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Abstract
The Spalart-Allmaras one-equation turbulence model has been implemented and vali­
dated in the PMB3D code, which is a parallel multi-block computational fluid dynam­
ics (CFD) code developed at the University of Glasgow. Different test cases including 
turbulent flows around RAE2822 Cases 9 and 10, NLR-F5 wing, ONERA A aerofoil, 
AGARD Case CT2 and 18% circular arc aerofoil have been performed. In general when 
compared with the experimental data, the performance of the S-A model is good. For 
some test cases, results of this model are also compared with the k—u two-equation tur­
bulence model. It hcis been observed that the S-A model is similar to the two-equation 
k — oj model in attached flows.
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2 IMPLEMENTATION

1 Introduction

Turbulence model plays an important role in computational fluid dynamics (CFD). In 

the past fifty years, many turbulence models have been developed. The most commonly 

used turbulence models today are eddy viscosity models including zero-, one- and 

two-equation models. The Spalart-Allmaras turbulence model is a one-equation eddy 

viscosity model [1,2]. It was inspired from an earlier model developed by Baldwin and 

Barth [3]. The transport equation and coefficients of the S-A model were defined using 

dimensional analysis, Galilean invariance, and selected empirical results.

The S-A model has been implemented and validated by many researchers in the 

past ten years [4, 5, 6, 7, 8, 9, 10, 11]. The model was highly recommended [4, 5] for 

attached flows. It can give results that are often similar to the two-equation models, 

particularly to the Menter’s SST model. However it performs less well in separated 

flows. In this report, implementation and validation of the S-A model into the PMB3D 

code is presented. The PMB3D code is a generic CFD code developed at the University 

of Glasgow.

2 Implementation

2.1 S-A turbulence model transport equation

As described in the previous section, the S-A turbulence model is a one-equation model 

developed by Spalart and Allmaras [1,2]. The transport equation and coefficients of the 

S-A model were defined using dimensional analysis, Galilean invariance, and selected 

empirical results. The original S-A model has transition modifiers built in to trip the 

boundary layer to transition. Here all these modifiers are ignored, so all the calculations 

are run fully turbulent. The Reynolds stresses are given by

UlUj — 2l/fSijj (1)



2 IMPLEMENTATION 2.1 S-A turbulence model transport equation

where Sjj is the mean strain rate tensor. The eddy viscosity iyt is given by

- vf-ox, fvl = X
.3 _i_ ^3 > ^ —

1/

U
(2)

+ CvX

V is the molecular viscosity, v is the working variable and obeys the following transport 

equation

^ = C61 [1 - ft2] fli? + i [V • {{u + H) VP) + cb2 (Vz:^)2]

- [cwifw - ^ft2
- p
- d.

(3)
TftxAU2.

The left hand side of the equation is the Lagrangian or material derivative of n: 

DP/Dt = dP/dt + UidP/dxi, Q is the modified magnitude of the vorticity and d is the 

distance to the closest wall. Here

0 = n -\----fv2i fv2 — 1 — ^
K2d2'

The other auxiliary functions are defined by

1 + Xfvl
(4)

fu
1 + C6 T176

+ cfu)3.
, g = r + cw2{r6 -r), r =

Sn2d2
fa = Ct3 exp {-cux2), fti = Qi 9t exp [d2 + g2dj] ^ ,

(5)

fti is the trip function, dt is the distance from the field point to the trip, which is on a 

wall. The parameter Ljt is the wall vorticity at the trip, and AC/ is the difference between 

the velocity at the field point and the trip. The parameter gt = min {0.1, AU/ut/Xx) 

where Ax is the grid spacing along the wall at the trip. The constants are

o- = 2/3, Chi = 0.1355, cb2 = 0.622, k = 0.41,

cwi = Chijn2 + {1 + cb2)ja, cw2 — 0.3, cw3 = 2, <^1=7.1, (6)

cti — 1.0, Cj2 ~ 2.0, ct3 = 1.1 (1.2), 0*4 = 2.0 (0.5).

where ct3 and ct4 have two different sets with the values in the brackets considered safer

2



I
2 IMPLEMENTATION 2.2 Non-dimensionalisation

at high Reynolds numbers [2]. The wall boundary condition is i/ = 0. In the freestream 

< 0.1^' is acceptable.

