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Abstract

The effect of reducing the extent of the computational domain for transonic lifting flow over an 

aerofoil in an unbounded domain is examined. A correction to the far field boundary conditions is 
developed based on a far field expansion of the linearized small-disturbance equation. Improved 

accuracy is demonstrated on smaller computational domains.
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1 Introduction

The evolution of the discipline of computational fluid dynamics (CFD) in the past few decades has 
gone hand in hand with the rapid growth of available computer power. CFD enables the solution 
by numerical methods of fluid dynamics problems which are intractable by analytical methods. 
The now widespread use of the Euler and Navier-Stokes equations as the governing equations in 
CFD as opposed to simpler fluid models [1] is a measure of the growing maturity of the discipline. 
CFD has now become a fundamental element of the modem aerospace design process together 
with wind tunnel and flight testing. The principal use of CFD is to predict the nature of the flow, 
often involving complex flow phenomena, around proposed geometries and hence contribute to 
geometry optimisation of both major and minor components.

The use of panel methods to solve linearised potential flow equations [2] was initially 
demonstrated by Hess and Smith [3] in 1962. Steady improvement of potential schemes resulted 

in the first applications of CFD to aircraft design in the late 1960’s, notably in the configuration 
development and aeroelastic analysis in the U.S. supersonic transport programme. Accurate lift 
and lift-curve slope predictions were achieved but pressure distribution calculations were 
unsatisfactory. In later years increasingly complex and successful potential methods were 

developed. The fact that the computing power is now available to tackle the more complete and 
mathematically involved Euler/Navier-Stokes formulations does not mean that methods considering 
less complex flow physics are obsolete. Potential models are often perfectly adequate and offer the 
considerable advantage of requiring greatly reduced computer power and hence cost for 

implementation. Comparitible run times and costs for a range of solution methods is presented in 
Appendix 3. Considerable aerodynamic improvements were made to the Bell V-22 Osprey tilt rotor 

vehicle in the mid 1980’s by including in the design process CFD methods employing relatively 
simple flow models. 3-D panel methods were employed to redesign the wing/fuselage fairing in 

order to avoid flow separation in the forward region of the fairing. CFD was also crucial to the 
design of the flaps, spinner and nacelle inlets. However, for more complex flowfields potential 
methods are not valid. There has been an increasing demand within the aircraft industry for 
applications codes which use the Euler/Navier-Stokes formulation for evaluating flowfields such as 
those associated with propulsion/airframe integration, large scale separation, multiple lifting 
surface interactions, shock waves, high angle of attack flowfield prediction, performance boundary 

prediction, and flutter and buffet calculations where unsteady boundary-layer separation is present. 
Major breakthroughs were MacCormack’s explicit difference scheme in 1970 [4] and the implicit 
scheme of Beam and Warming in 1976 [5]. Considerable effort has been devoted to Euler/Navier- 
Stokes schemes since the early 1980’s resulting in advances in accuracy and speed, but robustness 
and generality have proved elusive; these schemes require special skill to run successfully and 
nearly always require a supercomputer, which compares unfavourably with the wide range of 

potential method design tools which can be run by non-expert CFD users on high-end personal



computers. Despite this drawback, Euler schemes have been employed with increasing success to 
many design problems. For example, Euler codes have been used in recent years by Boeing for 
the analysis of advanced propfan aircraft [6] [7] where the main problem is power-induced 
interference effects on the aerodynamics of the aircraft. Another example of the successful 
application of Euler codes is described in references [8] and [9] where the effect of tractor mounted 

propfans on the wing pressure distribution was accurately predicted. The calculation of the NASA 
Space Shuttle ascent environment, see pages 863-886 of reference [1], represents one of the few 

actual design applications of Navier-Stokes schemes to date. The results were used to provide a 
new source of information in the transonic and supersonic regime, which resolved inconsistencies 

