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Abstract

The severity of symptoms as well as efficacy of antidepressants in major depressive disor-

der (MDD) is modified by single nucleotide polymorphisms (SNPs) in different genes,

which may contribute in an additive or synergistic fashion. We aimed to investigate

depression severity in participants with MDD under treatment with antidepressants in

relation to the combinatory effect of selected genetic variants combined using a genetic

risk score (GRS). The sample included 150 MDD patients on regular AD therapy from the

population-based Swiss PsyCoLaus cohort. We investigated 44 SNPs previously associ-

ated with antidepressant response by ranking them with regard to their association to the

Center for Epidemiologic Studies Short Depression Scale (CES-D) score using random for-

est. The three top scoring SNPs (rs12248560, rs878567, rs17710780) were subsequently

combined into an unweighted GRS, which was included in linear and logistic regression

models using the CES-D score, occurrence of a major depressive episode (MDE) during

follow-up and regular antidepressant treatment during the 6 months preceding follow-up

assessment as outcomes. The GRS was associated with MDE occurrence (p = .02) and ln

CES-D score (p = .001). The HTR1A rs878567 variant was associated with ln CES-D after

adjustment for demographic and clinical variables [p = .02, lower scores for minor allele

(G) carriers]. Additionally, rs12248560 (CYP2C19) CC homozygotes showed a six-fold

higher likelihood of regular AD therapy at follow-up compared to minor allele homozy-

gotes [TT; ultrarapid metabolizers (p = .03)]. Our study suggests that the cumulative con-

sideration of pharmacogenetic risk variants more reliably reflects the impact of the genetic

background on depression severity than individual SNPs.
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1 | INTRODUCTION

Major Depressive Disorder (MDD) is a complex and common disease

with a mean lifetime prevalence of 11% across surveys (Kessler et al.,

2015). European prevalence ranges from 2.9% in Romania to 20.4% in

France (Kessler et al., 2015). Treatment and disease course vary

strongly across individuals. MDD is considered to be the result of

both environmental (Kessler et al., 2015; Wang, 2005) and genetic
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(Nivard et al., 2015) factors, with a heritability estimated at 40%

(Nivard et al., 2015). The clinical and etiological heterogeneity compli-

cates the prediction of therapy success and the optimal choice of the

individual therapy approach, which is essentially needed for MDD.

The primary goals of maintenance therapy are to prevent future

episodes of depression, thereby avoiding the development of chronic-

ity, along with suicide prevention. The most common medications

used include for example, selective serotonin reuptake inhibitors

(SSRIs), tricyclic antidepressants (TCAs), serotonin norepinephrine

reuptake inhibitors (SNRIs) or monoamine oxidase inhibitors (MAOIs)

(Bauer et al., 2015). Only one-third of patients achieve remission after

an initial treatment (Rush et al., 2006) and genetic variation has been

suggested to partly explain this variability in response (Ising

et al., 2009).

Several genetic variants influence the metabolism and pharmaco-

dynamics of antidepressant (AD) treatment. These variants include

polymorphisms in Cytochrome P450 genes, such as CYP2D6 and

CYP2C19, which have been shown to be able to alter the plasma con-

centration of TCAs (Grasmader et al., 2004; Hicks et al., 2013) and

SSRIs (Grasmader et al., 2004; Hicks et al., 2015) in patients with

depression. Furthermore, polymorphisms in transporter genes [e.-

g., ATP binding cassette subfamily B member 1 (ABCB1)] and in sero-

tonin receptor genes, such as 5-hydroxytryptamine receptor 1A

(HTR1A), seem as well to affect AD response (O'Leary, O'Brien,

O'Connor, & Cryan, 2014). Recently, Genome Wide Association Stud-

ies (GWAS) have detected numerous Single Nucleotide Polymor-

phisms (SNPs) that modify therapy response in MDD as measured by

the Hamilton Depression Rating Scale (HAM-D) (Ising et al., 2009).

However, the individual influence of each of the detected SNPs

appears to be limited (Ising et al., 2009). In addition, no reliable predic-

tor for antidepressant treatment outcome could be identified in a

recent meta-analysis (GENDEP Investigators, MARS Investigators, &

STAR*D Investigators, 2013). It is conceivable that the simultaneous

consideration of several genetic factors may confer a better predictive

ability regarding therapy outcome, than the individual SNPs per se.

Recent studies have attempted to move beyond the one-locus

approach and instead investigate depression and AD therapy outcome

in MDD by genetic risk score (GRS) analysis. A GRS based on 11 top

hit SNPs associated with the mean number of depressive symptoms

in GWAS was associated with depression severity, expressed as Cen-

ter for Epidemiologic Studies Short Depression Scale (CES-D) score

(Radloff, 1977) eight item version, in a study including 3,091 partici-

pants (Levine et al., 2014). Kautzky et al. predicted the AD treatment

outcome for 225 subjects that received several different types of ADs

including SSRIs, MAOI, SNRIs or TCAs using 12 SNPs located in

5 serotonin-related genes (Kautzky et al., 2015).

To our knowledge, no study has hitherto comprehensively evalu-

ated to what extent the combinatory effect of SNPs, playing a role in

pharmacokinetics and pharmacodynamics of ADs influences the long-

term depression severity under treatment with antidepressants

in MDD.

