow production and the concept of stock as inefficiency, purchasing and shipping batches, became 
increasingly smaller and more varied [5], requiring for the suppliers more shipments per day, a shorter throughput 
time, and, in general, higher performances [6]. In complex automated warehouses, the possibilities to improve the 
performance are numerous and can consider one or more aspects together. An aspect which has always been considered 
in the literature is the design, which has recently been studied by Yang et al. [7], in order to optimize the performance 
for multi-deep AS/RSs under full turnover-based storage policy. Other authors such as Boysen et al. [8] focused on 
sorting and order consolidation processes. However, most of solution proposed concern the policies of routing and 
scheduling. A recent routing solution based on Travel Salesman Problem (TSP) formulation is presented by 
Gharehgozli et al. [9], while Qing et al. [10] adopted a classic Dijkstra algorithm. Finally, Cinar et al. [11] described 
a scheduling approach that models the warehouse as a job shop where loads are considered as jobs, pallets are 
equivalent to operations and skulls are machines in a shop floor. Other models presented in literature focus on the 
assignment of the item or location and, recently, Bortolini et al. [12] study the assignment optimization in a classic 
pallet warehouse making a trade-off between retrieval time and energy consumed. This article falls into the category 
of those works in which the objective is to try to optimize performance by improving the retrieval location assignment, 
and does it in a context, where picking and sorting are not allowed, and the storage units are long metal bundles. 

The remainder of this paper is structured as follows. In section 2 is reported a contextualization to better describe 
the problem approached in this paper. In section 3 is described the formalization of the problem. The model and the 
algorithm developed are deeply described in section 4. Case of study and relative results are reported in section 5 and 
conclusions and future research topics are described in section 6. 

 

Nomenclature 

i = 1, …, N Retrieved items 
j = 1, …, M Order lines 
pj Nominal weight of code required in line j 
di Distance between item i and output point which required it 
Dj Total distance to run to fulfil order line j 
Dmax,j Maximum distance to run to fulfil order line j 
L Distance between the output point which requires the retrieve and the furthest item 
R Number of machines required in parallel for retrieving 
wi Weight of item i 
qi Quality of item i 
mj Quantity required by customer in order line j  
nj Quality required by customer for order line j 
gj Quantity retrieved to fulfil order line j 
kj Quality retrieved to fulfil order line j 
Δweight Acceptable deviation between quantity required and quantity retrieved 
Δquality Acceptable deviation between quality required and quality retrieved 
α Acceptance coefficient inherent to quantity 
β Acceptance coefficient inherent to quality 
t Iteration of algorithm’s era 
s Initial iteration 
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f Final iteration 
θ Length of current solution 
Tt Temperature value during iteration t 
E Current era 
Fmax Maximum value of objective function and fitness of solutions 
LBweight, UBweight Minimum and maximum acceptable quantity 
LBquality, UBquality Minimum and maximum acceptable quality 

 

2. Contextualization 

The proposed algorithm improves the retrieving of metal bundles in an automated warehouse. These bundles are 
composed of metal bars of different shape and size, but always homogeneous within the same bundle. They are often 
placed inside the warehouse without the use of containers, but simply placed side by side on shelves. Each bundle is 
characterized by a unique code (bundles consisting of identical bars, but of different lengths, have different codes, 
because cutting is not contemplated). A quality index, a nominal weight in relation one-to-one with the code, and a 
real weight measured during the storage phase, also characterize each bundle. During the retrieving phase, picking 
and sorting are not allowed, and, once an output point has taken charge of an order, this must be entirely satisfied 
without observing the next order assigned to the same output point. 

Each customer order consists of a list of order lines, each of which holds the following information:  
 Item’s code required; 
 Quantity required expressed in kilograms; 
 Quality level of retrieved items; 
 Acceptable deviation between required and retrieved quantity; 
 Acceptable deviation between required quality and average retrieved quality. 
Since picking and sorting are not allowed, the possibilities to satisfy an order line are constrained to the following 

scenarios: 
 Retrieving of a bundle whose code is equal to the one requested and satisfies both the quality and the quantity 

range; 
 Retrieving of more than one bundle, whose codes are equal to the one requested, whose quality levels are 

constrained within the accepted quality range, and which have the sum of quantities lying within the range 
of the requested quantity. 

