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1. Introduction

In this paper, we begin by introducing a novel concept 
for formulating electromagnetic simulation problems that 
is based on the use of the Dipole Moment (DM) approach, 
which has several desirable features. First, it circumvents 
the need to deal with the singularity that is inherently 
encountered during the process of evaluating the matrix 
elements in the conventional Method of Moments (MoM) 
formulation based on the Green’s function approach. Second, 
it handles both dielectric and conducting materials, be they 
lossy or lossless, in a universal manner, without employing 
different starting points for the formulation. This enables us 
to handle inhomogeneous problems in a convenient manner 
using a single formulation. Third, it does not suffer from 
the so-called “low-frequency breakdown” problem in the 
conventional MoM formulation, which is presently handled 
by using special basis functions, such as the loop-star. 
Fourth, it enables us to hybridize with finite methods to 
solve multi-scale problems in a convenient manner. 

As is well known, with the advent of sub-micron 
technologies and increasing awareness of electromagnetic 
interference and compatibility (EMI/EMC) issues, designers 
are often interested in deriving full-wave solutions of 
complete systems. These take into account a wide variety 
of complex environments in which an antenna or a scatterer 
may be located. However, deriving full-wave solutions of 
such complex problems is challenging, especially when 
dealing with those that involve multi-scale geometries with 
very fine features. The well-established methods, such as the 
time-domain technique, FDTD, as well as the frequency-
domain methods, FEM and MoM, are often pushed to the 
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limits of their capabilities when attempting to simulate 
these types of problems. Our objective in this work is to 
present a new physics-based formulation, namely the Dipole 
Moment approach, which is well suited for addressing the 
above-mentioned problems.

Since the Dipole Moment formulation does not 
employ the Green’s functions, or the vector and scalar 
potentials, it helps to circumvent two of the key sources of 
difficulties in the conventional MoM formulation. These are 
the singularity and low-frequency problems. Specifically, 
we show that there are no singularities that we need to be 
concerned with in the Dipole Moment formulation. This 
therefore obviates the need for special techniques designed 
to deal with the integration of these singularities. Yet 
another salutary feature of the Dipole Moment approach 
is its ability to handle thin and lossy structures, regardless 
of whether they are metallic or dielectric types, or even 
combinations thereof. The Dipole Moment formulation can 
handle these types of objects with ease, without running 
into ill-conditioning problems. This is true even for very 
thin wire-like or surface-type structures, which lead to 
poorly-conditioned MoM matrices, when these problems 
are formulated in the conventional manner using the Green’s 
function. The technique is valid over the entire frequency 
range, from low to high, and, as mentioned before, it does 
not require us to switch to special basis functions to mitigate 
the so-called “low frequency” problem.

We should point out that the underlying concept of 
the Dipole Moment approach is similar to the well- known 
Discrete Dipole Approximation (DDA) [1], which is often 
used in physics. The Discrete Dipole Approximation 
defines a lattice described by the locations and distances 
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between an array of elements, and then builds and solves 
a matrix equation by accounting for the contributions on 
each element due to all of the others, as well as due to the 
incident field. Despite this similarity, there are two main 
differences between the Dipole Moment and Discrete 
Dipole Approximation approaches. First, in contrast to 
the Discrete Dipole Approximation, the Dipole Moment 
approach utilizes a spherical building block, for which the 
associated scattered fields are available in closed forms. 
Second, the Discrete Dipole Approximation solves a 
matrix equation for the weights of the polarizations, while 
the Dipole Moment solves for the weights of the dipole 
moments, instead. 

One consequence of these differences in the 
two formulations is that unlike the Discrete Dipole 
Approximation, the Dipole Moment approach can handle 
arbitrary dielectric and/or PEC objects, or combinations 
thereof. 

The paper also introduces a complementary CEM 
(computational electromagnetics) algorithm, namely 
RUFD (Recursive Update in Frequency Domain). This is 
a general-purpose frequency-domain technique, which still 
preserves the salutary features of the time-domain methods. 
Unlike other frequency-domain Maxwell solvers, Recursive 
Update in Frequency Domain neither relies upon iterative 
nor on inversion techniques. The algorithm also preserves 
the advantages of the parallelizability, which is a highly 
desirable attribute of computational electromagnetics 
solvers using the difference form of Maxwell’s equations. 
Since Recursive Update in Frequency Domain solves 
Maxwell’s equations in a recursive manner without using 
either iteration or inversion, the problems of dealing with ill-
conditioned matrices or constructing robust pre-conditioners 
are totally avoided. Also, as a frequency-domain solver, 
it can conveniently handle dispersive media, including 
plasmonics, although special treatments are needed when 
ε  and/or µ  are negative. 

It is well known that the conventional time-domain 
technique, namely the FDTD, demands extensive 
computational resources when solving either low-frequency 
problems or when dealing with dispersive media. Not only 
the MoM, but even FEM-based techniques, also suffer 
from the low-frequency problem. It is thus evident that a 
technique that can deal with the low-frequency problem 
without using pre-conditioners and/or special basis functions 
would be a very desirable addition to the computational 
electromagnetics repertoire. An enhanced version of the 
Recursive Update in Frequency Domain, namely νCFDTD, 
is also mentioned, and is designed to fill this gap in a 
seamless and numerically efficient manner.

Finally, the paper shows how the two methods can 
be blended to yield a hybrid approach, referred to herein as 
Dipole Moment–Recursive Update in Frequency Domain, 
to handle multi-scale problems in a convenient manner. 

