
ScienceDirect

Available online at www.sciencedirect.com

Procedia Manufacturing 39 (2019) 1681–1690

2351-9789 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the ICPR25 International Scientific & Advisory and Organizing
committee members
10.1016/j.promfg.2020.01.272

10.1016/j.promfg.2020.01.272 2351-9789

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000

www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer review under the responsibility of ICPR25 International Scientific & Advisory and Organizing committee members

25th International Conference on Production Research Manufacturing Innovation:
Cyber Physical Manufacturing

August 9-14, 2019 | Chicago, Illinois (USA)

Optimizing Retrieving Performance of an Automated Warehouse
for Unconventional Stock Keeping Units

Massimo BERTOLINI, Giovanni ESPOSITO, Davide MEZZOGORI, Mattia NERONI*

University of Parma, Parco Area delle Scienze 181/A, 43100 – Parma, Italy

Abstract

In recent years, the diffusion of automated warehouses in different industrial sectors has fostered the design of more complex
automated storages and handling solutions. These circumstances, from a technological point of view, have led to the development
of automated warehouses that are very different from the classic pallet Automated Storage and Retrieval Systems (AS/RS), both
in terms of design and operating logic. A context in which these solutions have spread is the steel sector. Warehouses with
innovative layouts and operating logics have been designed to move metal bundles of different sizes, weights and quality levels,
instead of standard, interchangeable stock keeping units. Moreover, picking is often not allowed in these warehouses, due to the
configuration of the loading units. In this work we propose a meta-heuristic algorithm based on the Simulated Annealing (SA)
procedure, which aims to optimize performance during the retrieving phase of an automated warehouse for metal bundles. The
algorithm translates the customers’ requests, expressed in terms of item code, quality and weight into a list of jobs. The goal is to
optimize the retrieving performance, measured in missions per hour, minimizing the deviations in quality and weight between
customer request and the material retrieved. For the validation, a simulation model of an existing warehouse has been created and
the performance of the algorithm tested on the simulation model has been compared with the current performance of the warehouse.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer review under the responsibility of ICPR25 International Scientific & Advisory and Organizing committee
members

Keywords: Automated Storage and Retrieval System; Unconventional Stock Keeping Units; Simulated Annealing; Digital Twin.

* Mattia Neroni. Tel.: +390521905873

E-mail address: mattia.neroni@unipr.it

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000

www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer review under the responsibility of ICPR25 International Scientific & Advisory and Organizing committee members

25th International Conference on Production Research Manufacturing Innovation:
Cyber Physical Manufacturing

August 9-14, 2019 | Chicago, Illinois (USA)

Optimizing Retrieving Performance of an Automated Warehouse
for Unconventional Stock Keeping Units

Massimo BERTOLINI, Giovanni ESPOSITO, Davide MEZZOGORI, Mattia NERONI*

University of Parma, Parco Area delle Scienze 181/A, 43100 – Parma, Italy

Abstract

In recent years, the diffusion of automated warehouses in different industrial sectors has fostered the design of more complex
automated storages and handling solutions. These circumstances, from a technological point of view, have led to the development
of automated warehouses that are very different from the classic pallet Automated Storage and Retrieval Systems (AS/RS), both
in terms of design and operating logic. A context in which these solutions have spread is the steel sector. Warehouses with
innovative layouts and operating logics have been designed to move metal bundles of different sizes, weights and quality levels,
instead of standard, interchangeable stock keeping units. Moreover, picking is often not allowed in these warehouses, due to the
configuration of the loading units. In this work we propose a meta-heuristic algorithm based on the Simulated Annealing (SA)
procedure, which aims to optimize performance during the retrieving phase of an automated warehouse for metal bundles. The
algorithm translates the customers’ requests, expressed in terms of item code, quality and weight into a list of jobs. The goal is to
optimize the retrieving performance, measured in missions per hour, minimizing the deviations in quality and weight between
customer request and the material retrieved. For the validation, a simulation model of an existing warehouse has been created and
the performance of the algorithm tested on the simulation model has been compared with the current performance of the warehouse.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer review under the responsibility of ICPR25 International Scientific & Advisory and Organizing committee
members

Keywords: Automated Storage and Retrieval System; Unconventional Stock Keeping Units; Simulated Annealing; Digital Twin.