In the current study we investigated 69 SNPs previously associ-

ated with AD pharmacokinetics, pharmacodynamics of ADs or therapy

outcome in MDD. We filtered SNPs based on quality control criteria

as well as their relevance using random forest and evaluated the asso-

ciations between a GRS constructed using top-hit SNPs with the CES-

D score in participants with MDD and with a mean follow-up time of

more than 5 years. Participants included in the study were from the

community, fulfilling DSM-IV criteria for a current or a lifetime history

of MDD at baseline with a regular AD treatment. In addition, we

assessed the associations between the GRS and individual SNPs with

the occurrence of a new major depressive episode (MDE) during the

follow-up and regular AD treatment during 6 months prior to the

follow-up evaluation.

2 | METHODS

2.1 | Subjects

We included clinical and SNP data from the CoLaus¦PsyCoLaus cohort

(Firmann et al., 2008; Preisig et al., 2009), a prospective study

designed to study mental disorders and cardiovascular risk factors

(CVRF) in the community and to determine their associations. A total

of 6,734 individuals aged between 35–75 years were randomly

selected from the residents of the city of Lausanne, Switzerland

between 2003 and 2006 according to the civil register. Sixty-seven

percent of the 35 to 66 year-old participants of the physical baseline

exam (n = 5,535) also accepted the psychiatric evaluation (Figure 1).

Among them, 224 Caucasians had an ongoing regular AD treatment

(69.6% treated in monotherapy with SSRI, 10.7% treated in mon-

otherapy with SNRI, 7.6% treated in monotherapy with Tricyclics,

8.8% treated in monotherapy with other ADs, 4.0% treated with a

combination of several types of ADs) and either a current or a lifetime

history of MDD at the baseline evaluation. Out of them, 160 (71.4%)

also accepted both the physical and the psychiatric follow-up evalua-

tion (mean duration 5.5 ± 0.3 years, Table 1) and could be included in

the present analyses.

2.2 | Assessment of clinical data

Diagnostic information on mental disorders was collected at baseline

and follow-up investigation, using the French version of the semi-

structured Diagnostic Interview for Genetic Studies (DIGS) (Leboyer

et al., 1995; Nurnberger Jr. et al., 1994; Preisig, Fenton, Matthey,

Berney, & Ferrero, 1999). The DIGS was completed with anxiety

disorder sections of the Schedule for Affective Disorders and

Schizophrenia - Lifetime Version (SADS-L) (Endicott & Spitzer, 1978).

Psychiatric diagnoses were assigned according to the DSM-IV. At the

baseline evaluation, the participants were interviewed for presence of

MDD at any time during their life until the interview (“lifetime MDD”).

At the follow-up evaluation, participants were interviewed on pres-

ence of any MDE occurrence (“MDE occurrence”, Yes/No), anxiety

disorders (Yes/No) and substance dependence (Yes/No) during the

time between baseline and the follow-up assessment (during follow-

up). All interviews were conducted by master-level psychologists who
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were trained over a one to two-month period and each interview was

reviewed by an experienced senior psychologist.

Body height and weight were measured at the physical follow-up

exam to determine the body mass index (BMI). Participants were

considered physically active if they reported to practice at least

20 minutes twice a week at the physical follow-up exam. Alcohol con-

sumption at follow-up was defined based on the number of standard

drinks (a drink containing 14 g of pure alcohol) consumed by

F IGURE 1 Selection process of the study sample and participants excluded due to missing data. Figure shows a description of the selection
process of the study participants and missing data. Participants that at baseline had lifetime MDD and a regular AD treatment during the
6 months preceding the assessment were included in the present study. Participants with available SNP data and a record of CES-D score at the
follow-up evaluation were included in the Random Forest analysis. The GRS was calculated in all participants with available SNP data. The
adjusted statistical analyses were conducted on participants with available data for all included variables. AD, antidepressant; BMI, body mass
index; CES-D, Center for Epidemiologic Studies Short Depression Scale; MDE, major depressive episode; GRS, genetic risk score; SNP, single
nucleotide polymorphism

TABLE 1 Demographic and clinical characteristics of the sample at follow-up

All Regular AD treatment at follow-up No regular AD treatment at follow-up p

Total (N) 160 94 66

Women (%) 71.9% 72.3% 71.2% N.S

Age at follow-up (years) 56.5 ± 7.8 57.2 ± 7.8 55.4 ± 8.3 N.S

BMI at follow-up 26.8 ± 5.5 26.8 ± 5.9 26.9 ± 5.1 N.S

Not physically active at follow-up (%) 38.1% 40.4% 34.8% N.S

High alcohol consumption at follow-upa (%) 11.9% 9.6% 15.2% N.S

Any anxiety disorder during follow-up (%) 17.5% 18.1% 16.7% N.S

Substance dependence during follow-up (%) 1.3% 1.1% 1.5% N.S

MDE during follow-up (%) 26.3% 30.9% 19.7% N.S

CES-D at follow-upb 18.5 ± 11.4 20.6 ± 10.6 15.3 ± 11.9 0.007

Ln CES-D at follow-upb 2.7 ± 0.8 2.9 ± 0.5 2.4 ± 1.0 <0.001

Note: Continuous variables are expressed as mean ± SD; p-values are calculated using t-test or chi square test. Significant results are reported in bold.

Abbreviations: AD, antidepressant; BMI, body mass index; MDE, major depressive episode; N.S. not significant.
a≥14 drinks/week.
bN = 135 (81 regular treatment, 54 no regular treatment).
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participants in the 7 days preceding the interview (0: no alcohol con-

sumption; 1–13: low consumption; ≥14: high consumption).

Depression severity was only assessed at the physical follow-up

exam using the Centre for Epidemiologic Studies Depression (CES-D)

scale (Radloff, 1977), translated to French. The CES-D scale was

designed for use in the general population and is a 20-item instrument

that measure depressive symptoms over the past week

(Radloff, 1977).