2. Dipole Moment Approach

2.1 Introduction to Dipole.
Moment Method

Formulating integral equations via the use of Green’s 
function is a well-established and universally accepted 
method [2-4], which has been a staple for computational 
electromagnetics problems for many years. However, 
as alluded to earlier, MoM requires special treatment 
at low frequencies, and needs to deal with the singular 
and/or hyper-singular behaviors of the Green’s function. 
Additionally, both frequency-domain techniques, FEM 
and MoM, experience difficulties when handling multi-
scale geometries because the associated matrices for these 
problems can be ill-conditioned. In this section, we introduce 
a universal MoM-like, Dipole-Moment-based formulation 
[5] to obviate the disadvantages of the conventional 
frequency-domain techniques.

2.2 Dipole Moment Concept

To develop the Dipole Moment concept, we first 
consider our building block, a sphere, which is illuminated 
by a plane wave. The resulting scattered fields can be 
determined analytically because of its spherical symmetry. 
A PEC sphere of radius a, immersed in free space and 
illuminated by a plane wave 0

zjk z
xE E e−= , produces the 

following scattered electric far fields in the limit of 0ka → :
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The above Equation (1) is derived by using spherical 
wave functions [6]. Upon closer analysis, we can recognize 
the fact that Equation (1) resembles the far fields radiated 
from an x-directed electric dipole and a y-directed magnetic 
dipole, with moments given by 
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Along the same lines, the equivalent dipole moments 
for a lossless dielectric sphere of radius a, with a relative 
dielectric constant of rε  and a relative permeability of rµ
are found to be
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,	 (3a)
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Equation  (3) can be readily modified for a lossy 
medium by replacing the real valued rε  and rµ  with their 
complex permittivity, ε , and permeability, µ , respectively. 
It is important to note the fact that the magnetic dipole 
moment goes to zero for non-magnetic media with 1rµ =
, and similarly, the electric dipole moment goes to zero for 
magnetic media with 1rε = .

The dipole-moment representation of a scatterer 
therefore generates the same far fields as those scattered 
by the original objects.

However, what has not been realized in the past, and 
what can be proven analytically [7], is that for a sphere with 
a radius that is electrically small, the dipole-moment fields 
exactly match the original fields scattered by the sphere, 
all the way up to its surface. 

2.3 Dipole Moment Formulation

2.3.1 Formulation for .
PEC Objects

When formulating a problem that involves only PEC 
objects, the first step is to represent the original scatterer 

by using a collection of PEC spheres. Next, these spheres 
are replaced by their corresponding dipole moments 
(DMs) (see Figure 1a). We can also aggregate a set of the 
dipole moments, used to form a suitable set of macro-basis 
functions, as shown in Figure 1b.

The macro-basis-function (MBF) concept is illustrated 
in Figure  1b for the representative example of a PEC 
wire, where a set of dipole moments is grouped under 
the envelope function, ( )I z . The fields produced by a 
macro-basis function are expressed as a superposition of 
the fields radiated by the dipole moments located below 
the envelope, the weights of which correspond to the value 
of the envelope function at its location. It is possible to 
show that when z∆  approaches zero, the summation of 
the fields radiated by the dipole moments weighted by the 
envelope function converges to a closed-form expression 
for the fields, which is identical to that radiated by a wire 
with sinusoidal current distribution [8]. The parallel and 
perpendicular components of the electric fields radiated by 
the macro-basis function are expressed as
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where 1R , 2R , and r represent the distances between 
the top, bottom, and center of the wire and observation point, 
P. ρ  is the radial distance between the center of the wire 
and the observation point in a cylindrical coordinate system. 

Figure 1a. A PEC wire of length L and thickness 
2a , discretized with equivalent Dipole Moments.

Figure 1b. A representative scheme for the computa-
tion of the fields radiated by a macro-basis function.
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The concept of triangular macro-basis functions, 
designed for wires, has also been extended to rooftop types 
of basis functions that are suitable for discretizing planar 
or curved surfaces [9]. The fields radiated by the spheres 
(dipole moments) lying underneath the rooftop can again 
be expressed in closed form.

We next evaluate the electric fields generated by these 
macro-basis functions, and compute the reactions between 
them. We use the same testing functions as the basis functions 
(Galerkin’s method) to generate the elements of the MoM 
matrix. The right-hand side of this matrix is obtained by 
applying the boundary condition

	 0tan tan
inc scatE E+ = 	 (5)

on the total tangential E field by testing it with the same 
functions as those used to generate the matrix elements. For 
an incident E field polarized along z, the matrix equation 
for a thin PEC rod oriented along z, modeled by using N 
macro-basis functions, has the form
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where n
zIl  represents the effective dipole moment 

of the nth macro-basis function directed along z, n
z incE −  

represents the tangential incident field component at the 
location of the nth macro-basis function, and mn

zE  represents 
the scattered field component along z on the mth macro-
basis function by the nth macro-basis function.

The matrix Equation (6) is solved for the Il s, the 
coefficient of the macro-basis functions, to construct the 
desired solution for the induced current.