The S-A model includes the treatment of transition, however, in this study only fully 

turbulent flow is considered. So with all the transition terms ignored, the transport 

equation of the S-A model Eqn. (3) can be written as

DP
Dt

= CbiOu + - [V • ((z/ -f P) WP) + cb2 (Vz?)2] - cwifu 
a L

1 2
(7)

2.2 Non-dimensionalisation

The fully turbulent transport equation of the S-A model Eqn. (7) is non-dimensionalised 

using the freestream flow variables.

X^ = I y^ = L z

u* = 7^ = w* = ^
U no ty oo ua

* - -2- //* = II* - -Hi-
poo= -1^ Pt- tioo (8)

PooUl 
f* _ t

L/U0

To,

V
Poo

PooUl,

Variables with superscript notation are local dimensionless flow variables, freestream 

variables are variables with subscript notation ’oo’, and L is the reference length. The 

freestream Reynolds number is defined as

--
PqoU<x>E

Poo
(9)

Now the non-dimensional transport equation of the S-A model is written as

Du* cblH*P* + [V • ((u* + P*) VP*) + cb2 (VP*)2] - Cwlfu
Dt* aRer Rec

1 2
(10)

For convenience, the superscript will be dropped so that all the variables are



2 IMPLEMENTATION 2.2 Non-dimensionalisation

assumed to be non-dimensional values, unless stated otherwise. For the same purpose, 

the freestream Reynolds number based on the reference length L will be written as Re. 

Finally the transport equation is written in a similar way as the N-S equations.

dW + d{Fi - Fv) d{Gi - Gv) diW -Hv)_
------r--------- 1------------------ 1-------- ;;;-------  — (11)

dt ' dx ' dy ' dz 

where W = v, inviscid flux, viscous flux and the source terms are deflned as the 

following

Fl = uu 

Gl = vv 

Hl = wu
rpv __ t'+Z' di'

(7 Re dx

f^v _ u+v du
aRe dy

TTV _ u+V dV
aRe dz

S = iSi S'2 + iS,4.

The source term is divided into the following four parts

= Cbi^V

(i)2+(f)2 + (S)2 

[i]2
. S4 = ?(g + | + S).

All the auxiliary functions are redefined in non-dimensional form as

(12)

‘in =
2 crRje (13)

S3 =__ __  CVj1 f XL
Re



2 IMPLEMENTATION

x=~, fvl = 3^ 3) fv2 = l-
u X3 + c6vl

2.3 Curvilinear coordinates

X
1 + xfvl

fw — 9
V1 I r6 1 1/6

6 , Wt . 9 = r + cw2{r&-r), r = • —
Lr + c" 3J Sk2(P -n-e

+1^2ij2^v2 ’ ~i^' ^ =
(14)

a — 2/3, c61 = 0.1355, c62 = 0.622, k = 0.41

Cyi = 7.1, CW1 -- Cfti/K2 + (1 + C62)/<7, *'tu2 ^ 0.3, CW3 = 2.

2.3 Curvilinear coordinates

The governing equations are usually transformed from the physical domain [x,y,z,t) 

to computational domain (^, 77, C, r) virith the grid spacing in the computational space 

is uniform and of unit length. This produces a computational region that is a cuboid 

and has a regular uniform mesh (Fig. (2.1)).

Ld
£ X

Figure 2.1: Coordinate transformation from physical to computational domain

The generalised coordinate transformation produces a system of equations that can 

be applied to any regular and nonsingular geometry or grid system.



2 IMPLEMENTATION 2.3 Curvilinear coordinates

T — t

T] = T}{x,y,z, t)

C =
The Jacobian matrix is defined as

(15)

J = d{^,V,C,T)
d{x, y, z, t)

T]x Vy Vz It

Ci Qy Cz Ct

0 0 0 1

(16)

where

— J{yvzC V(,zr}>l 

^y ^ J{ZT)X^ Xjjz^) 

^z = JiXyy^-yyX^;)

Vx = Jizm - y^zc) 

Vy = J{^^ZC - 

Vz = J{y^xc - xiy(i)

Cx = Jiy^Zr, - Hyri)

Cy =z J{.XjjZ^ X^Zfj')

Cz = J ix^yr) ye,xv)
Ct = -XrCx - VrCy ~ zrCz Vt = -XtT]x - yTr]y ~ ZTr}z Q = -XTCx - yrCy ~ ZrC

(17)