At the physical baseline and follow-up evaluations, the partici-

pants reported their antidepressant treatment and if the treatment

was either “occasional” or “regular” during the past 6 months. The

baseline data were used for selection of the study population while

the follow-up data were used for the statistical analyses.

2.3 | Genome wide SNP determination

In Colaus/PsyCoLaus, blood samples used for genotyping were col-

lected at the physical baseline evaluation. Nuclear DNA was extracted

from whole blood and the Affymetrix 500 K SNP chip technology was

used for genome-wide genotyping. Samples with a proportion of

genotypes <90% or exhibiting inconsistent genotypes in duplicate

samples were excluded from the analyses. Moreover, SNPs were

excluded using the following quality criteria: (1) SNPs that were

monomorphic among all samples; (2) SNPs in Hardy–Weinberg dis-

equilibrium (p < 1�0 × 10–7) 3) SNPs with a genotype determination

rate of less than 95% (Preisig et al., 2009). The population structure in

CoLaus was extensively examined (Novembre et al., 2008). For impu-

tation, only autosomal SNPs present in HapMap release 21 (build 35)

were used; the dataset used for imputation included 5,435 CoLaus

participants and 390,631 SNPs. Imputation was performed according

to the method of Marchini et al. (2007) using IMPUTE version 0.2.0,

and CEU haplotypes and fine scale recombination map from HapMap

release 2.

2.4 | SNP selection and handling of SNP data

We performed searches on several online databases including

PubMed (“The NCBI PubMed database, n.d.”), SNPedia (“SNPedia, n.

d.”), PharmGKB pathways (“PharmGKB pathways, n.d.”), National

Human Genome Research Institute database (“National Human

Genome Research Institute database, n.d.”) and the literature describ-

ing susceptibility genes that are involved in uptake, metabolism and

drug distribution of antidepressants. Search terms such as

“depression,” “antidepressant,” “serotonin,” and “polymorphisms” was

used to generate a list of SNPs previously investigated with regards

to their potential involvement in AD response among humans. SNPs

with an estimated minor allele frequency (MAF) >5% in white

populations according to the NCBI dbSNP online database (“The

NCBI SNP database, n.d.”) were considered in further analyses. We

thus based our study on an initial selection of 69 SNPs located in or

near 50 different genes (Supplementary Table 1). In the majority of

cases, in our dataset these SNPs were imputed based on known link-

age behavior to proxy SNPs (imputation quality; r2hat ≥ 0.3). Imputed

SNP data were rounded using MS © Excel (ver. 14.0.7166.5000) to

“0” representing the major allele in homozygous form, “1” for hetero-

zygotes and “2” for individuals homozygous for the minor allele. SNPs

in linkage disequilibrium (LD) (D0 > 0.8), as those occurring in HTR1A,

HTR2A, and CYP2D6 (Haploview V 4.2 [Barrett, Fry, Maller, & Daly,

2005]) were represented by one SNP each. For CYP2D6, we used

rs5751222 as a proxy for rs1065852, a SNP that represents a

decreased or non-functioning variant (Ji et al., 2014). After exclusion

of SNPs with low MAF (<5%), SNPs not in Hardy–Weinberg equilib-

rium (HWE, p < .05) or in LD, 44 SNPs remained in the subsequent

analyses.

2.5 | Random Forest analyses and development of a
genetic risk score

The evaluation of which SNPs are significantly related to a certain

trait is an important step in GRS development. Since only one of the

44 individual SNPs included in this study was associated with severity

of depression (rs12248560, see Table 2) we used Random forest

(RF) (Nguyen, Huang, Wu, Nguyen, & Li, 2015) as a SNP selection

method. RF has the advantage of being able to rank variables with

small effect sizes according to their importance (Rodin, Gogoshin, &

Boerwinkle, 2011). The method has been successfully applied to eval-

uate the impact of BMI associated SNPs on weight loss after bariatric

surgery (Bandstein et al., 2016) as well as the association between dif-

ferent genetic variants and migraine with or without aura (Pisanu

et al., 2017).

RF analysis was applied using the Rattle package (Williams et al.,

2016) in R. Logarithmically transformed CES-D overall score measured

at the follow-up investigation [ln(CES-D + 1) as performed by

(Noordam et al., 2015) due to non-normality] measuring the abun-

dance of MDD associated symptoms was used as the outcome vari-

able. We refer to the transformed variable as “ln CES-D” in the

following. We included 44 SNPs determined in 150 individuals with

available data on ln CES-D score in our RF model. Running conditions

were set to 10,000 trees, evaluating six SNPs at each split. The top

three SNPs inducing a mean squared error (MSE) ≥ 9 were selected to

be included in the GRS. The random forest plot is shown in Figure 2.

The three top scoring SNPs detected in random forest analysis were

individually checked for association with ln CES-D values using one-

way ANOVA. In case a significant association was detected, the risk

allele was assigned based on data from the current study. Otherwise,

the risk allele was chosen based on previous publications (Table 2).

Subsequently, the GRS was constructed by summing the number of

risk alleles in each individual giving a possible GRS range from zero

(no risk allele) to six (six risk alleles in carriers homozygous for the

major alleles of all three SNPs). SNPs included in the GRS were further

investigated using UCSC Genome Browser (Kent et al., 2002) to find

nearby genes and visualized using LDproxy on CEU population

(Machiela & Chanock, 2015) to verify a possible SNP-gene association

(Table 2).
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2.6 | Statistical analyses

The statistical analyses were performed using data from the follow-up

evaluation. Mean differences in age, BMI and CES-D score were ana-

lyzed dependent of the regularity of AD treatment (Regular treat-

ment/No regular treatment) using independent t-tests. Chi2-tests

were used to compare sex (men = 0, women = 1), physical activity

(Yes/No), MDE occurrence (Yes/No), alcohol consumption (No/Low/

High consumption), anxiety disorders (Yes/No) and substance depen-

dence (Yes/No) in individuals treated or not treated regularly with

ADs at follow-up.