in the existing aerodynamic loads data base acquired through wind tunnel and flight testing. These 
calculations require six hours of CPU time on a Cray 2, which is adequate explanation in itself as 

to why Navier-Stokes code applications are as yet not widely employed as design tools. A brief 

cost analysis comparing Cray YMP and workstation usage is included in Appendix 4.
In recent years there have been significant advances in methods for Navier-Stokes 

equations. Modem computers make Navier-Stokes calculations practical, although improvements 

are constantly being sought to reduce the required computer power. In this study the efficient use 
of an existing Navier-Stokes code is examined and an improvement to the code is developed. 
Both these considerations have the same aim, to reduce the problem complexity and computing 

time.
When an aerofoil is placed in a uniform stream, the effect of the presence of the aerofoil on 

the flow extends to infinite distances from the aerofoil. However, in CFD it is common to 
consider a computational domain whose extent is just great enough to enable the assumption of 
uniform freestream conditions outwith the domain, in the far field, to yield acceptably accurate 
solutions for the problem being considered. The size of the computational domain has to be 
restricted as much as possible to enable a fast computer solution. In this report the effect of 

varying the extent of the computational domain or far field distance is examined in an attempt to 
determine an optimum trade-off between accuracy and speed.

Also considered is a method of obtaining a more accurate solution by introducing a far field 
boundary correction. An improvement upon the assumption of freestream conditions at the 
boundary of the computational domain can be achieved by solving exactly a simpler set of 
equations for the flow in the far field and using this solution to provide the far field conditions for 

the full simulation. It is then possible to significantly reduce the boundary extent yet still attain 

satisfactory results.
The tests were performed using the Glasgow University turbulent flow solver, an existing 

code integrating the full Navier-Stokes equations, see equations 11 in Appendix 1. The thin-layer 
form of the non-dimensionalised equations is solved in general curvilinear coordinates. The non- 
dimensionalisation is with respect to freestream temperature, Mach number and velocity. To 

summarise the solution procedure, the convective terms are discretised by Osher’s approximate



Riemann Solver [10] with a MUSCL interpolation [11] providing 2nd or 3rd order accuracy. 
When a limiter is required in the following, the Van Albada limiter [12] is used. The viscous terms 
are centrally differenced and Riemann invariants are used to impose far field boundary conditions. 
The explicit method can be written in the form

n+*---- a —Rs(wn^
Axw = w

where Rs denotes the steady residual obtained from the discretisation, and w is the first vector in 

equations (N-S).
Calculations were made using two C-type meshes:

Grid

1
2

Dimensions

136x36
256x64

Cells on surface Far field location (chord length si

104
208

30
10

Flow solutions are presented for the RAE 2822 aerofoil. Experimental transonic case 9 of 

reference [13] is considered. Aerofoil design data and wind tunnel model characteristics are listed 

in Appendix 2. Detailed model geometry is included in reference [13].
The development of the boundary conditions is discussed in the following section, section 

2. In section 3 it is described how the influence of the boundary extent on the calculations was 
examined. In section 4 the far field boundary correction is introduced and its effect is evaluated. 
The results are presented and discussed in section 5.

2 Characteristic Treatment at the Boundary

The method of characteristics is used to obtain the far field boundary conditions. A local 
coordinate system {x,y ) is constructed on the outer boundary, with x normal to and directed 
outward from the the outer boundary, and y tangential to the boundary. If it is assumed that

derivatives along the boundary can be neglected, ie d/dy =0, then it is possible to apply a quasi- 

one-dimensional characteristic analysis to obtain far field boundary conditions. The basis of this 

analysis is the unsteady Euler equation, (equation 12 of Appendix 1):

au ap A
5t dx



where U =

P
pu
pv

,Pe.
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This models a two-dimensional flow with gradients only in the x direction. It is possible to rewrite 

this equation in the form

du A au .— + A— = 0at dx
ap

where A is the Jacobian matrix —au (1)