2.3.2 Formulation for .
Dielectric Objects

The first step in the formulation of the dielectric 
scattering problem essentially follows the case of PEC 
objects, in that we again represent the original scatterer 
as a collection of small-size dielectric spheres. As before, 
we go on to replace these spheres with their corresponding 
dipole moments, and use them to form a set of macro-basis 
functions. At this point, we differ from the PEC case and 
generate the MoM matrix by imposing a boundary condition, 
but apply a consistency condition, Equation  (7), on the 
tangential E field, which reads

	 ( )( ) ( )0 1r inc scatE E F I lε ε − + = .	 (7) 

The consistency factor, F, can be derived by 
considering a single sphere located at ( )0 0 0, ,x y z , and 
matching the polarization currents through Equation (7), 
where incE  represents the incident electric field at 
( )0 0 0, ,x y z , and the electric dipole moment is defined in 
Equation (3a).

On the surface of the sphere, the fields radiated by 
the electric dipole moment are given by

	 2 3
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= − + +  
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As 0ka → , Equation (8a) reduces to
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We next substitute Equation  (8b) and use the 
expression for Il  from Equation  (3a) in Equation  (7). 
Simplifying the resulting expression, we obtain

	 3
3

4
jF
aπω

= − .	 (9)

In the above representation, we have matched the 
polarization currents, because the quantities we are dealing 
with are volume distributed. It is important to note that the 
scattered field is calculated at the surface of the sphere and 
is assumed to be the same as it is at the center, since the 
sphere is small. 

2.4 Numerical Results

2.4.1 PEC Objects

For the first example, we considered a PEC sphere 
with a diameter of 0 60λ  at 10 GHz. It was illuminated 
by a plane wave, incident from x and polarized along z, 
as shown in Figure 2a. Figure 2b compares the scattered 

zE  fields at 0 46x λ= , calculated by using the Dipole 
Moment approach as described in Section 2.3.1, with those 
obtained from Mie series [6], for different frequencies. 
The comparison, which was seen to be good, served to 
demonstrate that the Dipole Moment approach yields the 
scattered fields accurately not just in the far field – as is 
normally stated in textbooks – but all the way up to the 
surface of the scatterer.
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2.4.2.Dielectric.Scatterers

To illustrate the universal nature of the Dipole Moment 
formulation, we next considered a square-shaped dielectric 
plate with 6rε = , which was 0 40λ  on the side, and 
with a thickness of 0 400λ . The plate was illuminated by 
a plane wave traveling along the negative z direction, as 
shown in Figure 3a. The backscattered fi eld, calculated by 
using the Dipole Moment approach described in Section 
2.3.2, is presented in Figure 3b, which also compares these 
results with the corresponding results from a commercial 
MoM package. It should be pointed out that experience 
shows that when the conducting material in the thin plate 
is replaced by a dielectric, which may in general be lossy, 
many of the computational electromagnetics codes – both 
MoM and fi nite types – have diffi culty in handling the 
problem. However, the Dipole Moment approach has no 
diffi culty in solving this problem, and it does not employ 
approximations such as the impedance boundary condition, 
which may not be accurate for the problem at hand.

2.5.Performance.Enhancement

The method described in Section 2.3, although it is 
accurate and captures all the physics, is not the most effi cient 
from a numerical point of view. This is because the number 
of spheres used to represent a three-dimensional object can 
grow very rapidly if the diameter of the sphere is small, 
as is often the case for thin rods and sheets. For instance, 
for a thin-wire scatterer, the diameters of the spheres used 
to represent it are the same as that of the wire. Hence, for 
the example shown in Figure 2, the number of constituent 
spheres needed to form the plate can be quite large, even 
when the length of the plate is relatively small. However, 
as pointed out earlier, the number of unknowns can be 
signifi cantly reduced and made comparable to that used in the 
conventional MoM formulation via the use of macro-basis 
functions. We can also further improve the computational 

effi ciency of the method by using techniques such as the 
Characteristic Basis Function Method (CBFM) [10], the Fast 
Matrix Generation algorithm [11], or combinations thereof. 

2.6.Observations

In this section, we have presented a novel physics-
based approach for formulating MoM problems, which is 
based on the use of dipole moments (DMs), as opposed 
to the conventional Green’s functions. The absence of the 
Green’s function, as well as the vector and scalar potentials, 
helps to eliminate two of the key sources of diffi culties in the 
conventional MoM formulation, namely the singularity and 
low-frequency problems. Specifi cally, we have argued that 
there are no singularities that we need to be concerned with 
in the Dipole Moment formulation. Hence, this obviates the 
need for special techniques for integrating these singularities. 

Yet another salutary feature of the Dipole Moment 
approach is its ability to handle thin and lossy structures, 
whether they be metallic, dielectric-type, or even 
combinations thereof. We have found that the Dipole 
Moment formulation can handle these types of objects with 
ease, without running into ill-conditioning problems. This is 
true even for very thin wire-like or surface-type structures, 
which lead to ill-conditioned MoM matrices when these 
problems are formulated in the conventional manner. 

The technique is valid over the entire frequency 
range, from low to high, and it does not require the use of 
loop-star types of basis functions in order to mitigate the 
low-frequency problem. The Dipole Moment formulation 
is universal, can be used for both PEC and dielectric 
objects, and requires only a relatively minor change in the 
formulation when we go from PEC to dielectric scatterers. 
The approach is also well suited for hybridization with 
fi nite methods, such as the FEM and the FDTD. Such an 
embellishment renders it suitable for conveniently and 
effi ciently handling multi-scale problems. 