Individual SNPs were investigated for their impact on CES-D using

ANOVA and regular AD treatment (Yes/No) and MDE occurrence

(Yes/No) using Chi2 tests. The GRS was evaluated depending on sex,

anxiety disorders (Yes/No), substance dependence (Yes/No) and regu-

lar AD treatment (Yes/No) using individual T-tests.

We used three outcome variables to assess the impact from indi-

vidual SNPs and the GRS on therapy response in adjusted analyses.

Our primary outcome was ln CES-D overall score (linear regression,

N = 135) and our secondary outcomes were MDD occurrence (binary

logistic regression, N = 160) and regular AD treatment (binary logistic

regression, N = 160). While we considered ln CES-D and MDE occur-

rence as direct measurements of depression we used AD treatment as

an indirect measurement of depression. In an initial model, we

included the GRS and in three subsequent models, we included the

individual SNPs in regression analyses, as shown in Table 2 for com-

parison. SNPs and our GRS were tested cross-sectional on follow-up

data together with the covariates sex, age, BMI, prevalence of anxiety

disorders and substance dependence. In the analyses on ln CES-D

and MDE occurrence we also controlled for regular AD treatment.

A p-value <.05 was considered to be statistically significant. Finally,

the inclusion of identified genes in the druggable genome was

checked using DGIdb (Cotto et al., 2018), while the functional effect

of top scoring SNPs on gene expression in brain regions was checked

using GTEx V.8 (GTEx Consortium, 2013).

Statistical analyses were performed using the SPSS software

(V 21.0.0.0 © IBM Corporation) and RStudio (V 0.98.1028 © RStudio

Inc. and Rattle version 3.5.0 © Togaware Pty Ltd.).

3 | RESULTS

3.1 | Clinical parameters and depression severity

Table 1 shows demographic and clinical characteristics of participants

for the whole cohort at the follow-up investigation and after stratifi-

cation according to AD treatment (regular/no regular treatment). The

majority of included subjects were women. Within the total cohort of

160 participants, 94 (59%) were still being treated regularly with ADs

at the follow-up investigation. The large majority of these (67%) were

treated in monotherapy with SSRIs, while only minor fractions were

treated with other AD drugs (10.6% treated in monotherapy with

SNRIs, 7.4% treated in monotherapy with Tricyclics, 7.4% in mon-

otherapy with other ADs). A proportion of 7.4% of the cohort was

treated with AD belonging to several AD classes. Regularly treated

participants showed higher CES-D scores compared to participants

not regularly treated (Table 1).

TABLE 2 Description of the three SNPs included in the genetic risk score

SNP (chromosome) gene MSEa Genotype N Mean CES-D Ln CES-D
Risk allele in
this studyb

Risk allele,
reference
publication Reference publication

rs12248560 (10) CYP2C19 18.0% C/C 102 18.7 ± 11.3 2.8 ± 0.7 C T Chang et al., 2014

C/T 43 20.0 ± 11.7 2.8 ± 0.8

T/T 5 6.80 ± 7.2 1.8 ± 0.9

Total 150 18.6 ± 11.5 2.8 ± 0.8

rs878567 (5) HTR1A 10.9% A/A 40 20.5 ± 12.3 2.9 ± 0.8 A Ac Kato et al., 2009

A/G 70 19.0 ± 10.5 2.8 ± 0.7

G/G 40 16.2 ± 12.1 2.5 ± 0.9

Total 150 18.6 ± 11.5 2.8 ± 0.8

rs17710780 (5) ARHGEF37 9.3% T/T 114 19.3 ± 11.3 2.8 ± 0.7 T T GENDEP Investigators

et al., 2013T/C 33 16.4 ± 12.3 2.5 ± 0.9

C/C 3 17.3 ± 3.2 2.9 ± 0.2

Total 150 18.6 ± 11.5 2.8 ± 0.8

Abbreviations: ARHGEF37, Rho Guanine Nucleotide Exchange Factor 37; CES-D, The Center for Epidemiologic Studies Depression Scale; CYP2C19,

Cytochrome P450 2C19; HTR1A, 5-Hydroxytryptamine Receptor 1A; MDD, Major Depressive Disorder; MSE, Mean Squared Error; N.S. not significant;

SNP, Single Nucleotide Polymorphism.
aMSE induced by the respective SNP in Random Forest analyses.
bObservations from this study comparing mean CES-D and ln CES-D values in genotypes. Rs12248560 T/T; lower ln CES-D values (p = 0.012, ANOVA). C

was considered risk allele. Rs878567 and rs17710780 N.S. The risk allele from the reference publications was used as risk allele in this study.
cKato investigated the proxy rs6295 (C/G).
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3.2 | Association between individual SNPs, GRS and
depression severity

We performed unadjusted analyses to evaluate the risk allele associa-

tion of individual SNPs with the CES-D score. Only for rs12248560

(CYP2C19) ln CES-D values differed, which supported the use of a

ranking method to find the highest impact SNPs. The RF analysis rev-

ealed three SNPs with a MSE≥9 for ln CES-D, that is, rs12248560

(CYP2C19), rs878567 (HTR1A) and rs17710780 (ARHGEF37) (Table 2).

