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Abstract— This paper presents a low voltage graphene field 

effect transistor (GFET) based pressure sensor. The sensor 

comprises of GFET connected with a piezoelectric Aluminium 

Nitride (AlN) capacitor in an extended gate configuration. In 

this configuration, the piezopotential generated across the AlN 

capacitor, as a result of applied pressure, appears at the gate 

terminal of GFET and modulates the channel current. The 

sensor operates at a remarkably low voltage (100mV) and 

exhibits a sensitivity of about 7.18× 10-3 Pa-1
 for a pressure range 

of 3.25-9.74 kPa. These values make the developed GFET sensor 

suitable for tactile skin in robotics and prosthetics and for 

wearable health monitoring devices. 

Keywords— Aluminum Nitride, Extended Gate, GFET, 

Tactile sensor, Solid-State Sensor. 

I. INTRODUCTION 

Pressure sensors are vital components of tactile skin in 
robotics and prosthetics [1, 2] They are also increasing in 
demand for other applications such as touch screens for 
portable electronics [3], wearable health monitoring [4, 5] and 
electronic skin (e-skin) [6] etc. As a result, a number of novel 
device architectures and transduction mechanisms have been 
explored for pressure or touch sensing. These include 
capacitive [7, 8], piezoresistive [9, 10], piezoelectric [11] and 
optical [12] mechanisms etc. Many of the applications require 
these sensors to be highly sensitive, fast and to have low power 
operation. In this regard, pressure sensors with organic 
transistors, GFET and conventional silicon based field effect 
transistor (FET) have been explored in various configurations 
such as active matrix [13-15], and extended gate [16, 17]  etc. 
These sensors have elastomeric dielectric [7], air (dielectric) 
[14] and piezoelectric layers [11] etc. connected to or 
deposited on the transistors. In particular, the piezoelectric 
capacitors based on lead zirconate titanate (PZT)[18] [19], 
polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) 
[11, 20] have been used with transistors.  

A major issue with the piezoelectric materials, particularly 
as transducer on top of a transistors or in extended gate 
configuration, is related to the requirement of high voltage 
(~100V/µm) to orient the dipoles and hence to introduce 
piezoelectric properties [11] [19]. Application of such a high 
voltage near to the transistor could damage the devices or 
permanently alter their electrical characteristics. In such a 
situation, a piezoelectric material which does not require 
poling would be ideal. Another issues with several of the FET 
based pressure sensors, particularly those based on organic 
transistors, is that they require high operation voltage (~60V) 
which also lead to high-power consumption and limits their 
use in  large area e-skin and other portable device applications 
[21]. Recently, low-voltage operation in organic transistors 
has been demonstrated, however the large area 
implementation is yet to come [17, 20].  

Addressing the issues of poling and low-voltage operation, 
this paper presents Graphene FET (GFET) based pressure 
sensors. The sensor comprises of GFET tightly coupled with 
AlN piezo-capacitor. Owing to its well oriented crystal 
structure, AlN does not require poling. The high chemical and 
thermal stability of AlN and ability to deposit piezoelectric 
AlN film via low temperature process such as sputtering [22] 
also make it an  attractive material for the development of 
touch sensors on flexible substrates. The use of GFET, instead 
of conventional transistors, is explored here for low-voltage 
low-power operation. Indeed, with GFET, the sensor operates 
at a remarkably low voltage of 100mV. Graphene’s high 
carrier mobility and intrinsic mechanical properties lend high 
sensitivity to the sensors. With recent results showing the 
transfer of graphene on large area flexible substrates [8, 23] it 
will be possible to extend the presented approach to obtain fast 
touch sensors on flexible substrates.  

The paper is organised as follows: Section II presents the 
working and fabrication of presented sensor. The device 
characterisations are presented in Section III. Finally, a 
summary of key outcomes is given in Section IV. 