* Mattia Neroni. Tel.: +390521905873

E-mail address: mattia.neroni@unipr.it

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the ICPR25 International Scientific & Advisory and Organizing
committee members

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/296240445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.01.272&domain=pdf

1682 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690
2 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000

1. Introduction

In the last years, big exchanges have taken place concerning automated warehouses both in terms of design and
application contexts. Many companies, operating in several sectors, such as the steel [1] or automotive [2], decided to
opt for automation and automated warehouses have spread into new application contexts. Because of this, there are
now Automated Storage and Retrieval Systems (AS/RSs) [3] completely different from classic pallet warehouses on
which past research has focused on. These new kinds of automated warehouses are designed for handling
unconventional load units, such as cars, incandescent metal bars or metal bar’s bundles up to 6 meters long.
Furthermore, the diffusion of lean thinking had a big impact, not only in manufacturing, but in logistic too [4]. Because
of one-piece-flow production and the concept of stock as inefficiency, purchasing and shipping batches, became
increasingly smaller and more varied [5], requiring for the suppliers more shipments per day, a shorter throughput
time, and, in general, higher performances [6]. In complex automated warehouses, the possibilities to improve the
performance are numerous and can consider one or more aspects together. An aspect which has always been considered
in the literature is the design, which has recently been studied by Yang et al. [7], in order to optimize the performance
for multi-deep AS/RSs under full turnover-based storage policy. Other authors such as Boysen et al. [8] focused on
sorting and order consolidation processes. However, most of solution proposed concern the policies of routing and
scheduling. A recent routing solution based on Travel Salesman Problem (TSP) formulation is presented by
Gharehgozli et al. [9], while Qing et al. [10] adopted a classic Dijkstra algorithm. Finally, Cinar et al. [11] described
a scheduling approach that models the warehouse as a job shop where loads are considered as jobs, pallets are
equivalent to operations and skulls are machines in a shop floor. Other models presented in literature focus on the
assignment of the item or location and, recently, Bortolini et al. [12] study the assignment optimization in a classic
pallet warehouse making a trade-off between retrieval time and energy consumed. This article falls into the category
of those works in which the objective is to try to optimize performance by improving the retrieval location assignment,
and does it in a context, where picking and sorting are not allowed, and the storage units are long metal bundles.

The remainder of this paper is structured as follows. In section 2 is reported a contextualization to better describe
the problem approached in this paper. In section 3 is described the formalization of the problem. The model and the
algorithm developed are deeply described in section 4. Case of study and relative results are reported in section 5 and
conclusions and future research topics are described in section 6.

Nomenclature

i = 1, …, N Retrieved items
j = 1, …, M Order lines
pj Nominal weight of code required in line j
di Distance between item i and output point which required it
Dj Total distance to run to fulfil order line j
Dmax,j Maximum distance to run to fulfil order line j
L Distance between the output point which requires the retrieve and the furthest item
R Number of machines required in parallel for retrieving
wi Weight of item i
qi Quality of item i
mj Quantity required by customer in order line j
nj Quality required by customer for order line j
gj Quantity retrieved to fulfil order line j
kj Quality retrieved to fulfil order line j
Δweight Acceptable deviation between quantity required and quantity retrieved
Δquality Acceptable deviation between quality required and quality retrieved
α Acceptance coefficient inherent to quantity
β Acceptance coefficient inherent to quality
t Iteration of algorithm’s era
s Initial iteration

 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690 1683
 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000 3

f Final iteration
θ Length of current solution
Tt Temperature value during iteration t
E Current era
Fmax Maximum value of objective function and fitness of solutions
LBweight, UBweight Minimum and maximum acceptable quantity
LBquality, UBquality Minimum and maximum acceptable quality

2. Contextualization

The proposed algorithm improves the retrieving of metal bundles in an automated warehouse. These bundles are
composed of metal bars of different shape and size, but always homogeneous within the same bundle. They are often
placed inside the warehouse without the use of containers, but simply placed side by side on shelves. Each bundle is
characterized by a unique code (bundles consisting of identical bars, but of different lengths, have different codes,
because cutting is not contemplated). A quality index, a nominal weight in relation one-to-one with the code, and a
real weight measured during the storage phase, also characterize each bundle. During the retrieving phase, picking
and sorting are not allowed, and, once an output point has taken charge of an order, this must be entirely satisfied
without observing the next order assigned to the same output point.