Subsequently, association analyses were performed for these top

scoring SNPs individually and by including them in an unweighted

GRS. This GRS reached a mean score of 4.3 in the cohort (range from

1 to 6, SD = 1.0). The GRS did not differ between subgroups of the

cohort according to sex (women: 4.4 ± 1.0; men: 4.2 ± 1.1), the occur-

rence of anxiety disorders (No: 4.3 ± 1.1; Anxiety: 4.5 ± 0.9), the

occurrence of substance dependence (No: 4.3 ± 1.1; substance

dependence: 4.0 ± 0.0) or the presence of regular AD treatment (No:

4.4 ± 1.0; regular: 4.3 ± 1.1) in unadjusted analyses using Student's t-

test (data not shown). Regarding individual SNPs, rs12248560-CC

individuals showed higher ln CES-D scores than –CT and –TT carriers

(p = .011, Bonferroni corrected post hoc analysis) and -C was treated

as the risk allele. Conversely, rs17710780 and rs878567 were not sig-

nificantly associated with ln CES-D. Therefore, in the construction of

the GRS, the risk allele for these SNPs was selected based on previous

publications (Table 2).

As shown in Table 3, the GRS and the genetic variant rs878567

(HTR1A) were associated with ln CES-D, with lower ln CES-D scores

for individuals carrying the minor allele (G) after adjustment for sex,

age, BMI, as well as anxiety disorders, substance dependence and reg-

ular AD treatment.

In the next step, we investigated the associations between the

GRS or the individual SNPs and the occurrence of a MDE during the

follow-up period. In contrast to the GRS, none of the SNPs were asso-

ciated with occurrence of a MDE in unadjusted or adjusted analyses

(Table 4).

In a third step we scrutinized to what extent the SNPs were

important for regular AD treatment at follow-up. As shown in Table 5,

rs12248560 (CYP2C19) was associated with ongoing regular AD

treatment at follow-up in binary logistic regression analyses. Hetero-

zygote (CT) individuals were 2.5 times more likely than wild type

(CC) to be regularly treated with ADs at follow-up (Table 5). When we

instead used the minor allele (TT) as the reference category, CC-

carriers were 6.7 times (confidence interval: 1.3–35.4) more likely to

be regularly treated with ADs at follow-up than TT-individuals.

In silico analyses using DGIdb showed that two of the three iden-

tified top scoring SNPs are located in genes which are part of the

druggable genome (CYP2C19 and HTR1A). Additionally, two of the

three SNPs were found to be significant expression quantitative trait

loci (eQTL) in different tissues including brain according to GTEx V. 8

(rs12248560, eQTL for NOC3L in cerebellum and nucleus accumbens;

rs878567, eQTL for RNF180 in cerebellum and putamen).

4 | DISCUSSION

Using data from a prospective cohort study, we measured the associa-

tions between three SNPs (both independently as well as combined in

a GRS) and different depression parameters at follow-up in partici-

pants with lifetime MDD who were under AD treatment at baseline.

Among the individual SNPs, only rs878567 (HTR1A) was associated

with ln CES-D in adjusted analyses. None of the individual SNPs was

associated with the occurrence of a MDE during follow-up. Con-

versely, the GRS was associated with both depression measurements,

suggesting that the evaluation of the combined effect of multiple

genetic variants playing a role in the pharmacokinetics and –dynamics

of ADs reflects depression severity to a much better extent than the

individual SNPs. These results underline the importance to evaluate

the joint, multivariate influence of susceptibility factors in cases where

F IGURE 2 Random forest analysis variable importance.
Figure shows the variable importance output from the Random Forest
analysis. % Increase in mean squared error (%IncMSE) is computed
from permuting the test data. The prediction error on test for each
tree is compared with results from the permuted data results. The
difference between the two are then averaged over all trees, and
normalized by the SD of the differences. A variable (i.e., in this case a
SNP) is considered more important for the dependent variable for

higher values on %IncMSE whereas non important variables receive
low values. SNP, single nucleotide polymorphism
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the individual effects of genetic risk parameters appear to be small, as

for example, in the case of AD treatment.

Among the SNPs included in the GRS, CYP2C19*17 (rs12248560

T allele) exhibited the most profound influence on ln CES-D. CYP2C19

metabolizes the ADs citalopram and escitalopram and to a lesser

extent fluoxetine and sertraline. The ultrarapid metabolizer allele

CYP2C19*17 has been repeatedly associated with changes in the

pharmacokinetics of those ADs (Huezo-Diaz et al., 2012; Li-Wan-Po,

Girard, Farndon, Cooley, & Lithgow, 2010; Ohlsson Rosenborg et al.,

2008; Rudberg, Mohebi, Hermann, Refsum, & Molden, 2008; Tsai

et al., 2010). While several studies have proven the impact of

CYP2C19*17 on the pharmacokinetics of CYP2C19 substrates such

as ADs or omeprazole (Ohlsson Rosenborg et al., 2008), only one

study has investigated the specific association between CYP2C19*17

and the therapy outcome in MDD (Mrazek et al., 2011). Specifically,

Mrazek et al. showed lower remission rates for medication tolerating

TABLE 3 Association between the GRS and three SNPs included in the GRS and Ln CES-D score