J is the determinant of the Jacobian matrix and can be calculated by

J = {x^yrlzc + x^y^Zr, + xvycz^ - x^y^Zy - xvy^zc - x^y^z^) x. (18)

All the elements (metrics, e.g., CxjCyyCz) can be obtained from the inverse met­

rics (e.g., x^,y^,z^). Simple finite difference approximations can be used to calculate 

these inverse metrics since the grid points are equally spaced in computational space, 

that is, A<^ = At] = AC = 1-

The chain rule of partial differentiation is introduced in calculating all the deriva­

tives, for example, the velocity gradient || is calculated as



2 IMPLEMENTATION 2.4 Finite volume method

du du du du (19)

Now if we apply the generalised transformation to the transport equation of the 

S-A turbulence model, Eqn. (11), the following equation will be achieved

dW d{Fi - Fv) - Gv) - Hv) _
+ + 5r/ + ac = S. (20)

The variables in the above equation are defined as the following

(21)

W - W/J

Fl = ^tW + {^XFi + + ^ZW)/J

Gi = VtW + iv.F1 + 7]yGi + VzHi)/J 

W = CtW + iCxFi + CyGi + CzHi)/J

Fv = {^xFv + ^yGv+^zHv)/J 

Gv = (t]xFv + riyGv + VzHv)/J

Hv = {CxFv + CyGv + CzHv)/J 

S = S/J

Again derivative terms of the velocity and the working viscosity u should be eval­

uated in computational space C) r) via fchain rule, as mentioned above.

2.4 Finite volume method

The finite volume method uses the integral form of the conservation equation as the 

starting point

4- f WdV+ [ (M -n) dS = f S(j>dV, 
dt Jy Js Jv

M = {Fi- Fv)i -f {G1 - Gv)i + {H1 - Hv)\i.

(22)

(23)

The above integral conservation equation applies to each control volume, as well as

7



2 IMPLEMENTATION 2.5 Spatial discretisation

e—
X

X

X

X

X X X

X X
J

X

X X X
(b)(a)

Figure 2.2: Two types of finite volume grids: (a) nodes centered in CVs (b) CV faces 
centred between nodes

to the solution domain as a whole. To obtain an algebraic equation for each control 

volume, the surface and volume integrals need to be approximated using quadrature 

formulae.

The usual approach is to define the control volumes by a suitable grid and assign 

the computational node to the control volume centre. However, it is possible to define 

the nodal locations first and then construct control volumes around them. Fig. 2.2(a) 

and Fig. 2.2(b) illustrate these two different finite volume grids. The former one is 

used in this study.

2.5 Spatial discretisation

The application of the finite volume method leads to the need to calculate the fluxes 

on the surface of two neighbouring control volumes, e.g., Ft±1/2 jk, Ff±1/2 jk. The 

inviscid flux terms in this study are discretised by the Engquist-Osher method [12]. 

The MUSCL interpolation [13] is used to provide the third-order accuracy together 

with van Albada’s limiter [14]. The discretisation of the viscous flux terms is realised 

by central difference. The source term is evaluated at the cell centre.



2 IMPLEMENTATION 2.5 Spatial discretisation

2.5.1 Inviscid flux terms
.

The Engquist-Osher method is used to discretise the inviscid flux terms: -F7±i/2j,fe’ 

^i,j±i/2,k and ^ij,k±i/2- To describe the method, the flux term can be written

as

^ ^. \ 1 rww/2,i,k —
dW, (24)

i+l/2,j,k

where A{W) is the derivative of F with respect to W. Values for can be

obtained from the MUSCL interpolation with von Albada’s limiter in order to improve 

the accuracy of the results.

(a^+e2) A_ + ( A?.+e2) A+ 
Ai+A^+2e2

- jj'.fc

Wt+l!2,j,k W,i+l,j,k
(A^+e2)A_ + (Ai+e2)A+ 

Ai+Al+2e2

(25)

J i+l,j,k

where

(26)

and e2 is a small non-zero constant which can prevent the undesirable clipping of 

a smooth extremum but otherwise has negligible influence. The value used by van 

Albada [14] is 0.008. It was found that the results are not very sensitive to the precise 

value of e2.