If neither of these two scenarios is possible, the order line is then marked as “not-accepted”. 

3. Formalization 

The proposed algorithm is a metaheuristic called Simulated Annealing (SA), originally proposed by Kirkpatrick 
[13], [14], which is also well known in literature and has already been applied for solving warehouses retrieving 
problems [15][16][17]. 

3.1.  Quantity and quality bounds 

In our case study the quality is expressed with a value ranging from 1 to 10 (1 is the minimum and 10 is the 
maximum). Typically, acceptable quality and quantity deviations are defined a priori with an agreement between 
customer and supplier. In our case, they are based on the required value and two parameters, α and β, fixed according 
to customers’ requirements. The acceptable quantity deviation between requested and retrieve values depends on 
parameter α and bigger is the quantity required, greater is the acceptable margin of error. If the quantity required by 
customer in order line j is mj, the weight which defines the acceptable deviation is calculated as follows: 

∆������= �� ∙ �
��  (1) 
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The upper and lower bounds are calculated as follows: 

�������� = �� −  ∆������  (2) 

�������� = �� +  ∆������  (3) 

Even for the quality, being nj the quality level required by customer, the acceptable quality deviation quality is 
calculated as follows: 

∆�������= �� ∙ ���  (4) 

In our application case, it is not possible to supply goods with a quality level lower than the required one, therefore, 
while upper bound UBquality is calculated exactly as for the quantity, the lower bound LBquality is equal to quality 
required nj. Figure 1 shows the trend of lower and upper bound for quantity (a) and quality (b) in a specific case in 
which α=β=1.5 are presented. In both the graphs the upper bound is represented in orange and the lower bound in 
blue.  

 

Fig. 1. (a) Quantity's upper and lower bound for increasing quantity required; (b) Quality's upper and lower bound for increasing quality required 

3.2. Solution 

Give an order to fulfill, expressed as a list of M order lines [L1…L�], a solution is represented as a list of M elements 
[�� … ��] named sub-solution, each of which satisfies the corresponding order line. Each element Ej can therefore 
represent of one or more bundles to retrieve. 

3.3. Temperature 

In SA, temperature value defines the acceptance probability of a new solution worse than the current one and 
indirectly defines the size of explored neighborhood. At the beginning of each era, the temperature is brought back 
to the initial level selected and then decreases with the increase in iterations till it reaches the final value. The 
temperature and its reduction define the number of solutions explored by the algorithm and acceptance threshold of 
worse solutions and the breadth size of neighborhood analyzed depend on its value. 

3.4. Cooling schedule 

The cooling schedule is the trend with which temperature decreases as the number of iterations carried out 
increases. Every iteration t, temperature value is calculated using the formula proposed by Lai and Chan [18]: 

�� =
����

�� ����∙�
  (5) 
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In Eq. (5), t-1 represents the previous iteration and B is calculated, according to Lai and Chan [18], as follows: 

� =
�����

��∙��∙�
  (6) 

where Ts is the starting temperature, Tf is the ending temperature and E is the eras’ number.  
 

3.5. Initial and final temperature 

Initial and final temperature are set accordingly to Kirkpatrick et al. [19]. Specifically, it is chosen to assure a high 
initial acceptance probability and a low ending acceptance probability. Fixed ���� the highest (best) of fitness that 
can characterize a solution and �% the desired acceptance threshold, the temperature is calculated using equation 
proposed by Bertolini et al. [20]: 

� =
�����

��(�%)
  (7) 

 

3.6. Fitness 

The fitness function, which the SA tries to optimize, takes into consideration three elements represented by three 
different indexes: 

 Q represents the quality delta between customer order request and planned order retrieving; 
 W represents the quantity delta between customer order request and planned order retrieving; 
 T represents the estimated retrieving time. 