Unstandardized coefficients Standardized coefficients

Variablesa B SE β t p 95% CI

GRS 0.19 0.06 0.26 3.31 0.001 0.08 to 0.31

Age at follow-up (y) −0.01 0.01 −0.09 −1.07 0.29 −0.02 to 0.01

Sex 0.09 0.14 0.05 0.64 0.52 −0.19 to 0.37

BMI at follow-up 0.03 0.01 0.19 2.48 0.01 0.01 to 0.05

Substance dependenceb 0.06 0.50 0.01 0.13 0.90 −0.93 to 1.06

Anxiety disordersb 0.37 0.16 0.18 2.28 0.02 0.05 to 0.69

AD regular use 0.55 0.12 0.35 4.45 <0.001 0.31 to 0.8

(constant) 1.18 0.57 2.09 0.04 0.06 to 2.3

rs12248560c −0.20 0.11 −0.14 −1.77 0.08 −0.43 to 0.02

Age at follow-up (y) 0.00 0.01 −0.04 −0.51 0.61 −0.02 to 0.01

Sex 0.09 0.14 0.05 0.63 0.53 −0.19 to 0.38

BMI at follow-up 0.03 0.01 0.19 2.34 0.02 0.00 to 0.05

Substance dependenceb 0.05 0.52 0.01 0.10 0.92 −0.97 to 1.08

Anxiety disordersb 0.40 0.17 0.20 2.42 0.02 0.07 to 0.73

AD regular use 0.54 0.13 0.34 4.19 <0.001 0.28 to 0.79

(constant) 1.87 0.55 3.42 0.00 0.79 to 2.96

rs878567c −0.20 0.09 −0.19 −2.32 0.02 −0.38 to −0.03

Age at follow-up (y) −0.01 0.01 −0.09 −1.12 0.26 −0.02 to 0.01

Sex 0.11 0.14 0.07 0.80 0.43 −0.17 to 0.4

BMI at follow-up 0.03 0.01 0.18 2.30 0.02 0.00 to 0.05

Substance dependenceb −0.03 0.51 −0.01 −0.06 0.95 −1.05 to 0.98

Anxiety disordersb 0.37 0.16 0.18 2.25 0.03 0.05 to 0.70

AD regular use 0.52 0.13 0.33 4.13 <0.001 0.27 to 0.77

(Constant) 2.31 0.58 3.97 0.00 1.16 to 3.46

rs17710780c −0.21 0.13 −0.13 −1.63 0.11 −0.46 to 0.05

Age at follow-up (y) −0.01 0.01 −0.05 −0.65 0.52 −0.02 to 0.01

Sex 0.09 0.14 0.05 0.63 0.53 −0.20 to 0.38

BMI at follow-up 0.03 0.01 0.21 2.60 0.01 0.01 to 0.05

Substance dependenceb 0.07 0.52 0.01 0.13 0.89 −0.96 to 1.10

Anxiety disordersb 0.39 0.17 0.19 2.33 0.02 0.06 to 0.71

AD regular use 0.54 0.13 0.34 4.18 <0.001 0.28 to 0.79

(Constant) 1.84 0.55 3.35 0.00 0.75 to 2.93

Abbreviations: BMI, body mass index; CES-D, The Center for Epidemiologic Studies Depression Scale; CI, confidence interval.
aLinear regression analyses with outcome variable Ln CES-D at follow-up (N = 135) corrected for sex, age BMI, anxiety disorders, substance dependence,

regular antidepressant treatment, and the GRS or isolated GRS related SNPs, respectively in four separate regressions. Significant results are shown

in bold.
bAny occurrence during follow-up.
cWT = 0, heterozygotes = 1, homozygote minor allele = 2.
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TABLE 4 Association between the PRS and the three SNPs included in the GRS and MDD status during follow-up according to binary logistic
regression

Variablea B SE Wald df p OR (95% CI)

GRS 0.49 0.21 5.47 1.00 0.02 1.63 (1.08 to 2.46)

Age at follow-up (y) −0.04 0.03 2.84 1.00 0.09 0.96 (0.91 to 1.01)

Sex (1) 0.13 0.47 0.08 1.00 0.78 1.14 (0.46 to 2.85)

BMI at follow-up −0.05 0.04 1.67 1.00 0.20 0.95 (0.88 to 1.03)

Anxiety disorders (1)b 1.04 0.46 5.09 1.00 0.02 2.84 (1.15 to 7.02)

Substance dependence (1)b 1.14 1.46 0.61 1.00 0.44 3.12 (0.18 to 54.25)

AD regular use (1) 0.76 0.41 3.37 1.00 0.07 2.13 (0.95 to 4.79)

Constant −0.24 1.90 0.02 1.00 0.90 0.78

rs12248560c 1.01 2.00 0.60

rs12248560 (1) −0.47 0.47 1.01 1.00 0.32 0.63 (0.25 to 1.56)

rs12248560 (2) −20.12 13,679.55 0.00 1.00 1.00

Age at follow-up (y) −0.03 0.03 1.29 1.00 0.26 0.97 (0.93 to 1.02)

Sex (1) 0.13 0.46 0.08 1.00 0.78 1.14 (0.46 to 2.83)

BMI at follow-up −0.05 0.04 1.87 1.00 0.17 0.95 (0.88 to 1.02)

Anxiety disorders (1)b 1.10 0.47 5.55 1.00 0.02 3.00 (1.02 to 7.49)

Substance dependence (1)b 1.05 1.46 0.52 1.00 0.47 2.85 (0.17 to 49.33)

AD regular use (1) 0.68 0.42 2.64 1.00 0.11 1.96 (0.87 to 4.43)

Constant 1.42 1.77 0.64 1.00 0.42 4.13

rs878567c 1.64 2.00 0.44

rs878567 (1) −0.54 0.48 1.29 1.00 0.26 0.58 (0.23 to 1.48)

rs878567 (2) −0.62 0.54 1.32 1.00 0.25 0.54 (0.19 to 1.55)