According to Eqn. (25), the inviscid flux residual for control volume {i,j,k) is a 

function of 13 points

^i,j,k ~ ^ {^i-2,j,kj IEi-l,j,k^ ^i+l,j,k: Wi+2,j,k^ IPi,j-2,k,

bEi,j-l,fe) 1^i,j+l,k^ Wij+2ik: Witj!k~2, Wi,j,k-\i Wi,j,k+li ^i,i,k+^ •



2 IMPLEMENTATION 2.5 Spatial discretisation

2.5.2 Viscous flux terms

Central differencing is used to discretise the viscous flux terms: Fy±l/2J k, GviJ±l/2 k and 

Hy ■,,, /0. The value of the velocity components and their derivatives, as well as the 

value and derivative of the working eddy viscosity v are required at the faces of each 

control volume. Control volume face values are approximated by the average of the 

two adjacent control volume face values,

1 ~ ^ (28)

Control volume face values of the derivatives are obtained using Green’s formula 

applied to a one-sided auxiliary control volume surrounding the considered face, for 

example

1? = ^/'/ t>dydi,
dx Vaux J J 5

(29)

where Vaux is the volume of the auxiliary control volume and Saux includes all the six 

surfaces surrounding the auxiliary control volume. Suppose the centre of the auxiliary 

control volume is called p, so the following six values are needed

+ l'i+l,j,k +

b'w = ui,j,k

= {^i,j-l,k + h+l,j-l,k +

= {l'i,j,k + 

z/e =: h'i+lyj,k

— i^i,j,k + ^i+l,j,k + + t^i,j,k+l)//^-

This means that the viscous flux terms are related to 19 points. For both the 

inviscid and viscous flux terms, the residual is now a function of 25 different points.

10



2 IMPLEMENTATION 2.6 Boundary conditions

2,5.3 Source term

The source term is evaluated at the control volume centre, using the approach described 

in Eqn. (29).

After the spatial discretisation, the following semi-discrete form of the S-A model 

is achieved

1 (31)
dr

where ^,j,k denotes the discretisation of the spatial and source terms. Considering 

the whole computational domain, this equation is rewritten in the following form for 

clarity

dt ~
(32)

2.6 Boundary conditions

The boundary conditions are set by using two rows of halo control volumes. Values are 

set in the halo according to interior values and boundary values. Once halo values are 

set then all interior control volumes are treated in an identical fashion. The extrapo­

lations used are shown in Table (1). The subscripts 1, 2, bl and b2 denote values in 

the interior control volume adjacent to the boundary, the next interior control volume, 

the first halo control volume and the second halo control volume, respectively.

i/oo is freestream value and is set to O.Ii/qo by default as suggest by Spalart [1]. This 

value is also used to initialised the flow field. For a given profile bounday, Upro is the 

value given directly which is set from an input parameter file.

11



2 IMPLEMENTATION 2.7 Time discretisation

Boundary type First halo control volume Second halo control volume
Solid wall 1IIr—

l b'b2 = —t^i

Far field ^61 — ^oo h2 = ^oo
y-symmetry r'bi = l/2 Vb2 =
z-symmetry l/bl = i/2 l/b2 — T^l

Linear extrapolation l/bi = 2Ub2 — b'l 1/62 “ 2U\ — U2

Poiseille hi = 0 b'b2 = 0
Mirror I'bi = h b/b2 =
Given profile Ubl — ^pro b/b2 = ^pro

Degenerated x-y hi - h b'b2 — lyl

Degenerated x ^bl = l/2 l/b2 = l'l
Degenerated interior ^bl = u2 ^b2 = ^2

Table 1: Boundary conditions for the S-A turbulence model

2.7 Time discretisation 

2.7.1 Steady-state solver

The integration in time of Eqn. (32) to a steady-state solution is performed in two 

phases. First, an explicit scheme is used to smooth out the freestream starting solution.

AQ = AtRn, (33)

where AQ = Qn+1 - Qn, n is the current time level, n -i-1 is the new time level.

In order to speed up the calculation, an implicit time-marching scheme is applied

At
AQ = —Rn+1. (34)

This equation represents a system of non-linear algebraic equations. In order to 

simplify the solution procedure, the flux residual Rn+1 is linearised in time as follows

R"+i = Rn + ^At + 0(At2)

~ T>7i~ -t ac^ gt Lie

^Rn + f|AQ.

(35)

Now the following linear system is obtained after applying the above approximation

12



2 IMPLEMENTATION 2.7 Time discretisation

Figure 2.3: Approximate Jacobian matrix

^I+|||AQ = _R». (36)

As mentioned above, the residual of each control volume is related to 25 points. 