Each component is designed to take value ranging between 0 and 1, and each of them is assigned a weight 
coefficient ε, φ and μ whose values have been empirically defined (ε = 0.35, φ = 0.2, μ = 0.45) to match the case study 
expectations. The fitness function is thus expressed as follows: 

������� =  � ∙ � + � ∙ � + � ∙ �  (8) 

Q grows for decreasing difference between quality required and quality retrieved. Fixed � = 1 … � order lines, the 
whole order quality index Q is calculated as sum of lines’ quality indexes Qj. Moreover, being i=1, …, N the retrieved 
bundles to fulfil a generical order line j and qi the quality level of each of them, the quality value of the sub-solution 
is the following: 

�� =
∑ ��

�
���

�
  (9) 

Finally, given nj the quality required by order line j, the quality index of correspondent sub-solution Qj is calculated 
as follows: 

�� = 1 −
�������

�.�∙���������������������
  (10) 

Even the quantity index W grows for decreasing difference between quantity required and quantity retrieved. Fixed 
j=1, …, M order lines and being Wj the quantity index of solution found for line j, the quantity index of the whole 
order W is calculated as sum of lines’ quantity indexes. Moreover, defined i=1, …, N the retrieved bundles to fulfil 
order line j and wi the weight of each of them, the quantity retrieved gj is the following: 
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�� = ∑ ��
�
���   (11) 

Given mj quantity required by order line j, the quantity index of correspondent sub-solution Wj is calculated as 
follows: 

�� = 1 −
�������

�.�∙�������������������
  (12) 

The calculation of the time index considers the distance Dj between retrieved items and output point requiring 
them. It also takes into account the number of required cranes R simultaneously involved in the handling tasks 
(considering that each crane is able to reach just specific areas of warehouse). Concretely, the increase in the number 
of cranes used in parallel reduces the retrieval time by increasing the number of activities performed in parallel. The 
distance Dj is calculated as the distance between the output point and the item to be retrieved, multiplied by 2, to 
predict the worst situation in which the crane has just finished the previous mission. The travel time has not an upper 
bound and, in order to obtain a value between 0 and 1, the maximum distance that could be covered is calculated 
beforehand. Given L the distance between the output point and the furthest item, mj the quantity required by the order 
line j, and pj the nominal weight of required code, the maximum distance Dmax,j is calculated with the following 
function: 

����,� = 2 ∙ � ∙
��

��
  (13) 

Where mj/pj is a number indicative of travels needed to fulfill the order line. This pessimistic value is compared 
with the real distance to be covered, that, given i = 1, …, N bundles selected to fulfill the order line and di the distance 
between bundle i and the output point, is calculated as follows: 

�� = ∑ ��
�
���   (14) 

Finally, the time index Tj of a generical sub-solution is calculated as follows: 

�� = 1 −
��

����,�∙�
  (15) 

Even in this case, the time index of the whole solution T is the sum sub-solutions’ indexes. 

3.7. Threshold 

In the simulated annealing procedure, at each iteration a new solution is generated from the current working 
solution neighborhood. The procedure, while it aims to obtain at each iteration a new solution providing a better fitness 
function value, also considers the possibility to temporarily accept a worsening solution, so as to escape, in following 
iterations, a local minimum (optima). This behavior is managed using a probability threshold, which describe the 
probability to accept a new solution even if worse than the current one and is calculated using the following formula 
frequently used in literature: 

�ℎ���ℎ��� = ��∆� ��⁄   (16) 

Where Tt represents the current temperature and ΔF the difference between the fitness of two compared solutions. 
An example threshold’s trend for ΔF equal to 1 is represented in Figure 2. 
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Fig. 2. Trend of threshold value when number of iterations increases 

3.8. Anchor 

Every time a new solution is generated adopting a neighbor search, the anchor defines the exact number of elements 
(bundles) to change in that iteration. Fixed θ the number of items, which compose the current solution and Tt the 
temperature, the anchor is calculated by using the following function proposed by Lai and Chan [18]: 

���ℎ�� = ��������� ∙ ��� ��⁄ �  (17) 

 

4. Algorithm 

4.1. Macro-procedure 

The macro-procedure is represented in Figure 3. Each era a new random solution is generated, accepted and made 
current solution. Temperature is set equal to beginning value defined a priori. Each iteration temperature value is 
updated, a new solution is generated and rated: if it is accepted it becomes the new current solution. Procedure is 
repeated till temperature reaches the final value defined a priori. Then, if the maximum number of eras has been 
reached, procedure ends and return the best solution found, otherwise era’s number is updated and the whole procedure 
is repeated. 