Each customer order consists of a list of order lines, each of which holds the following information:
 Item’s code required;
 Quantity required expressed in kilograms;
 Quality level of retrieved items;
 Acceptable deviation between required and retrieved quantity;
 Acceptable deviation between required quality and average retrieved quality.
Since picking and sorting are not allowed, the possibilities to satisfy an order line are constrained to the following

scenarios:
 Retrieving of a bundle whose code is equal to the one requested and satisfies both the quality and the quantity

range;
 Retrieving of more than one bundle, whose codes are equal to the one requested, whose quality levels are

constrained within the accepted quality range, and which have the sum of quantities lying within the range
of the requested quantity.

If neither of these two scenarios is possible, the order line is then marked as “not-accepted”.

3. Formalization

The proposed algorithm is a metaheuristic called Simulated Annealing (SA), originally proposed by Kirkpatrick
[13], [14], which is also well known in literature and has already been applied for solving warehouses retrieving
problems [15][16][17].

3.1. Quantity and quality bounds

In our case study the quality is expressed with a value ranging from 1 to 10 (1 is the minimum and 10 is the
maximum). Typically, acceptable quality and quantity deviations are defined a priori with an agreement between
customer and supplier. In our case, they are based on the required value and two parameters, α and β, fixed according
to customers’ requirements. The acceptable quantity deviation between requested and retrieve values depends on
parameter α and bigger is the quantity required, greater is the acceptable margin of error. If the quantity required by
customer in order line j is mj, the weight which defines the acceptable deviation is calculated as follows:

∆������= �� ∙ �
�� (1)

1684 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690
4 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000

The upper and lower bounds are calculated as follows:

�������� = �� − ∆������ (2)

�������� = �� + ∆������ (3)

Even for the quality, being nj the quality level required by customer, the acceptable quality deviation quality is
calculated as follows:

∆�������= �� ∙ ��� (4)

In our application case, it is not possible to supply goods with a quality level lower than the required one, therefore,
while upper bound UBquality is calculated exactly as for the quantity, the lower bound LBquality is equal to quality
required nj. Figure 1 shows the trend of lower and upper bound for quantity (a) and quality (b) in a specific case in
which α=β=1.5 are presented. In both the graphs the upper bound is represented in orange and the lower bound in
blue.

Fig. 1. (a) Quantity's upper and lower bound for increasing quantity required; (b) Quality's upper and lower bound for increasing quality required

3.2. Solution

Give an order to fulfill, expressed as a list of M order lines [L1…L�], a solution is represented as a list of M elements
[�� … ��] named sub-solution, each of which satisfies the corresponding order line. Each element Ej can therefore
represent of one or more bundles to retrieve.

3.3. Temperature

In SA, temperature value defines the acceptance probability of a new solution worse than the current one and
indirectly defines the size of explored neighborhood. At the beginning of each era, the temperature is brought back
to the initial level selected and then decreases with the increase in iterations till it reaches the final value. The
temperature and its reduction define the number of solutions explored by the algorithm and acceptance threshold of
worse solutions and the breadth size of neighborhood analyzed depend on its value.

3.4. Cooling schedule

The cooling schedule is the trend with which temperature decreases as the number of iterations carried out
increases. Every iteration t, temperature value is calculated using the formula proposed by Lai and Chan [18]:

�� =
����

�� ����∙�
 (5)

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000 12000

U
pp

er
 a

nd
 l

o
w

er
 b

o
un

d

Required quantity

a

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

U
pp

er
 a

nd
 l

o
w

er
 b

o
un

d

Required quality

b

 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690 1685
 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000 5

In Eq. (5), t-1 represents the previous iteration and B is calculated, according to Lai and Chan [18], as follows:

� =
�����

��∙��∙�
 (6)

where Ts is the starting temperature, Tf is the ending temperature and E is the eras’ number.

3.5. Initial and final temperature

Initial and final temperature are set accordingly to Kirkpatrick et al. [19]. Specifically, it is chosen to assure a high
initial acceptance probability and a low ending acceptance probability. Fixed ���� the highest (best) of fitness that
can characterize a solution and �% the desired acceptance threshold, the temperature is calculated using equation
proposed by Bertolini et al. [20]:

� =
�����

��(�%)
 (7)

3.6. Fitness

The fitness function, which the SA tries to optimize, takes into consideration three elements represented by three
different indexes:

 Q represents the quality delta between customer order request and planned order retrieving;
 W represents the quantity delta between customer order request and planned order retrieving;
 T represents the estimated retrieving time.