Figure 2a. A PEC sphere.
Figure 2b. A comparison of the amplitudes of the 

backscattered E fi elds using the Dipole Moment and 
Mie series approaches.
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3..Recursive.Update.in.
Frequency.Domain

3.1.Introduction

The FDTD time-domain technique is a versatile 
algorithm, and handles Cartesian geometries with great 
ease. It has also been generalized to deal with arbitrarily 
shaped objects by using the conformal FDTD algorithm. 
However, as is well known, the FDTD algorithm requires 
long running times when an accurate solution is desired 
at low frequencies. The method is also not best suited for 
dealing with dispersive media, unless a convenient model 
for the same can be found to make it tractable in the time 
domain. Furthermore, the convergence of the FDTD is slow 
when analyzing high-Q structures, since the time signature 
lingers on for a very long period and, hence, requires us 
to use a large number of time steps to derive an accurate 
solution. In this section, we fi rst introduce a novel method, 
called RUFD (Recursive Algorithm Frequency Domain). 
This is a general-purpose frequency-domain technique, 
which still preserves the salutary features of the time-domain 
methods, but which neither relies upon iterative schemes nor 
on inversion techniques. The algorithm also preserves the 
advantages of parallelizability,  which is a highly desirable 
attribute of computational electromagnetics solvers  such 
as the FDTD. The basic concept of the Recursive Update 
in Frequency Domain method – which was fi rst introduced 
by Pfl aum et al. in a recent publication [12] – is modifi ed 
herein to render it considerably more numerically effi cient 
than the original approach.

3.2.Recursive.Update.in
Frequency.Domain.Algorithm

In common with the FDTD, the Recursive Update in 
Frequency Domain algorithm begins by using the difference 

form of Maxwell’s equations to discretize the equations. It 
next utilizes a leap-frog algorithm, also similar to the FDTD, 
as proposed by Yee [13]. Consequently, Recursive Update 
in Frequency Domain may be viewed as the frequency-
domain counterpart of the FDTD. This is because it solves 
the computational electromagnetics problem by using a 
recursive updating procedure, rather than via a matrix 
solution (based on inversion or iteration) as commonly 
employed by other frequency-domain methods. As a 
frequency-domain solver, Recursive Update in Frequency 
Domain handles dispersive media with relative ease, 
although it does require special treatment if the material 
properties ( ε  and/or µ ) are negative. The formulation 
is based on modifying the original Maxwell’s equations 
into a form that is convenient for recursive updating. 
These modifi ed equations, originally introduced in [12], 
are given by

 
1ˆ ˆj n n

h he E Eωτ

τ

+ −

 1/2 /2 11 ˆ ˆn j n j
h h h EH e E e Sωτ ωτσ

ε ε
+ += ∇ × − + , (10a)

 
/2 1/2 /2 1/2ˆ ˆj n j n

h he H e Hωτ ωτ

τ

+ − −−

 1/2 /21 ˆ ˆn n j
h h h HE H e Sωτσ

µ µ

∗
+= ∇ × − + , (10b)

where τ  denotes the discrete iteration step, h is the 
mesh size, ˆ n

hE  is the complex weight of the approximated 
electric-field vector at the point nτ , 1/2ˆ n

hH +  is the 

Figure 3a. The simulated dielectric plate. Figure 3b. A comparison of the amplitudes of the back-
scattered E fi elds for Dipole Moment and FEKO.
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corresponding weight of the magnetic-fi eld vector at the 
point ( )1 2n τ+ , and HS  and ES  are the discrete source 
terms associated with the excitation. 

If we let τ  tend to zero in Equation (10), assume 
that 1ˆ ˆn n

h hE E+ ≈  and that 1/2 1/2ˆ ˆn n
h hH H+ −≈  in the limit, 

and use the fact that
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ωτ

τ
ω
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we can show that
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=

are the solutions of Equation (12):

 , 0 , 0 , 0
1ˆ ˆ ˆ

h h h h Ej E H E Sτ τ τ
σω

ε ε= = == ∇ × − + , (12a)

 
 

, 0 , 0 , 0
1ˆ ˆ ˆ

h h h h Hj H E H Sτ τ τ
σω

µ ε

∗

= = == − ∇ × − + , (12b)

The stability condition to be satisfi ed for the above recur-
sive scheme has been shown [12] to be

 
8h

τ εµ
≤  . (13a)

However, we have recently shown that we can relax 
the above condition to read

 
3h

τ εµ
≤ . (13b)

Before closing this section, we mention that the 
Recursive Update in Frequency Domain can be formulated 
to work with either the scattered or total fi eld formulations, 
providing it more fl exibility than is available in the time-
domain methods. It can also use either the Mur [14] or 
the PML boundary condition [15] for mesh truncation, 
depending on the accuracy desired. 

Figure 4a. The simulated PEC slab.
Figure 4b. A comparison of the amplitudes 

of the total zE  using different methods.

Figure 5. A dielectric cuboid.

RUFD FEKO
Simulation time [s] 19.63 20.5

Table 1. The Recursive Update in Frequency 
Domain simulation time compared with the 

commercial EM solver, FEKO.
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3.3..Numerical.Results

3.3.1.PEC.Scattering.Problem

For the fi rst example, we considered a PEC plate as 
shown in Figure 4a. Since the object was PEC, we had the 
fl exibility in Recursive Update in Frequency Domain of 
using either the total or the scattered fi eld formulation. The 
problem was solved by using both of these approaches, and 
the results are compared with FEKO in Figure 4b. 