Age at follow-up (y) −0.04 0.03 2.49 1.00 0.12 0.96 (0.92 to 1.01)

Sex(1) 0.15 0.46 0.10 1.00 0.75 1.16 (0.47 to 2.85)

BMI at follow-up −0.06 0.04 2.07 1.00 0.15 0.95 (0.88 to 1.02)

Anxiety disorders (1)b 1.07 0.46 5.43 1.00 0.02 2.91 (1.19 to 7.16)

Substance dependence (1)b 0.79 1.49 0.28 1.00 0.60 2.20 (0.12 to 41.06)

AD regular use (1) 0.69 0.40 2.94 1.00 0.09 2.00 (0.91 to 4.40)

Constant 2.37 1.88 1.59 1.00 0.21 10.69

rs17710780c 0.79 2.00 0.68

rs17710780 (1) −0.44 0.50 0.79 1.00 0.38 0.65 (0.24 to 1.7)

rs17710780 (2) −20.41 22,826.90 0.00 1.00 1.00

Age at follow-up (y) −0.04 0.03 1.99 1.00 0.16 0.97 (0.92 to 1.01)

Sex (1) 0.10 0.46 0.05 1.00 0.83 1.11 (0.45 to 2.74)

BMI at follow-up −0.05 0.04 1.75 1.00 0.19 0.95 (0.88 to 1.03)

Anxiety disorders (1)b 1.02 0.46 4.94 1.00 0.03 2.76 (1.13 to 6.77)

Substance dependence (1)b 1.06 1.46 0.53 1.00 0.47 2.89 (0.17 to 50.22)

AD regular use (1) 0.75 0.41 3.38 1.00 0.07 2.11 (0.95 to 4.67)

Constant 1.66 1.73 0.92 1.00 0.34 5.26

Abbreviations: AD, Antidepressant; BMI, Body Mass Index; CI, confidence interval; OR, odds ratio; GRS, genetic risk score; SNP, single nucleotide

polymorphism. Significant results reported in bold.
aBinary logistic Regression, N = 160 on MDD according to DSM-IV during follow-up as the dependent variable. Variables entered: Sex, BMI, Age, anxiety

disorders, substance dependence, regular AD treatment and the GRS or isolated GRS related SNPs, respectively in four separate regressions.
bAt any time during follow-up.
cWild type as reference, (1) reference versus heterozygote (2) reference versus homozygote minor allele.
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CYP2C19*17 carriers treated with citalopram compared to extensive

and poor metabolizers (CYP2C19*2) as evaluated by a score below

5 points on the Quick Inventory of Depressive Symptomatology—

Clinician Rating (QIDS-C) scale (Mrazek et al., 2011). In contrast with

this study, we observed a lower depression severity in homozygous

*17 carriers as shown by a lower CES-D score compared to heterozy-

gous *17 and wild type carriers. Several hypotheses can be posed to

explain these differences. While Mrazek et al. (2011) specifically stud-

ied citalopram, which is strongly metabolized by CYP2C19 (Chang,

Tybring, Dahl, & Lindh, 2014), we considered different AD treatments

in the setup of our GRS. Furthermore, our observation is based on a

unique evaluation of depression severity at the end of the follow-up

period while Mrazek. et al., evaluated the rate of complete remission

under citalopram treatment over time.

TABLE 5 Associations between the
GRS and three SNPs included in the GRS
and regular AD treatment

Variablea B S.E. Wald p OR (95% CI)

GRS ln CES-D −0.10 0.16 0.39 0.53 0.91 (0.66 to 1.24)

Age at follow-up (y) 0.03 0.02 2.15 0.14 1.03 (0.99 to 1.07)

Sex (1) 0.10 0.37 0.08 0.78 1.11 (0.54 to 2.29)

BMI at follow-up −0.01 0.03 0.09 0.77 0.99 (0.94 to 1.05)

Anxiety disorders (1)b 0.15 0.44 0.11 0.74 1.16 (0.49 to 2.73)

Substance dependence (1)b −0.22 1.44 0.02 0.88 0.81 (0.05 to 13.53)

Constant −0.84 1.55 0.30 0.59 0.43

rs12248560c 6.99 0.03

rs12248560 (1) 0.90 0.41 4.77 0.03 2.47 (1.10 to 5.55)

rs12248560 (2) −1.00 0.78 1.65 0.20 0.37 (0.08 to 1.70)

Age at follow-up (y) 0.04 0.02 3.07 0.08 1.04 (1.00 to 1.08)

Sex (1) 0.28 0.39 0.53 0.47 1.32 (0.62 to 2.83)

BMI at follow-up −0.01 0.03 0.08 0.77 0.99 (0.93 to 1.05)

Anxiety disorders (1)b 0.21 0.45 0.23 0.63 1.24 (0.52 to 2.97)

Substance dependence (1)b −0.46 1.48 0.10 0.75 0.63 (0.04 to 11.37)

Constant −1.99 1.51 1.73 0.19 0.14

rs878567c 0.35 0.84

rs878567(1) 0.22 0.41 0.27 0.60 1.24 (0.55 to 2.80)

rs878567(2) 0.05 0.46 0.01 0.92 1.05 (0.43 to 2.59)

Age at follow-up (y) 0.03 0.02 1.98 0.16 1.03 (0.99 to 1.08)

Sex (1) 0.09 0.37 0.06 0.81 1.09 (0.53 to 2.26)

BMI at follow-up −0.01 0.03 0.08 0.78 0.99 (0.94 to 1.05)

Anxiety disorders (1)b 0.12 0.44 0.08 0.78 1.13 (0.48 to 2.67)