Each component is designed to take value ranging between 0 and 1, and each of them is assigned a weight
coefficient ε, φ and μ whose values have been empirically defined (ε = 0.35, φ = 0.2, μ = 0.45) to match the case study
expectations. The fitness function is thus expressed as follows:

������� = � ∙ � + � ∙ � + � ∙ � (8)

Q grows for decreasing difference between quality required and quality retrieved. Fixed � = 1 … � order lines, the
whole order quality index Q is calculated as sum of lines’ quality indexes Qj. Moreover, being i=1, …, N the retrieved
bundles to fulfil a generical order line j and qi the quality level of each of them, the quality value of the sub-solution
is the following:

�� =
∑ ��

�
���

�
 (9)

Finally, given nj the quality required by order line j, the quality index of correspondent sub-solution Qj is calculated
as follows:

�� = 1 −
�������

�.�∙���������������������
 (10)

Even the quantity index W grows for decreasing difference between quantity required and quantity retrieved. Fixed
j=1, …, M order lines and being Wj the quantity index of solution found for line j, the quantity index of the whole
order W is calculated as sum of lines’ quantity indexes. Moreover, defined i=1, …, N the retrieved bundles to fulfil
order line j and wi the weight of each of them, the quantity retrieved gj is the following:

1686 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690
6 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000

�� = ∑ ��
�
��� (11)

Given mj quantity required by order line j, the quantity index of correspondent sub-solution Wj is calculated as
follows:

�� = 1 −
�������

�.�∙�������������������
 (12)

The calculation of the time index considers the distance Dj between retrieved items and output point requiring
them. It also takes into account the number of required cranes R simultaneously involved in the handling tasks
(considering that each crane is able to reach just specific areas of warehouse). Concretely, the increase in the number
of cranes used in parallel reduces the retrieval time by increasing the number of activities performed in parallel. The
distance Dj is calculated as the distance between the output point and the item to be retrieved, multiplied by 2, to
predict the worst situation in which the crane has just finished the previous mission. The travel time has not an upper
bound and, in order to obtain a value between 0 and 1, the maximum distance that could be covered is calculated
beforehand. Given L the distance between the output point and the furthest item, mj the quantity required by the order
line j, and pj the nominal weight of required code, the maximum distance Dmax,j is calculated with the following
function:

����,� = 2 ∙ � ∙
��

��
 (13)

Where mj/pj is a number indicative of travels needed to fulfill the order line. This pessimistic value is compared
with the real distance to be covered, that, given i = 1, …, N bundles selected to fulfill the order line and di the distance
between bundle i and the output point, is calculated as follows:

�� = ∑ ��
�
��� (14)

Finally, the time index Tj of a generical sub-solution is calculated as follows:

�� = 1 −
��

����,�∙�
 (15)

Even in this case, the time index of the whole solution T is the sum sub-solutions’ indexes.

3.7. Threshold

In the simulated annealing procedure, at each iteration a new solution is generated from the current working
solution neighborhood. The procedure, while it aims to obtain at each iteration a new solution providing a better fitness
function value, also considers the possibility to temporarily accept a worsening solution, so as to escape, in following
iterations, a local minimum (optima). This behavior is managed using a probability threshold, which describe the
probability to accept a new solution even if worse than the current one and is calculated using the following formula
frequently used in literature:

�ℎ���ℎ��� = ��∆� ��⁄ (16)

Where Tt represents the current temperature and ΔF the difference between the fitness of two compared solutions.
An example threshold’s trend for ΔF equal to 1 is represented in Figure 2.

 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690 1687 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000 7

Fig. 2. Trend of threshold value when number of iterations increases

3.8. Anchor

Every time a new solution is generated adopting a neighbor search, the anchor defines the exact number of elements
(bundles) to change in that iteration. Fixed θ the number of items, which compose the current solution and Tt the
temperature, the anchor is calculated by using the following function proposed by Lai and Chan [18]:

���ℎ�� = ��������� ∙ ��� ��⁄ � (17)

4. Algorithm

4.1. Macro-procedure

The macro-procedure is represented in Figure 3. Each era a new random solution is generated, accepted and made
current solution. Temperature is set equal to beginning value defined a priori. Each iteration temperature value is
updated, a new solution is generated and rated: if it is accepted it becomes the new current solution. Procedure is
repeated till temperature reaches the final value defined a priori. Then, if the maximum number of eras has been
reached, procedure ends and return the best solution found, otherwise era’s number is updated and the whole procedure
is repeated.