Even though the Recursive Update in Frequency 
Domain algorithm and the commercial MoM code took 
almost the same time for this PEC object, the proposed 
Recursive Update in Frequency Domain algorithm, which 

is a fi nite method, can handle fi nite conductivities and 
inhomogeneous objects much more numerically effi ciently 
and accurately than can the MoM code, which can become 
numerically unstable. As an example, we mention the 
case of a lossless dielectric cuboid show in Figure 5. The 
commercial MoM code couldn’t reach a convergent iterative 
solution, while the Recursive Update in Frequency Domain 
was able to  relatively easily handle it.

Turning next to fi nite methods, the accuracy of the 
Recursive Update in Frequency Domain results was superior 
to the commercial Finite-Element Method (FEM), even 
for the lossless case. As an example, we considered the 
lossless dielectric slab shown in Figure 6a. The problem was 
solved by using Recursive Update in Frequency Domain, 
and the results are compared with a commercial FEM 
code in Figure 6b. We mention that the case of lossy thin 

Figure 6a. The simulated dielectric slab.

Figure 6b. A comparison of the amplitudes of the backscat-
tered zE  using Recursive Update in Frequency Domain 

(RUFD) and FEKO.

Figure 7a. The simulated dielectric cube.

Figure 7b. A comparison of the amplitudes of the  back-
scattered zE  using Recursive Update in Frequency 

Domain (RUFD) and FEKO.
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dielectrics is even more difficult to handle using existing 
finite methods, e.g., FEM.

3.3.2 Dielectric Scattering 
Problem

For the next example, we considered a dielectric 
cube, shown in Figure 7a. For this case, it was necessary 
for the Recursive Update in Frequency Domain to use 
the total-field formulation, since no convenient boundary 
condition is available for dielectric problems. The problem 
was solved in this manner, and the results are compared 
with FEKO in Figure 7b.

3.3.3 Scattering Problem 
Comprising a Combination of.

PEC and Dielectric

Numerical results for the fields scattered by a dielectric 
( 6rε = ) layered conducting plate, 0λ  on a side, under 
normal plane-wave illumination, are presented in Figures 8 
and 9. The magnitude and phase variations of the scattered 
dominant component were computed varying y (expressed in 
cells) from 1 to 51. Perfectly matched layer (PML) boundary 
conditions were implemented in the code to terminate the 
computational domain.

The results were compared against existing 
commercial codes implementing different numerical 
techniques: FEKO (MoM), HFSS (FEM), and CST (Finite 
Integration Technique – FIT). The discretization for all EM 
solvers was kept around 0 20λ , while all the simulations 
were carried out using 4 GB RAM and a 3.0 GHz Intel 
Core 2 Duo processor. The performance benchmarks in 
terms of memory requirements and running times are 
displayed in Table 2.

The Recursive Update in Frequency Domain algorithm 
results were seen to be faster and less memory-demanding 
when compared to several different commercial solvers, 
but without a compromise in the accuracy. Furthermore, 
the Recursive Update in Frequency Domain almost always 
yielded more stable and accurate results than the other 
solvers. 

3.3.4 Dipole Antenna

For the last example, we considered a radiation-type 
problem, as opposed to the scattering problems we have 

discussed thus far. We analyzed a dipole antenna, shown 
in Figure  10a. Since this was a radiation-type problem, 
it was natural to use the total-field formulation in the 
context of the Recursive Update in Frequency Domain. 
The problem was solved in this manner, and the results 
are compared with FEKO in Figure 10b. The Recursive 
Update in Frequency Domain results were found to be the 
more accurate of the two.

3.4 Observations

As alluded to in Section 3.2, the Recursive Update in 
Frequency Domain algorithm is highly parallelizable. This 
is because unlike the FEM, it utilizes the difference form 
of Maxwell’s equations. Since the Recursive Update in 
Frequency Domain uses Yee’s cell, its meshing requirements 
are also relatively simple. Moreover, since the Recursive 
Update in Frequency Domain solves Maxwell’s equations 
in a recursive manner, without using either iteration or 
inversion, the problems of dealing with ill-conditioned 
matrices or constructing robust pre-conditioners are totally 
avoided. As a frequency-domain solver, it can also handle 
dispersive media, including plasmonics, relatively easily. 
To further enhance its performance, we can hybridize it 
with the Dipole Moment Approach, as shown in the next 
section. We can also use multi-grid methods or frequency-
interpolation schemes to generate the initial values of the 
fields in the entire computational domain, enabling us to 
speed up the convergence. 

4. The Hybrid DM/RUFD.
Technique for Multi-Scale 

Problems

Direct solution of multi-scale problems by 
means of conventional computational electromagnetics 
methods – be they FEM, FDTD, or MoM – is highly 
challenging, even with the availability of modern 
supercomputers. This is because of the large number 
of degrees of freedom introduced when attempting to 
accurately describe objects with fine features, sharing the 
computational domain with objects that are large compared 
to the operating wavelength. 

Dealing with multi-scale objects often forces us 
to compromise the accuracy (relaxing the numerical 
discretization process when attempting to capture the small-
scale features) in order to cope with the limited available 
resources in terms of CPU memory and time. In this section, 
we introduce a scheme that combines the Recursive Update 

RUFD HFSS FEKO CST

Memory requirements (peak) [MB] 301 447.4 860.5 ph: 449.51
vir: 722.84

Simulation time [s] 79.2 132 377.49 215

Table 2. The Recursive Update 
in Frequency Domain simulation 
time and memory requirements 
compared with commercial EM 
solvers HFSS, FEKO, and CST.
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in Frequency Domain and the Dipole Moment methods 
to solve multi-scale problems in a numerically efficient 
manner [16]. Our objective is to handle objects with fine 
features with the Dipole Moment approach, and not directly 
with the Recursive Update in Frequency Domain, which 
would require us to use a fine mesh (see Figure 11), at the 
cost of increased computational burden. The hybrid Dipole 
Moment/Recursive Update in Frequency Domain (DM/
RUFD) method for addressing this type of problem was 
described in detail in [17]; we only highlight the main steps 
here and present a few illustrative examples. 