This leads to a Jacobian matrix 9R/5Q which has twenty five non-zero blocks per row. 

An approximate Jacobian is introduced in order to reduce the memory requirement and 

CPU time consumption. Only seven non-zero elements are considered so that when 

calculating the Jacobian the residual is only considered to be a function of these seven 

points

TU,j,k = R {Qi-l,j,ki Qi,j,ki Qi+l,j,kj Qi,j+l,ki Qi,j,k-li Qi,j,k+l) ■ (^'^)

This approximation, as shown in Fig. (2.3), which is applied only for the derivation 

of the Jacobian terms, is also easier for the linear solver because the resulting matrix 

becomes more diagonally dominant than using the exact Jacobians. As a result, 72% 

of the memory requirement and matrix-vector multiplication operation are reduced. 

The method has been successfully applied in the two-dimensional solver PMB2D [15] 

and the mean fiow solver of the PMB3D code.

2.7.2 Unsteady flow solver

The N-S equations and the S-A transport equation for unsteady flow are solved by 

introducing an iteration through pseudo time r to the steady state [16], as given by

13
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2 IMPLEMENTATION 2.8 Linear solver

n+l,m+l _ wn+l,m ^wkm _/^wn ^ wn 1 .
+---------- ----------------- h R (wfcm, qfct) = 0

Ar 2At
(38)

rin+1,771+1 _ „71+1,771 onlt _ Ann I n7l-l
--------aT5------+ 2At +S(wl-,q'-)=0, (39)

where the m-th pseudo time iterate at the {n+l)th real time step are denoted by wn+1’m 

and qn+1,m respectively. Here km, kt, km and lt give the time level of the variables used 

in the spatial discretisation. The iteration scheme used only effects the efficiency of the 

method and hence we can sequence the solution in pseudo time without compromising

accuracy. For example, using explicit time stepping we can calculate w71+1,771+1 using

km = n + l,m and kt = n + l,m and using lm - n + l,m + l and lt = n+l,m.

For implicit time stepping in pseudo time km = lm = lt = n + l,m+l and kt = n + l,m 

can be used. In both of these cases the solution of the equations is decoupled by freezing 

values but at convergence the real time stepping proceeds with no sequencing error. It 

is easy to recover a solution which is sequenced in real time from this formulation by 

setting kt = n,m throughout the calculation of the pseudo steady state. This facilitates 

a comparison of the current pseudo time sequencing with the more common real time 

sequencing.

2.8 Linear solver

For the implicit scheme, the result of the discretisation process is a system of algebraic 

equations, Eqn. (36) is written here again.

^I+i)AQ=-R" (40)

For unsteady problems, the equation should be changed because of the additional 

term in Eqn. (39).

The generalised conjugate gradient (GCG) method [17] with the block incomplete 

LU (BILU) decomposition [18] are chosen to be used to solve this system.

14



3 VALIDATION

3 Validation

3.1 RAE2822 aerofoil Cases 9 and 10

The transonic flow over an aerofoil provides a good test of the turbulence model to 

predict the boundary layer development along a curved surface. Two cases of RAE2822, 

Case 9 (no/small separation region) and Case 10 (shock induced separation) with 

different flow conditions were tested. Flow conditions for these two cases are listed 

in Table 2. For both cases, the same C-type grid was generated with 257 points in 

the streamwise direction, 65 points in the direction normal to the wall and 5 points in 

the spanwise direction. Since the transitional terms of the S-A turbulence model was 

ignored in the implementation, flow around this aerofoil was considered fully turbulent.

RAE2822 Mqq Re Angle of attack Transition at x/c
Case 9 0.73 6.5 X lO6 2.79° 0.03

Case 10 0.75 6.2 X lO6 2.81° 0.03

Table 2: Flow conditions selected for the RAE2822 Cases 9 and 10

i \

(a) RAE2822 Case 9 (b) RAE2822 Case 10

Figure 3.1; Mach number contours around the RAE2822 aerofoil

Mach contours, pressure and skin friction coefficient distributions for both cases 

compared with the k — u turbulence model and the experimental data are presented in

15



3 VALIDATION 3.1 RAE2822 aerofoil Cases 9 and 10

Figs. 3.1, 3.2 and 3.3. Shock was captured in both cases. For Case 9, the location of the 

shock captured is upstream from the experimental location. For Case 10, the the shock 

captured is downstream from the experimental data. The k — u model gives the shock 

location downstream of the experimental data in both cases. The angle of attack has 

a strong influence on the shock location. Since the correct angle of attack is uncertain, 

the shock location is not a reliable indicator of the turbulence model accuracy in these 

two cases.