 

Fig. 3. Macro-procedure of the algorithm 
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4.2. Initial solution’s creation 

The procedure for constructing the initial solution is sketched in Figure 4. Within each solution there are some sub-
solutions. Each sub-solution refers to an order line and has the objective of fulfilling it as well as possible. There are 
two ways to fulfill an order line: 

 matching: the request is fulfilled with just one bundle; 
 filling: the request is fulfilled with a list of bundles. 
A sub-solution and its respective order line are accepted if they have at least one item that can be used in matching, 

or a list of items that can be used in filling such that the sum of their weights is greater than the LBweight. Matching 
always takes precedence. In this way, if an order line can be completed with a single item, the possibility of fulfilling 
it with several items is not considered, because, generally, retrieving more items reduces retrieving performances. If 
matching is not possible the filling procedure described in Figure 5 is implemented. However, it must be noted that 
using the filling procedure can result in a deadlock situation whenever the order line results satisfiable with the current 
stock, and the addition of any available item, would violate the weight upper bound allowed. In this case, an additional 
previous step is applied, i.e. the elimination of the heaviest item from sub-solution, before repeating the filling 
procedure; alternatively, the matching procedure is used, if possible. This is repeated at most a number of times equal 
to length of feasible items’ list. 

 

 

Fig. 4. Detailed procedure of the algorithm 
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Fig. 5. Representation of filling procedure 

 

4.3. Neighborhood search 

Finally, the current solution’s change is performed exactly as the initial solution’s creation but is preceded by the 
random deletion of an anchor number of items in the current solution. 
 

5. Results 

To test the algorithm, a simulations model of an existing warehouse was created in Python 3.6 using the Simpy 
module, and simulation was run on an Intel-based computer with 3.60 GHz and 8 Gb of RAM. The warehouse consists 
of two distinct storage areas served by two different cranes, one output point and one input point connected to the 
cranes by shuttles and elevators. The algorithm was tested comparing the simulation model with the real system over 
two weeks of work characterized by high peak of requests and shifts of 8 hours per day, during which both input and 
output missions were performed. The warehouse’s filling at the beginning of test was 63% and three different types 
of codes of different length and nominal weight are managed. The parameters α and β were both equal to 1.5, and the 
number of eras were set equal to 30. Results are reported in Table 1 and show how the proposed procedure correctly 
ensure better performance and less difference between quality or quantity required and retrieved. 

 

Table 1. Results and comparison between algorithm developed and algorithm currently implemented. 

Comparison value Units of measurement Proposed algorithm Currently implemented algorithm 

Working hours simulated hour 80 80 

Missions completed number 2,243 2,018 

Missions per hour number/hour 28 25 

Average computation time seconds 1.526 0.039 

Average quality difference % 0.72 3.07 

Average quantity difference % 8.96 14.06 

 

6. Conclusion 

In this paper is presented an algorithm based on simulated annealing procedure for the optimization of the retrieving 
performances in a warehouse for metal bundles of different lengths, weight and quality indexes. Tests show promising 

While sub-solution.weight < LBweight :

Item = random item from list of feasible for filling 

Add Item to sub-solution and update 
sub-solution.weight
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results, outperforming the currently implemented algorithm operating in the real warehouse here simulated; moreover, 
this work aims to directly optimize performances with respect to quantity and quality constraints, which is little 
explored in literature. Future research topics will consist in the application of a similar algorithm to more complex 
warehouses where the storage compartments are double depth (allowing the joint removal of two bundles) or where 
two cranes share the same railway obstructing each other. Another development will consist in the creation of an 
algorithm for the scheduling of the jobs returned by the one described in this paper, to further optimize the performance 
finding the optimal routing. 
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