The derivation of the Jacobian is facilitated by introducing a new set of variables Uj, u2, u3, u4:
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U =

By using the equations 

P = (Y-l]pi 

pi = pe-ip(M2 +v2)

it is possible to show that
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By simple differentiation it is then possible to determine the Jacobian matrix:
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A =

Y“3n^2 (Y-1>\2« + ------ Iv (3 - Y )m (1“Y)v y_i

-yu&+{y-\][u1 + v1]u Ye-^^^^^(3«2 + v2]k (I-yJmv y«

By applying a characteristic analysis to the four equations in (1) it is possible to obtain four 

equations in (a: -t) space which may be used to determine the far field boundary conditions. The 

matrix A can be expressed as

-1A = EAE

where A =

(2)

M 0 0 O'
0 M+a 0 0
0 0 M-a 0
0 0 0 w

The diagonal terms of A are the eigenvalues of A. E is a matrix whose columns are the right 
eigenvectors of A. E"1 is the inverse of E and is a matrix whose rows are the left eigenvectors of
A. Combining (1) and (2) it can be shown that

5t dx

The four resulting equations are

5s 5s _— +u— = 0 
5t dx

5R+ , ,5R
----- + ki +a

5t
a 5s , 5s — + (u +a)— 

dx y(Y -1) L^t dx_

5R , ^5R a----- + iu -a)---------------
5t

dv dv n 
— +u— = 0 
5t dx

ds , , 5s— + (w -a) — 
dx Y(Y -1)L 5t dx.

= 0

= 0

(3)

(4)

(5)

(6)



where R+= u + 2a /(y-l) and R~ = u -2a/(y-l) 
s is the entropy obtained from s = ln(p/pY) 

a is the local sonic velocity obtained from « 2 = yp/p

In the far field the flow may be considered to be homentropic since there are no discontinuities 
such as shock waves. Equations (4) and (5) then reduce to:

dR+ , >dR+ n
----- + (m +a]------ = 0

at dx

aR , ,aR----- + (h -a]------ = 0
at dx

(7)

(8)

From equations (3), (6), (7) and (8) the following characteristic equations may be constructed:

a!-o
dt

along C°: — = u 
dt dt

along C°: — = u 
dt

dR+-o
dt

4- dxalong C : — = u + a 
dt

O
II

'c4 
3̂

, dxalong C : — =u -a B dt

The quantities s,v, R+, R", are referred to as Riemann invariants since they are constant along 
the characteristic directions dx /dt = u, u, u+a, u-a respectively. Fig.l shows the characteristic 

paths for subsonic outflow, 0< u < a .

Exterior to domain

Interior to domain

C

C r— — u + a

Fig. 1 Characteristic paths at far field boundary
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Whether each Riemann invariant is extrapolated from the exterior or the interior of the 
computational domain depends on whether the characteristic is incoming or outgoing. If the flow 

across the boundary is subsonic, two types of boundary can be distinguished:

1. Subsonic outflow see Fig. 1.
u >Q,u + a > 0,u -a >0 therefore s, v, R+ are extrapolated from the interior, R" 

from the exterior.

2. Subsonic inflow
u <0,u + a >0, M -a <0 therefore s, v, R~ are extrapolated from the exterior, R’ 
from the interior.

In practice, the interior of the domain is taken to be the cell centre adjacent to the boundary. 
Conditions exterior to the domain are taken as freestream conditions when a far field representation 
is absent. Including the far field boundary corrections discussed in section 6 enables improved 
modelling of the conditions exterior to the domain by accommodating perturbation velocity terms 

arising from a point vortex representation of the aerofoil.

3 Effect of Reducing Far Field Distance

To examine the effect of the boundary extent of the computational domain on the calculations, three 

approaches were adopted:

1. Decreasing the boundary extent of grid 1 from 31 to 4.976 chord lengths in the 
downstream direction, see Figs. 2.

2. Decreasing the boundary extent of grid 1 from 30 to 2.087 chord lengths in the 
upstream/crosstream direction, see Figs. 3.