The main advantage of the proposed hybrid method 
is that it does not require a local mesh refinement for 
objects with fine features (Figure 12). In fact, the region 
surrounding the small/thin structure is extracted from the 

original domain, and two different numerical techniques are 
used for dealing with the two problems. The coupling of the 
object with the remaining part of the computational domain 
is achieved by using the fields radiated by the previously 
extracted region. As a result, the presented method does 
not place a heavy burden on the CPU time and memory, as 
do the conventional approaches when dealing with multi-
scale problems. The Dipole Moment/Recursive Update in 
Frequency Domain method introduced can be implemented 
either in an iterative or in a self-consistent manner.

The proposed method is especially useful for the 
modeling of wire antennas located in the vicinity of 
inhomogeneous structures, as well as for simulating 
interconnection structures in integrated circuits, which 
typically have fine features.

Figure 8a. The problem geometry.
Figure 8b. The magnitude variation of the scattered zE  

computed for varying y along all the computational domain 
at  0x y= = . Recursive Update in Frequency Domain 

results compared with FEKO, HFSS, and CST

Figure 9a. The problem geometry.

Figure 9b. The phase variation of the scattered zE  computed 
for varying y along all the computational domain (from cell 
1 to cell 51) at 0x y= = . Recursive Update in Frequency 
Domain and FEKO, HFSS, and CST results were compared.
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4.1..Dipole.Moment/Recursive.
Update.in.Frequency

Domain.Hybrid.Scheme:.
Iterative.Approach

Both the hybrid and self-consistent implementations 
(the latter to be described in the following section) begin by 
extracting from the Recursive Update in Frequency Domain 
technique’s domain, Σ , a region ∂Σ  surrounding the small 
object (for a two-dimensional representation of the hybrid 
problem, see Figure 13).

Let us assume that two objects, a large PEC plate and a 
PEC wire that is small compared to the operating wavelength, 
are located in the Recursive Update in Frequency Domain 
computational domain, which is illuminated by a plane-wave 
source. The hybrid-iteration algorithm begins by solving 
the large problem in the absence of the thin structure. 

The fi elds scattered by the small structure are next 
derived by using a source excitation comprising of a 
combination of the original plane wave and the fi elds 
scattered by the large structure. The small object, which 
may be PEC, dielectric, or a combination thereof, is 
treated by using the Dipole Moment approach described in 
Section 2.3, and a matrix system is constructed. The right-

hand side of this equation is the fi eld incident upon each 
of the constitutive dipole moments. It is represented by the 
superposition of both the original plane-wave source and 
the fi eld scattered by the larger structure. These fi elds are 
evaluated at the boundary of the extracted region, ∂Σ  and are 
interpolated to obtain the N incident fi elds at each sphere’s 
location (see Figure 13a for the example of a wire going 
across four Recursive Update in Frequency Domain cells).

Once the matrix system for the weight coeffi cients 
of the dipole moments has been solved, we can derive 
the scattered fi eld (fi rst iteration) inside the domain by 
superposing all dipole-moment contributions and the 
previously derived fi elds scattered by the large object. The 
iteration is subsequently continued by following the same 
steps as above, except for the fact that at the kth step, the 
incident plane wave is replaced by the scattered fi eld derived 
in the ( )1k − th iteration. The process is terminated when 
numerical convergence has been achieved, i.e., when the 
difference between the results obtained at the kth and ( )1k −
th iteration steps is below a chosen threshold. Figure 14 
summarizes the basic steps for the scheme in a fl owchart.

4.2..Dipole.Moment/Recursive.

Figure 11. (a) The conventional 
solution of a multi-scale problem 

comprising a small object that 
shares the domain with a large 

object, and (b) the Dipole Moment/
Recursive Update in Frequency 

Domain concept.

Figure 10a. The simulated dipole antenna

Figure 10b. The frequency variation of the input 
reactance using the Recursive Update in Fre-

quency Domain (RUFD) and FEKO.
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Update in Frequency Domain 
Hybrid Scheme: .

Self-Consistent Approach

The self-consistent implementation also begins 
by extracting a region ∂Σ  surrounding the small object 
(as shown in Figure 13a) from the Recursive Update in 
Frequency Domain technique’s domain. However, this 
time, the entire problem is solved in a single step by directly 
inverting a composite matrix equation, which is constructed 
as follows. First, the impedance matrix, Z, for the small 
problem is set up independently of the rest by using the 
Dipole-Moment approach. The right-hand-side vector for 
plane-wave incidence is computed and stored (we will refer 
to it as to 1rhs ). Next, the large problem is solved with the 
Recursive Update in Frequency Domain in the absence of 
the thin structure for the original plane-wave source. The 
scattered fields are computed and interpolated at the small 
object’s location, getting a new excitation vector for the 
Dipole Moment system ( 2rhs ). 