Fig. 3. Macro-procedure of the algorithm

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50A
cc

ep
ta

nc
e

th
re

sh
o

ld

pr
o

ba
bi

li
ty

Iteration number

Threshold

Era = 0

Build first solution

Iteration = 0

Update temperature, heat,
threshold and anchor

Change current solution

If solution is accepted it becomes
the current solution, otherwise is

just saved

Make the first solution
the current solution

Is the temperature equal to final
temperature?

Iteration += 1

Era += 1

NoYes

End

Is the Era’s number equal to maximum?

Yes

No

1688 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690
8 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000

4.2. Initial solution’s creation

The procedure for constructing the initial solution is sketched in Figure 4. Within each solution there are some sub-
solutions. Each sub-solution refers to an order line and has the objective of fulfilling it as well as possible. There are
two ways to fulfill an order line:

 matching: the request is fulfilled with just one bundle;
 filling: the request is fulfilled with a list of bundles.
A sub-solution and its respective order line are accepted if they have at least one item that can be used in matching,

or a list of items that can be used in filling such that the sum of their weights is greater than the LBweight. Matching
always takes precedence. In this way, if an order line can be completed with a single item, the possibility of fulfilling
it with several items is not considered, because, generally, retrieving more items reduces retrieving performances. If
matching is not possible the filling procedure described in Figure 5 is implemented. However, it must be noted that
using the filling procedure can result in a deadlock situation whenever the order line results satisfiable with the current
stock, and the addition of any available item, would violate the weight upper bound allowed. In this case, an additional
previous step is applied, i.e. the elimination of the heaviest item from sub-solution, before repeating the filling
procedure; alternatively, the matching procedure is used, if possible. This is repeated at most a number of times equal
to length of feasible items’ list.

Fig. 4. Detailed procedure of the algorithm

Remove heaviest item

Trial = 0
maxTrial = number of feasible items

Select a random item in
the list of matching items

and add it to solution

For each subsolution

Trial += 1

Is matching
possible?

Is filling
possible?

Trial <
maxTrial?

FILLING PROCEDURE
Solution
findend?

Leave subsolution
uncompleated

Yes

No

Yes

No

Yes

No

Yes

No

 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690 1689
 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000 9

Fig. 5. Representation of filling procedure

4.3. Neighborhood search

Finally, the current solution’s change is performed exactly as the initial solution’s creation but is preceded by the
random deletion of an anchor number of items in the current solution.

5. Results

To test the algorithm, a simulations model of an existing warehouse was created in Python 3.6 using the Simpy
module, and simulation was run on an Intel-based computer with 3.60 GHz and 8 Gb of RAM. The warehouse consists
of two distinct storage areas served by two different cranes, one output point and one input point connected to the
cranes by shuttles and elevators. The algorithm was tested comparing the simulation model with the real system over
two weeks of work characterized by high peak of requests and shifts of 8 hours per day, during which both input and
output missions were performed. The warehouse’s filling at the beginning of test was 63% and three different types
of codes of different length and nominal weight are managed. The parameters α and β were both equal to 1.5, and the
number of eras were set equal to 30. Results are reported in Table 1 and show how the proposed procedure correctly
ensure better performance and less difference between quality or quantity required and retrieved.

Table 1. Results and comparison between algorithm developed and algorithm currently implemented.

Comparison value Units of measurement Proposed algorithm Currently implemented algorithm

Working hours simulated hour 80 80

Missions completed number 2,243 2,018

Missions per hour number/hour 28 25

Average computation time seconds 1.526 0.039

Average quality difference % 0.72 3.07

Average quantity difference % 8.96 14.06

6. Conclusion

In this paper is presented an algorithm based on simulated annealing procedure for the optimization of the retrieving
performances in a warehouse for metal bundles of different lengths, weight and quality indexes. Tests show promising

While sub-solution.weight < LBweight :

Item = random item from list of feasible for filling

Add Item to sub-solution and update
sub-solution.weight

1690 Massimo Bertolini et al. / Procedia Manufacturing 39 (2019) 1681–1690
10 Mattia Neroni / Procedia Manufacturing 00 (2019) 000–000

results, outperforming the currently implemented algorithm operating in the real warehouse here simulated; moreover,
this work aims to directly optimize performances with respect to quantity and quality constraints, which is little
explored in literature. Future research topics will consist in the application of a similar algorithm to more complex
warehouses where the storage compartments are double depth (allowing the joint removal of two bundles) or where
two cranes share the same railway obstructing each other. Another development will consist in the creation of an
algorithm for the scheduling of the jobs returned by the one described in this paper, to further optimize the performance
finding the optimal routing.