3. Decreasing the boundary extent of grid 2 from 10.75 to 2.556 chord lengths in the 
upstream/crosstream direction, see Figs. 4.

In all three cases, the boundary extent was reduced by dropping successive grid lines from the 
outer boundary of the full grid. It is evident from the results obtained that the prediction of lift, 
drag and pressure distribution deteriorates as the size of the computational domain is decreased. In 
the next section it is described how an improvement was made to the code to make the accuracy of 
the calculations less dependent on the boundary extent. The results are discussed in full in section 

5.



4 Effect of Far Field Boundary Correction

The far-field boundary correction is based on the assumption that the behaviour of the flow in the 

far-field is consistent with the Prandtl-Glauert equation, developed in Appendix 1;

(l - jcjjxx + 4)yy = 0

where Moo represents the freestream Mach number, (f) denotes the velocity potential, and x 
and y represent the distances along and normal to the freestream velocity respectively.

Define a new velocity potential 

(})'(x',y,) = p24)(x,y)

By the chain rule

d(j) _ d(}) 5x’ d({) ^
5x dx'dx dy'dx

= ^ 1+^ 0= — 
dx'' dy1' dx'

where x-x y —Py p2 = l-M^ T -

P2 dx'

5(}) _ d(J) 5x'+ d(j) dy' 
dy dx'dy dy'dy

= ^ ^ R = = 1^' 
dx'-U dy'-P_Pdy'“ Pdy’

le u =
P^

le V = —
P

and applying the chain rule again gives 

d24> _ 1 d2(j), d2(j) d2(J)'
2 a„i2dx P dx dy2 dy'2

Substituting into the Prandtl-Glauert equation yields 

<i>’x,x'+4>'yy = 0

The far field perturbation velocities can then be represented as a Laurent series about the origin.

00 1u'= [b'ncos(n8,J + c,I1sin(n0'j]
n=lI,

00 1v'= ^ —[b,ncos(n6'j+c,nsin(n0'J]

(9)

(10)
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Tile symbols r' and 0’ denote the radius and polar angle in the transformed plane. The coefficients
b’n and c’n can be evaluated from thin aerofoil theory as

b'jj = — 1'CG’xa-1dx n = 1,00
n 2ttJ0

C’n = -f co'xn Mx n = 1,00
n 2ttJ*0

where c is the chord length, a is the source strength and to is the vorticity. The leading terms of 
(9) and (10) decrease as the inverse of the radial distance in the transformed plane. Since the other 

terms decrease as the inverse of the square (at least) of the radial distance they are assumed 

negligibly small at the far field. For the leading term

b'1 = 0 Cl
_T
2tt

since vorticity integrated along the chord length is equal to the circulation strength. Substituting 

these into (9) and (10) gives

1 T'u'=------sin0'
r' 2:t

and noting that

r'= ^x'2+y’2 sin0' = /x’2--2
jx +y

r= p2r x'= X y- Py 

gives the perturbation velocity in the transformed plane:

j3, rpu = —
2tt (x2 + P2y^

Remembering that u = u’/p2 to transform to the physical plane, and similarly for v:

r
u = Py

2tt (x2 + p2y2)
V =

Py
2tt (x2 + p2y2

11
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These perturbation velocities can be combined with the freestream velocity and rotated into a body- 

orientated basis to obtain the corrected total velocities U and V in the far field:

U / q<x> = cosa + Fsin 6 

V / qoo = sin a - F cos6 

where F = (cic/47r)(|3/r|l-M^sin2(0-aj]-1

The symbols q^, Cj, c, and a represent the freestream dynamic pressure, lift coefficient, aerofoil 
chord length and the angle of attack respectively.