We compute the field radiated by the current 

distribution on the small object at the location of the large 
object. We solve it by imposing the boundary condition on 
its surface, using the fields produced by the small object as 
the incident field on the large object. 

The fields scattered by the large object are computed 
and interpolated at the small object’s region, getting 3rhs . 
The matrix equation for the small object is set as follows:

	 1 2 3x rhs rhs xrhs= − − −Z ,	 (14)

which indicates that the amplitude of the third term 
on the right-hand side is still to be determined. We obtain 
the above by using

	 ( ) ( )3 1 2rhs x rhs rhs+ = − +Z ,	 (15)

and solve the matrix equation for the weights of the 

Figure 13a. A two-dimensional representation of 
a conventional hybrid problem in the Recursive 

Update in Frequency Domain technique’s domain.

Figure 13b. 
A small wire, 
described by 

equivalent Di-
pole Moments, 
which extends 

through four Re-
cursive Update 
in Frequency 
Domain cells.

Figure 12. (a) A conventional 
volume discretization when 

dealing with a small structure, 
(b) the extraction of the region 
surrounding the small object in 
the Dipole Moment/Recursive 
Update in Frequency Domain, 

and (c) The discretization of the 
object in the extracted region 

with Dipole Moment.
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currents x . The final scattered fields are calculated as a 
weighted superposition of the three contributions as

	 , ,1 ,2 ,3s f s s sE E E xE= + + .	 (16)

A flowchart for the steps followed in the self-consistent 
scheme is displayed in Figure 15. Since the procedure is 
non-iterative, its running time is more favorable than that 
of the iterative approach.

While the above scheme works well when only PEC 
structures are involved as large objects, we need to modify 
it slightly when the large object is a combination of PEC 
and dielectric materials. For the details of the modified 
procedure, the reader is referred to [14].

4.3 Numerical results

In this section, some numerical results are presented 
for the two different hybrid techniques. The numerical 
efficiency over existing methods, both in terms of running 

times and memory requirements, is demonstrated via 
several examples.

4.3.1 PEC Sheet in the Presence 
of a 3 20λ  Conducting Wire

Numerical results for the fields scattered by a 
conducting plate, 0 2λ  on a side, under normal plane-wave 
illumination in the presence of a PEC wire, the length of 
which is 3 20λ , are presented in Figures 16 and 17. The 

Figure 14. The flowchart for the iterative 
hybrid Dipole Moment/Recursive Update in 

Frequency Domain scheme.

Figure 15. The flowchart for the self-consistent 
Dipole Moment/Recursive Update in Frequency 

Domain hybrid scheme.

Figure 16a. The problem geometry.

Figure 16b. The magnitude variations of scattered zE  
computed for varying y along all the computational domain 
(from cell 1 to cell 51) at 0x y= = . Recursive Update in 

Frequency Domain and FEKO results were compared.
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magnitude and phase variations of the scattered dominant 
component were computed for varying y (expressed in cells) 
from 1 to 51. The PEC sheet was located at cell 27y = , 
while the wire was located at a distance of 0.125λ  from 
the sheet, i.e., 2.5 cells away from the sheet along y. A 
plane-wave source was incident along y, with its E-field 
vector polarized along z. Absorbing boundary conditions 
(ABCs) were used to terminate the computational domain 
for this simulation. The results in the absence and in the 
presence of the wire were compared against commercial 
MoM software results. Good agreement with conventional 
MoM was achieved in this simulation. 

4.3.2 PEC Sheet in the Presence 
of a 2λ  Conducting Wire

We next investigated the performance of the hybrid 
Dipole Moment/Recursive Update in Frequency Domain 
iterative and self-consistent approaches, both in terms of 
runtime and accuracy. This was done for the problem of 
scattering by a PEC sheet that was 1λ  on a side, and had a 

2λ  conducting wire located in close proximity to the sheet. 
An zE  polarized plane wave was normally incident on the 
structure. The relative distance between the sheet and the 
wire was the same as in the previous example (Figure 17a). 
The two hybrid schemes are compared in terms of accuracy 
against existing commercial codes implementing different 
numerical techniques – FEKO (MoM), HFSS (FEM), and 
CST (FIT) – in Figures 18 and 19. The efficiency of the 
two hybrid methods is compared in terms of running time 
and memory requirements in Table 3. The cell size was 
kept as 0 20λ , and the PML boundary conditions were 
implemented for simulating both hybrid Dipole Moment/
Recursive Update in Frequency Domain cases. All the 

simulations were carried out on a personal computer with 
4 GB RAM and a 3.0 GHz Intel Core 2 Duo processor. 

We noted from Figures 18 and 19 that the iterative 
Dipole Moment/Recursive Update in Frequency Domain 
hybrid approach provided better performance in terms of 
accuracy. It was apparent from Table 3 that the self-consistent 
approach was more efficient. The memory requirements 
were comparable for the two options.

4.3.3 Dielectric-Coated PEC Sheet 
in the Presence of a 2λ  PEC Wire

In the following test example, we considered a 
PEC plate that was coated with 10λ -thick dielectric
( 6rε = ), and which shared the computational domain 
with a 2λ -long conducting wire. These objects were 
illuminated by a plane wave that propagated along the y 
axis, with its E-field vector polarized along z (Figure 20). 
The total field distribution computed by the present approach 
is compared against commercial codes implementing the 
MoM (FEKO), the FEM (HFSS), and the FIT (CST) in 
Figure 21. Note that satisfactory agreement was achieved 
with HFSS and CST, both in amplitude and in phase (see 
Figure 21), while the commercial MoM results were not 
as accurate for this example. 