II. WORKING PRINCIPLE  AND FABRICATION  

The pressure sensor consists of 2 main components: (a) 
GFET (b) Metal-Insulator-Metal (MIM) AlN capacitor. The 
AlN MIM structure is capacitively coupled to top gate of 
GFET as shown in Fig. 1. 

A. Working Principle of Sensor. 

AlN is a piezoelectric material which generates a voltage 
on application of mechanical stress. The AlN MIM structure 
connected in an extended gate configuration acts as the 
transduction layer of presented pressure sensor. The 
application of a mechanical stress results in the generation of 
a piezopotential across AlN capacitor. In the extended gate 
configuration (Fig. 1), this piezopotential also appears at the 
gate of GFET and results in the modulation of channel current. 
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Fig. 1. Scheme of the pressure sensor with AlN capacitor connected to 

GFET in an extended gate configuration.  
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Therefore, change in the channel current reflects the applied 
pressure.  

B. Fabrication of GFET 

The fabrication of the top-gate GFET was initiated by wet 
transfer of graphene to SiO2/Si substrate using cellulose 
acetate butyrate (CAB) as supporting layer. The elaborate 
details of the transfer process is explained elsewhere [24]. 
Following the transfer printing of graphene, the source and 
drain electrodes (10 nm/50 nm Ti/Au) were defined by 
photolithography, metallization and lift-off. The metallization 
of the electrodes was carried out using Plassys MEB 550S E-
Beam evaporator. The definition and isolation of graphene 
channel was carried out by using a photolithography and 
reactive ion etching (RIE) in O2 plasma at 300W for 13s using 
Oxford Instruments RIE 80+ resulting in 50µm channel width. 
A 2nm Al was deposited in O2 ambient prior to the atomic 
layer deposition (ALD) of top gate dielectric Al2O3. A 30nm 
of Al2O3 was deposited at 200oC via thermal ALD process 
with trimethylaluminium (TMA) and H2O as the precursors 
using Oxford Instruments FlexAL Atomic Layer Deposition. 
Following the ALD growth of Al2O3, top gate electrode (10nm 
/60 nm Ti/Au) was deposited via photolithography, 
metallization and lift-off resulting in a top gate length of 
45µm. Finally, vias to the source and drain electrodes were 
opened via etching using HF:H2O (1:100) with photoresist 
acting as the etch mask. 

C. AlN MIM fabrication.  

The piezoelectric AlN MIM structure was fabricated on 

a flexible polyimide substrate. The deposition of AlN was 

carried out in a low temperature RF sputtering process. A 

500nm thick AlN was sputtered on top of 100nm Al deposited 

on polyimide substrate. AlN was deposited via RF magnetron 

sputtering with Al as target using Plassys MP 900s sputtering 

system. The sputtering was carried out in N2 and Ar 

atmosphere with flow rate of 40 sccm and 20sccm 

respectively under a 3mTorr pressure and 700W RF power. 

Prior to sputtering, pre-sputtering was carried out for 5 min 

with a closed shutter. Following the deposition of AlN film 

the MIM structure was completed by deposition of top 

electrode (NiCr/Au-20 nm /100 nm). The deposition of top 

electrode was carried out using a hard mask and electron 

beam evaporation.  

III. DEVICE CHARACTERIZATION 

A. GFET Characterisation  

The electrical characterization of GFET was performed 

at room temperature using the Keysight B1500A 

semiconductor device parameter analyzer. The results from 

electrical characterization of GFET are shown in Fig. 2. The 

carrier mobility of the GFET was extracted using the fitting 

model proposed by Kim et al [25]. The hole and electron 

mobility of the GFET was extracted via separate fitting owing 

to the asymmetry of hole and electron branch around the 

Dirac point. The hole and electron mobility of the device are 

868 and 718 cm2/V.s respectively. 