The program was amended as discussed above, using the far field representation to update the far 
field boundary conditions. The effect of the boundary extent on the calculations using the amended 
code was examined by decreasing the boundary extents of grids 1 and 2 in the upstream/crosstream 
direction from maximums of 30 and 10.75 chord lengths respectively. The results obtained using 

the corrected code showed an improvement on those using the original code, and are discussed in 

full below.

5 Discussion and Results

The pressure distribution obtained using the full grid 1, see Fig. 3e, agrees very well with the 
experimental data everywhere except around the suction peak at the leading edge where the match 
is somewhat disappointing. The results taken as a whole indicate that the failure to accurately 
capture the suction peak is due to insufficient mesh density near the aerofoil. A very good match to 
the experimental data was achieved using the full finer mesh, see Fig. 4e. Apportioning blame to 

an insufficient boundary extent is ruled out since if this was the case a far larger improvement than 
that achieved would be expected by increasing the boundary extent from 10 to 30 chord lengths or 
including the far field boundary correction. Excessive numerical dissipation due to insufficient 
mesh density is therefore the most likely cause of the inaccuracies using grid 1.

Figs. 2a and 2b show the the change in lift and drag coefficient caused by varying the 
downstream boundary extent as a percentage difference from the value obtained using the full grid 

in each case. The gradients of the curves in the larger boundary extent region is virtually zero 
which suggests that the values obtained using the full grid would not be significantly improved
upon by further increasing the boundary extent.

The tolerable levels of inaccuracy in predicting the lift and drag depend on the specific 
application. The typical values considered here are 1.5% in the lift and 0.5% in the drag. From 
Figs. 2a and 2b it is evident that the downstream boundary extent using the coarser mesh can be 
reduced to 9 chord lengths and still satisfy the lift accuracy criterion, or 17 chord lengths for the 

drag criterion.

12



Figs. 3a, 3b, 4a and 4b show that the inclusion of a far field boundary correction 

significantly improves the lift prediction at reduced boundary extents. Using the correction, the far 
field distance may be reduced to 15 chord lengths, an improvement of 2.7 on the uncorrected case 
for grid 1, see Fig. 3b. The effect of the correction using the fine mesh, grid 2, is similar. 
Referring to figure 4b, the far field distance may be reduced to 7.2 chord lengths, an improvement 
of 0.8 on the uncorrected case. These reductions in domain extent amount to similar reductions in 
computational effort since the grid density increases with aerofoil proximity.

It is difficult to gauge the effect of the correction on the drag prediction. For grid 1 the 
effect seems to be significant, see Fig. 3c, but for the finer grid 2 which should yield more accurate 
results, see Fig. 4c, the corrected and uncorrected curves actually diverge. This is not entirely 
unexpected since the continual problem facing even modem CFD analyses is accurate drag 

prediction. This casts some doubt over the validity of any conclusions drawn from Fig. 2b.
The pressure distribution achieved for the full grid 2, Fig. 4e is exceptionally good 

especially around the problem leading edge suction peak, and is an improvement on the results 
obtained by J.J. Benton [14], where a central-difference method was used. The amount by which 

the boundary extent may be reduced and yet still yield acceptable pressure distribution results is 
again dependent on the intended application. However, the graphs presented indicate that it is 

possible to reduce the computational domain and still obtain good results, especially with the 
inclusion of the far field correction. The gradual deterioration of the calculated pressure 
distribution can clearly be seen in Figs. 3e-h for grid 1 and 4e-h for grid 2. The improvement 
caused by the boundary correction becomes larger as the boundary extent is decreased. Significant 
errors in the pressure distribution using for example the fine mesh and the correction were not 
encountered until the boundary extent was reduced to the region of five chord lengths. At this 

proximity the shock wave begins to impinge on the boundary, therefore the original boundary 
conditions based on freestream conditions are invalid. The shock wave on the upper aerofoil 
surface is clearly seen in Fig. 5. Flow across shock waves experiences a change in entropy, 
therefore the boundary conditions based on the far field model where the flow is assumed to be 