The performance in terms of running time and memory 
requirements are displayed in Table 4. We also noted from 

Figure 17a. The problem geometry.

Figure 17b. The phase variations of scattered zE  com-
puted for varying y along all the computational domain 
(from cell 1 to cell 51) at 0x y= = . Recursive Update 

in Frequency Domain and FEKO results were compared.

Hybrid DM/RUFD
Self Consistent

Hybrid DM/RUFD
Iterative

Memory requirements 
(peak) [MB] 483 481

Simulation time [s] 172.3 601

Table 3. The hybrid Dipole Moment/
Recursive Update in Frequency Domain 
iterative and self-consistent implementa-

tions compared in terms of simulation 
time and memory requirments 

(the cell size was 20λ , and PML 
boundary conditions were used).
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this table that the Hybrid Dipole Moment/Recursive Update 
in Frequency Domain code performed better than either 
CST or HFSS, both in terms of memory and running time. 
Although the simulation time for the Recursive Update in 
Frequency Domain was comparable to that of the MoM 
code, the latter did not generate accurate results for this case, 
as noted earlier. We believe that the inaccuracies stemmed 
from the difficulty with the MoM technique when dealing 
with thin, inhomogeneous structures. As we also saw from 
Table 4, the finite methods paid a toll in terms of increased 
memory and running times, owing to the use of fine meshes 
when dealing with multi-scale problems. 

4.4. Enhancements of the Dipole 
Moment and Recursive Update in 
Frequency Domain Techniques

I
•	 Applies novel techniques to deal with problems 

at low frequencies.

•	 Enhances the convergence of the recursive update 
scheme by applying signal-processing techniques to 
the time signature.

•	 Uses the above signal-processing techniques and derives 

the solution for multiple frequencies in a single run, 
enhancing the computational efficiency of the original 
Recursive Update in Frequency Domain algorithm quite 
significantly in the process. 

•	 Handles dispersive media, as well as those with negative 
ε  and µ  as long as the material can be represented by 
using either Debye or Drude models.

To illustrate the numerical efficiency of the νCFDTD 
relative to the Recursive Update in Frequency Domain, 
we considered the waveguide filter shown in Figure 22, 
which is a high-Q structure. Table 5 compares the number 
of iterations required to solve the waveguide filter shown in 
Figure 22. The time advantage of νCFDTD over Recursive 
Update in Frequency Domain was evident.

The results of these embellishments to the Dipole 
Moment and Recursive Update in Frequency Domain 
algorithms will be reported in future publications. 

Figure 18a. The problem geometry.

Figure 18b. The magnitude variation of scat-
tered zE  computed for varying y along all the 
computational domain (from cell 1 to cell 51). 

Figure 19a. The problem geometry.

Figure 19b. The phase variation of scattered zE : the 
results of the hybrid Dipole Moment/Recursive Update in 
Frequency Domain iterative and self-consistent were com-

pared with commercial MoM, FEM, and FIT solvers.
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5. Conclusion

In this work, we have introduced some novel 
concepts in computational electromagnetics (CEM) that 
deviate from the conventional MoM, both in terms of 
their formulation as well as their solution of radiation 
and scattering problems. We have shown how MoM-type 
problems can be formulated by using Dipole Moments, 
without the use of Green’s functions. We have argued that 
the Dipole Moment formulation offers us a way to formulate 
the computational electromagnetics problems involving 
PEC as well as dielectric objects in a uniform manner. The 
Dipole Moment formulation also mitigates the so-called 
low-frequency problem, and is well suited for handling 
multi-scale problems.

The Recursive Update in Frequency Domain approach, 
which has the versatility of the FDTD method, may be 
viewed as the frequency-domain version of the FDTD 
algorithm. However, unlike the FEM, it does not rely on the 
solution of a matrix equation, either directly or iteratively, 
but generates the solution via a recursive procedure, instead. 
We have shown how the Dipole Moment and Recursive 

Update in Frequency Domain algorithms may be combined 
to  accurately and efficiently solve multi-scale problems. 
The performance of the resulting hybrid scheme has been 
found to be superior to those of some of the well-known 
and widely used computational electromagnetics codes, 
both in terms of accuracy and computational efficiency. 
Enhancements to the basic Dipole Moment and Recursive 
Update in Frequency Domain algorithms – such as for 
instance the νCFDTD and its hybridization with Dipole 
Moment – which would further enhance their performances 
are currently being actively investigated. The preliminary 
outlook appears to be quite promising, indeed.

6. References

Hybrid DM/
RUFD Self Con-

sistent
FEKO CST HFSS

Memory require-
ments (peak) [MB] 348 690.6 ph: 1590

vir: 1910 1680

Simulation time [s] 260 284.12 1565 1861

Table 4. The performance of the hybrid 
and self-consistent Dipole Moment/

Recursive Update in Frequency Domain 
implementation, compared with FEKO, 
CST, and HFSS in terms of the simula-

tion time and memory requirements (the 
discretization was 20λ ).

Figure 20a. A two-dimensional cut of the 
problem geometry.

Figure 20b. A three-dimensional repre-
sentation of the problem geometry

RUFD νCFDTD

Required Number of 
Iterations 37500 > 6000

Table 5. The performance of νCFDTD in terms of 
the required number of iterations compared with the 

Recursive Update in Frequency Domain.
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