References

[1] Salamov, Warehouse logistics, Russ. J. Non-Ferrous Met., 9 (2019).
[2] Spassov, Automated warehouses and parkings for cars with stacker cranes, International Body Engineering Conference and Exhibition and

Automotive and Transportation Technology Conference, (2002).
[3] Jan and Vis, A survey of literature on automated storage, Eur. J. Oper. Res., 194 (2009) 343–362.
[4] Aslam, Farruckh, Gardezi, and Hayat, Design, development and analysis of automated storage and retrieval system with single and dual

command dispatching using MATLAB, World Acad. Sci. Eng. Technol., 36 (2009) 91–95.
[5] P. Hines, M. Holweg, and N. Rich, Learning to evolve A review of contemporary lean thinking, Int. J. Oper. Prod. Manag., (2004).
[6] N. Boysen, R. De Koster, and F. Weidinger, Warehousing in the e-commerce era : A survey, Eur. J. Oper. Res., vol. 1 (2018) 1–16.
[7] P. Yang, K. Yang, M. Qi, L. Miao, and B. Ye, Designing the optimal multi-deep AS / RS storage rack under full turnover-based storage policy

based on non-approximate speed model of S / R machine, Transp. Res. Part E, 104 (2017) 113–130.
[8] N. Boysen, S. Fedtke, and F. Weidinger, Optimizing automated sorting in warehouses : The minimum order spread sequencing problem, Eur. J.

Oper. Res., 270 (2018) 386–400.
[9] Gharehgozli, Yu, Zhang, and D. Koster, Polynomial time algorithms to minimize total travel time in a two-depot automated storage/retrieval

system, Transp. Sci., 51 (2017) 19–33.
[10] Qing, Zheng, and Yue, Path-planning of automated guided vehicle based on improved Dijkstra algorithm, 29th Chinese Control and Decision

Conference, (2017) 7138–7143.
[11] D. Cinar, J. António, Y. I. Topcu, and P. M. Pardalos, Scheduling the truckload operations in automated warehouses with alternative aisles for

pallets, Appl. Soft Comput. J., 52 (2017) 566–574.
[12] M. Bortolini, M. Faccio, E. Ferrari, M. Gamberi, and F. Pilati, Time and energy optimal unit-load assignment for automatic S / R warehouses,

Intern. J. Prod. Econ., 190 (2017) 133–143.
[13] S. S. Heragu, B. Mazacioglu, and K. Fuerst, Meta-heuristic algorithms for the order picking problem, Int. J. Ind. Eng., 1 (1994) 67–76.
[14] E. Atmaca and A. Ozturk, Defining order picking policy. A storage assignment model and a simulated annealing solution in AS / RS systems,

Appl. Math. Model., 37 (2013) 5069–5079.
[15] H. Nadir, B. Zaki, and S. Latéfa, Metaheuristic based control of a flow rack automated storage retrieval system, J. Intell. Manuf., 23 (2012)

1157–1166.
[16] Bian, Dai, Cao, and Chang, Research on path planning of stacker based on improved simulated annealing algorithm, Pap. Asia, 1 (2018) 106–

110.
[17] Yang, Miao, and Qin, Job scheduling optimization in multi-shuttle automated storage and retrieval system, Jisuanji Jicheng Zhizao

Xitong/Computer Integr. Manuf. Syst. CIMS, 19 (2013) 1626–1623.
[18] K. K. Lai and J. W. M. Chan, Developing a simulated annealing algorithm for the cutting stock problem, Comput. Ind. Eng., 32 (1997) 115–

127.
[19] Kirkpatrick, Gelatt, and Vecchi, Optimization by simulated annealing, Science, 220, (1983) 671–680.
[20] M. Bertolini, D. Mezzogori, and F. Zammori, Comparison of new metaheuristics, for the solution of an integrated jobs-maintenance scheduling

problem, 122 (2019) 118–136.