homentropic are also invalid. An unexpected feature seen in Figs. 3h, 4g and 4h is that the 
pressure distribution around the trailing edge is worse for the case where compressible circulation 

at the boundary has been included. This may also be due to the breakdown of the assumptions 

inherent in the boundary conditions.
The improvement to the lift coefficient and pressure distribution prediction due to the 

inclusion of the far field boundary correction is worthwhile when it is considered that the actual 
amendment to the original code amounted to only six or seven lines. The possibility of further 
increases in efficiency by adding to the number of terms in the far field expansion as suggested by 

Wubs et al [15] merits further investigation.

13



Fig, 2a Effect of downstream boundary 
extent on lift coefficient, grid 1
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boundary extent on lift coefficient, grid 1
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Fig. 2b Effect of downstream boundary
extent on drag coefficient, grid 1
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Fig. 3e Pressure distribution, grid 1
Far field distance 30 chord lengths

Total lift:
Measured 0.803
No circulation 0.7828
Comp, circulation 0.7882
Total drag:
Measured 0.0168
No circulation 0.0086
Comp, circulation 0.0100

Fig.

Measurements Cook. McDonald. Firmin 
No circulation
With compressible circulatioa

-!--------- .-------- 1-------- 1---------j
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x/c

3g Pressure distribution, grid 1
Far field distance 4.861 chord lengths
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No circulation 0.6763
Comp, circulation 0.7321
Total drag:
Measured 0.0168
No circulation 0.0068
Comp, circulation 0.0080

Measurements Cook, McDonald. Firmin 
* No circulation
■ With compressible circulation

Fig. 4a Effect of upstream/crossstream
boundary extent on lift coefficient, grid 2

3 No circulation 
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Fig. 3f Pressure distribution, grid 1
Far field distance 10 chord lengths
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Fig. 3h Pressure distribution, grid 1
Far field distance 3.276 chord lengths
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Fig. 4c Effect of upstream/crossstream
boundary extent on drag coefficient, grid 2
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Fig. 4e Pressure distribution, grid 2 
Far field distance 10 chord lengths
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Fig. 4g Pressure distribution, grid 2
Far field distance 3.308 chord lengths
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Fig. 4d % Change in drag coefllclent with
upstream/crossstream boundary extent
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Fig. 4f Pressure distribution, grid 2
Far field distance 6.640 chord lengths
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Fig. 4h
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Pressure distribution, grid 2
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Total lift:
Measured 0.803
No circulation 0.5946
Comp, circulation 0.6676
Total drag:
Measured 0.0168
No circulation 0.0105
Comp, drculation 0.0096

* Measurements Cook, McDonald, Firmin
-----No circulation

With compressible drculation

0.2 0.4 0.6 0.8 
x/c

1.0

I



Fig. 5 Mach number distribution around RAE 2822 aerofoil showing 
shock wave on upper surface
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Appendix 1: The Prandtl-Glauert Equation

The two-dimensional laminar Navier-Stokes equations in conservative form are given by:

' p'
pu
2

pv - 0 0 r “O' 'O'

d a pu +p a pvu a ^xx a Txy a2 0 a2 0

at pv dx puv
p

dy
pv2 + p

p
- P ax ^xy + ay T

yy
- k

ax2 0 + , 2 ay 0

_Pe_ pu (e + —)
P J

pv(e+ -)
P J - UT + VT _ ‘XX lxy J _uTxy + vryy _T _T _

(11)

The symbols p, u, v, p, p, k, T, represent the fluid density, the two components of velocity, 
pressure, viscosity, heat conductivity, and temperature respectively. The symbol e denotes the total 
internal energy per unit mass, given by

e = cvT + ^(u2 +v2)

where the constant cv denotes the specific heat at constant volume.