' Exp data

o 0 -

' Exp data

(a) RAE2822 Case 9 (b) RAE2822 Case 10

Figure 3.2: Pressure coefficient distributions for the RAE2822 aerofoil

0.008 0.008

0.006 0.006

0.004 0.004

0.002 0.002

-0.002 -0.002

-0.004 -0.004

-0.006 -0.006

-0.008, •0.008,

■ Exp data . : Exp data

x/c x/c

(a) RAE2822 Case 9 (b) RAE2822 Case 10

Figure 3.3: Skin friction coefficient distributions for the RAE2822 aerofoil
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3 VALIDATION 3.2 NLR-F5 wing

In Fig. 3.2, pressure coefficient distributions on lower wall surface are quite good in 

both cases for both turbulence models. But on the upper wall surface, shock position 

is not well predicted as mentioned above. Shock induced separation can be observed 

in Case 10 (Fig. 3.3).

3.2 NLR-F5 wing

A second test was made to investigate the flow around a NLR-F5 wing. The flow 

conditions are as follows: the freestream Mach number is 0.896, the attack angle is 

0.497° and the Reynolds number is 5.79 x lO6. A C-0 type grid which containing 

65 X 33 X 33 points was used in this calculation.

□

P 1.23304
1.19872
1.16441
1.13009
1.09577
1.06145
1.02713
0.992816
0.958498
0.92418
0.889862
0.855544
0.821226
0.786908
0.75259
0.718272
0.683954

Figure 3.4: Pressure contours for NLR-F5 wing
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3 VALIDATION 3.2 NLR-F5 wing

(a) T] = 0.181

(c) Tj = 0.512

(e) 77 = 0.721

(g) 77 = 0.875

(b) 77 = 0.352

(d) 77 = 0.641

(f) 77 = 0.817

(h) 77 = 0.977

Figure 3.5: Pressure coefficient distribution for NLR-F5 Wing
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3 VALIDATION 3.3 ONERA A aerofoil

Pressure contour is shown in Fig. 3.4 with the shock near the leading edge clearly 

seen. In Fig. 3.5, the pressure coefficient distributions are compared with the k — u) 

model and the experimental data, t] means the position along spanwise direction. In 

the region near the lower surface leading-edge, the S-A model predicts the suction peak 

very well. In the area near the tip (Fig. 3.5 (g) 77 = 0.875 and (h) rj = 0.977) the S-A 

model does not capture the shock wave on the upper wall surface, while the k — u) 

model predicts the shock sharply.

3.3 ONERA A aerofoil

The ONERA A aerofoil at a freestream Mach number Moo = 0-15, Reynolds number 

Re = 2 X lO6 and an angle of attack a = 13.3° has been considered as a validation case 

for the S-A turbulence model.

Computational data 
Experimental data

Figure 3.6: Pressure coefftcient distribution along the ONERA A aerofoil

Because of the high attack angle, boundary layer separation on the upper surface 

near the trailing edge is a challenging test case for turbulence models. Both the sep­

aration point and the recirculation structure should be correctly predicted in order to
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3 VALIDATION 3.3 ONERA A aerofoil

obtain the correct lift coefficient and overall pressure distribution on the aerofoil. A 

C-type mesh was used with 6 blocks containing 341 x 45 x 2 grid points.

Computattonai dati

U/Uinf

(a) x/c = 0.3

Coinptftaltonal data
Exparinwntal data

UAJInf

(b) x/c = 0.1 (c) x/c = 0.87

CocKfutafonal data
Expcrfmwvlat data

0.12 -

UAJinf

ExparhnMtal data

UAJinf

ExporitnwW data

0.03 -

UAJinf

(d) x/c=0.96 (e) x/c = 0.99

Figure 3.7: Velocity profiles along the ONERA A aerofoil

Pressure coefficient obtained from the present model is compared with the exper-
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3 VALIDATION 3.4 AGARD Case CT2

imental data in Fig. 3.3. In the near leading edge region, a big difference is observed 

due to lack of transition and the large attack angle. In the area near the trailing edge, 

this model gives much closer results.