B. AlN Characterisation  

The crystal structure of the sputtered AlN film was studied 
using X-ray diffraction (XRD) Panalytical Xpert Pro MRD. 
The XRD scan was performed between the range of 30o-40o.  
The XRD results of the sputtered film is shown in Fig.3. The 
sputtered film exhibited a strong peak related (002) plane at 
2θ = 36.03o while the peak associated (100) and (101) can also 
be observed at 2θ = 33.3o and 37.9o respectively. In addition, 
the peak observed at 2θ=38.4o is associated with the reflection 
from the bottom Al electrode of the MIM structure. 

 
 

Fig.2. Electrical characterisation of GFET (a) Total resistance of  GFET at 

Vds=100mV (b) Output characteirstics of GFET. 

 

Fig.3. XRD of RF sputtered AlN film showing a strong c-axis peak 

assoicated with piezoelectric property of AlN. 

 



C. Pressure Sensor Characteirzation and operation 

mechanism  

The performance of the sensor was evaluated by varying 
applied pressure ranging from 0 kPa- 13 kPa. The response of 
the sensor to varying magnitude of force was studied using an 
in-house pressure sensing setup. The schematic of the 
experimental setup used for the characterization of the sensor 
is shown in Fig. 4. The setup comprises of a linear motor (VT-
21 Linear stage from MICRONIX USA) and load cell. The 
movement of the motor was controlled by LabVIEW program. 
Prior to the application of force, the magnitude of applied 
force was calibrated using a load cell. During the pressure 
sensing characterization, the sensor was biased using a 
KeySight USB Modular source modular unit (SMU-U2722A) 
The sensors was covered with a 150µm thick Ecoflex which 
served as a protective layer during the application of force. 
The dynamic response of the sensor to applied pressure of 
3.25kPa is shown in Fig 5a. During sensor characterization, 
the transistor was biased at the following condition: Vds = 
100mV; and top gate voltage of GFET at 0V with the extended 
gate connected to the top gate of GFET as shown in Fig 4. The 
application of force to AlN MIM generates a piezopotential,  
which also appears at the gate of GFET and modulates the 
channel current. The sensor response to different applied 
pressures is shown in Fig 5b. The device exhibits a sensitivity 
of 7.18× 10-3 Pa-1 for a pressure range between 3.25-9.74 kPa 
with a limit of detection of 0.89 kPa. Sensitivity of the device 

is given by (ΔI/Io)/ ΔP, where ΔI is the change in the drain 
current and Io is the initial drain current and P is the applied 
pressure. The sensor demonstrates an excellent sensitivity 
within the low pressure regime (1-10 kPa) which is ideal for 
applications related to intra body pressure  measurements and 
object manipulations [26].  

IV. CONCLUSIONS  

In summary, this reported low voltage pressure sensor is 
reported here with GFET in an extended gate configuration 
connected to a piezoelectric AlN MIM capacitor. The use of 
AlN as a piezoelectric transduction layer evades the need of 
poling which otherwise  a detrimental effect on the transistors 
due to application of  high electric field used during the 
process. Notably, the sensor operates at a very low voltage of 
100mV which is attractive for wearable electronics and e-skin 
applications. In addition, the sensor has been developed by 
adopting a low temperature CMOS compatible process which 
would enable the use of sensors for large area flexible 
electronics applications. The developed sensor exhibited a 
excellence sensitivity in low pressure regime (1-10 kPa) 
which is attractive for the for application related to wearable 
health monitoring and e-skin applications [26]. The 
performance and sensor’s spatial resolution could be further 
improved by integrating the piezoelectric layer within the 
dielectric stack of the film. 
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Fig.4. Illustration of the experimental setup for pressure sensor 

characteirsation. The biasing condition of the sensor during the sensor 

characterisation is also shown.   

 
Fig.5. (a) Dynamic response of the sensor to pressure 9.74 kPa (b) 

Sensitivty of the sensor for varying magnitude of pressure in the range of 

3.25 -9.74 kPa. 
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