Substance dependence (1)b −0.09 1.45 0.00 0.95 0.91 (0.05 to 15.62)

Constant −1.35 1.56 0.75 0.39 0.26

rs17710780c 0.09 0.96

rs17710780 (1) −0.12 0.39 0.09 0.77 0.89 (0.41 to 1.92)

rs17710780 (2) 21.02 23,110.43 0.00 1.00

Age at follow-up (y) 0.03 0.02 2.26 0.13 1.03 (0.99 to 1.08)

Sex (1) 0.14 0.38 0.15 0.70 1.15 (0.55 to 2.41)

BMI at follow-up −0.01 0.03 0.04 0.83 0.99 (0.94 to 1.05)

Anxiety disorders (1)b 0.16 0.44 0.14 0.71 1.18 (0.50 to 2.77)

Substance dependence (1)b −0.11 1.45 0.01 0.94 0.9 (0.05 to 15.23)

Constant −1.43 1.46 0.96 0.33 0.24

Abbreviations: AD, antidepressant; BMI, body mass index; CI, confidence interval; OR, odds ratio; GRS,

genetic risk score; SNP, single nucleotide polymorphism. Significant results reported in bold.
aBinary logistic regression, N = 160 on regular AD treatment at follow-up as the dependent variable.

Variables entered: Sex, BMI, Age, anxiety disorders, substance dependence and the GRS or isolated GRS

related SNPs, respectively in 4 separate regressions.
bAt any time during follow-up.
cWild type as reference, (1) reference versus heterozygote (2) reference versus homozygote minor allele.
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Interestingly, CYP2C19*17 was also associated with regular AD

treatment at follow-up in our investigation. Even though lower plasma

concentrations were confirmed for example, escitalopram by

(Rudberg et al., 2008), Uckun et al. (Uckun et al., 2015) suggested that

CYP2C19*17 polymorphism does not have an effect on citalopram

metabolism. Sim et al. hypothesized that the ultrarapid variant could

cause AD therapeutic failure due to lower plasma concentrations (Sim

et al., 2010). Although this study reported lower depressive symptoms

in poor metabolizers lacking CYP2C19 activity (CYP2C19*2/*2) com-

pared to extensive metabolizers (CYP2C19*1/*1) in a sample of

European adults characterized with the CES-D scale treated with dif-

ferent ADs, no effect was found for CYP2C19*17 (Sim et al., 2010). In

contrast with these results, a recent study found that patients under-

going treatment with escitalopram carrying the CYP2C19*17 allele

were more likely to switch to another antidepressant within one year

of follow-up (Jukic, Haslemo, Molden, & Ingelman-Sundberg, 2018).

Taken together, these findings suggest that the role of CYP2C19 on

depressive symptoms appears to be complex and might be different

according to specific ADs, also in light of the fact that combinations of

variants located in genes coding for different CYP enzymes, such as

CYP2D6 (Penas-Lledo et al., 2015), might also be relevant to explain

part of the variability in AD therapy outcome.

The second SNP included in the GRS, rs878567, which we used as

a proxy for rs6295 (NIH, 2015), within the serotonin receptor gene

HTR1A, showed an effect on ln CES-D only after adjustment for

demographic and clinical covariates. Previous studies on rs6295 and

AD response have been inconclusive. While Kato et al. observed a

better response to ADs in homozygous rs6295 carriers (Kato et al.,

2009), a meta-analysis from 2012 revealed no association between

rs6295 and AD response (Zhao et al., 2012). The inconclusive results

might be due to heterogeneities in the study design and/or follow-up

time as well as due to an overall limited isolated influence of this vari-

ant on AD response.

The rs17710780 variant nearby the ARHGEF37, PPARGC1B, and

MIR378A genes (“The NCBI Gene database”) only exhibited an effect

in the frame of the RF and GRS analyses, thus underlining the limited

isolated effect of this variant. Variations in this chromosomal region

have previously been associated with obesity (Andersen et al., 2005),

plasma lipoprotein homeostasis (Liu & Lin, 2011), adipogenesis

(Xu et al., 2014) and elevated cytokines (Jiang et al., 2014; Xu et al.,

2014). This may be an indicator that lipid turnover and availability play

a role for the severity of depression under AD treatment. Due to the

large number of SNPs in high linkage with this SNP [LDproxy on CEU

population (NIH, 2015)], the association for this specific SNP is highly

speculative.

Our study has several limitations: (1) CES-D scores were not avail-

able from the baseline evaluation. Therefore, it was not possible to

evaluate changes between the two time points. (2) We created a GRS

in an unweighted manner based on cross-sectional data, as the inclu-

sion of beta values obtained in GWAS analyses addressing the same

question and applying a similar design was not available. (3) We could

not stratify our analyses according to specific drug classes due to too

small number of subjects in each subgroup. Future studies may

benefit from a focus on a specific AD type in relation to CES-D score

evaluation, in order to obtain drug group specific results. (4) No infor-

mation was collected on the dosage of ADs at baseline, the duration

of AD treatment during the follow-up and nonpharmacological treat-

ment. Accordingly, we could not account for the effect of these treat-

ments related variables in our analyses. (5) The results derived from

our cohort recruited from the community may not be applicable to

severe forms of MDD, which are rare in the general population but

more frequent in treatment settings.

In summary, our data suggest that the combined effects of genetic

variants important for pharmacokinetics and pharmacodynamics of

ADs is a better predictor of the long-term depressive symptoms after

treatment by ADs than isolated SNPs. However, this hypothesis needs

confirmation from future independent studies.
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