Velocity profiles at five positions along the aerofoil are compared with experimental 

results in Fig. 3.3. In general, the agreement is fairly good at the outer part of the 

boundary layer. Boundary layer separation on the upper surface near the trailing edge 

is observed in Fig. 3.3 (d), (e) and (f).

3.4 AGARD Case CT2

For the AGARD Case CT2, the NACA0012 aerofoil rotates around the moment centre, 

one quarter of the chord. The incidence is given by the following equation.

a{t) = 3.16° + 4.59° sm(ojt) (41)

where oj = k/2 is the angular frequency of the motion {k = 0.0811). There are 

129 X 33 X 2 grid points in the computational domain and the grids are rotating rigidly 

with the aerofoil. The freestream Mach number is 0.6 and the Reynolds number is 4.8 

million. The mesh used in this calculation was a H-type mesh with 149 x 65 grid points 

on two blocks located upper and lower of the aerofoil. Another four blocks were also 

included with 65 x 25 grid points in each block.

In Fig. 3.8, normal force comparison shows good agreement between the computa­

tion and experiment. Pressure distributions are compared at four angles of incidence 

in Fig. 3.9. It is observed that a shock wave occurs when the attack angle is near the 

maximum value but the shock wave strength is under-estimated.
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3 VALIDATION 3.4 AGARD Case CT2

Computational data 
Experimental data

incidence (degrees)

Figure 3.8: Integrated normal force for NACA0012 aerofoil case CT2
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Figure 3.9: Instantaneous pressure distributions for NACA0012 aerofoil case CT2
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3 VALIDATION 3.5 Self excited test case

3.5 Self excited test case

For flow over an 18% circular arc aerofoil, experimental studies have found that the flow 

depends on the flow conditions and history. Three distinct regions have been observed: 

(1) Below a critical Mach number the flow is steady with trailing edge separation. (2) 

For larger Mach numbers shock induced separation is observed and the flow becomes 

unsteady. (3) The flow becomes steady again as the Mach number is increased. In this 

case, the Reynolds number is 2 million, when the Mach number is between 0.7 and 0.8, 

unsteady flow is observed. While the Mach number is below 0.7 or over 0.8, steady 

flow is observed in the experimental studies.

20 30
lime

-0.2 -

-0.3 -

time

(a) M00 = 0.68, Re = 2 X lO6 (b) Moo ^ 0.77, Re — 2 X lO6

20 30
time

(c) Moo = 0.82, Re = 2 X lO6

Figure 3.10: Normal force coefficient history for 18% circular arc aerofoil test case
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3 VALIDATION 3.5 Self excited test case

0.006

0.006

0.004

0.002

•0.002.

fa) Moo — 0.68, Re = 2 X lO6

0.008

0.006

0.004

0.002 -

fbj Moo = 0.82, Re = 2 X lO6

Figure 3.11: Steady pressure and skin friction distributions for 18% circular arc aerofoil 
test case CT2

The grids used here include 123 x 33 x 2 grid points. From the normal force history 

for three different Mach numbers (0.68, 0.77 and 0.82) in Fig. 3.10, it is clear that 

the computation successfully reproduced all these three flow types observed in the 

experiments. Pressure and skin friction distributions of the two steady cases at Mach 

number of 0.68 and 0.82 are presented in Fig. 3.11, for the high Mach number case 

shock induced separation is clearly observed. For the unsteady case, the shock wave 

moves forward, then backward with flow separation as shown in Fig. 3.12.
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3 VALIDATION 3.5 Self excited test case

0,002

-0,002.

0.002

-0.002

0 008

0 006

0 004

0 002

-0 002.

Figure 3.12: Unsteady pressure and skin friction distribution sequence for 18% circular 
arc aerofoil test case, Moo — 0.77, Re = 2 x lO6
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,4 CONCLUSIONS

4 Conclusions

The implementation of the Spalart-Allmaras turbulence model in the PMB3D code 

gives some reasonable results in the validation phase. For all the test cases including 

RAE2822 aerofoil Cases 9 and 10, NLR-F5 wing, ONERA A aerofoil, AGARD Case 

CT2 and an 18% circular arc aerofoil, the S-A model captured all the main flow phe­

nomena both in steady and unsteady problem. It seems that this model is promising 

especially for flows without considerable separation.
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