The Euler equations can be obtained by assuming that viscous effects are neghgible:

_a
at

' p ‘ pu
2 ^

pv

pu d
pu +p

d pvu

pv

-Pe.

+ — 
dx puv

Pu(e + -)

+ — 
dy pvz +p

pv(e +
P J P J

= 0

(12)

If the flow is assumed to be steady, the time dependent term is equal to zero, yielding the 
momentum and continuity equations:

u du + v du = _ 1 dp
dx dy p dx
dv dv 1 dp "t
dx dy p dy

dx dy

If it is assumed that the flow is isentropic then the relationship a 2=dp/dp may be used, where a is
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the local sonic velocity, and after some manipulation these three equations may be arranged to give:

f'°ay
( 2 ^ 
A5--I du + uv 'du+ dv"

+ \<^ 1U J dx a2 < dy dxy U j
If the irrotationality condition

^-^1 = 0
dx dy)

is introduced, along with the velocity potential function cj), then the above equation becomes

( 2u
a 2

-1
d1^ (2uv'\ d%
dx2 \a2 J dxdy

(2 ^ 

a
az(j)
dy

= 0

This can be rewritten in terms of only one dependent variable, c|):

1 -■a 2ldxJ
a2(}) 2 (a(j)Y^<1)^1 |
dx2 a2 \dx\dy) dxdy

1--
a

d24)
ay2

= 0
(13)

Consider a thin body placed in a uniform stream of velocity Voo such that

(J)x = u'+Voo 4)y = v' (t)2=w,

where u’, v’, and w’ are the perturbation velocity components. Substituting these into (13) gives:

(^\2 + 2u'\00+u'

a

\ f Voov'+u'v') ( >2'\ V
(l>xx+2 2 (l)xy + 2

/ 'v a y1 \a j
(l>yy = 0

For isentropic flow, the energy relation can be written in the form:

a2+-{y- ijV2 = + -(y - IJvi
2 2

If the velocity is written as the sum of free stream and perturbation parts in this equation, the local 
sonic ratio can be written as

a0

‘ u’ u'2 v'2^
2----- +---IT +---y

Voo V2 V2 j
(14)
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If it is assumed that the perturbation velocity components are small compared to the freestream 
velocity, then higher order terms in the perturbation to freestream ratio may be neglected:

( n ^2a
\a°a j

2 u

By combining the above equation with equation (14) and neglecting all terms in the parentheses of 

second order in the perturbations it can be shown that

(mI -1) + (y + 1 jMi ^ + flMi - (j)yy = 0

▼ oo _ y Voo y

For slender bodies it is possible to neglect the middle term since the lateral velocity perturbation is 
small:

(Mi-l) + (Y + l]M2 ^ c|)Sx-4)yy = 0

In flows other than in near sonic flows (ie for Mach numbers less than 0.8 and greater than 1.2) 
the absolute value of the first term in the parentheses is much greater than the second term, which 
may be neglected. This yields the first order transonic small perturbation or Prandtl-Glauert 
equation:

(l - M2 + 4)yy = 0

This equation is only valid under specific flow conditions, summarised below:
- No body forces act on the flow
- Viscous effects are negligible
- Flow is steady, isentropic and irrotational
- Chord-wise perturbation velocity component dominates
- Flow Mach numbers are outwith transonic region.

Appendix 2: Aerofoil Description and Test Data

Aerofoil

Designation
Type
Nose radius 

Max. thickness

RAF 2822
Subcritical, rear loaded, rooftop type design pressure 
0.00827 chord 

0.121 chord
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Design condition:
Freestream Mach no. 0.66 
Lift coefficient 0.56
Incidence 1.06 degrees

Model geometry:
Chord 0.61 m
Exposed span 1.83 m
Max. thickness 73.76 mm
Base thickness 0.06 mm
Aspect ratio 3

Test Data

Wind tunnel:
RAE Famborough
8ft X 6ft transonic continuous closed circuit type 

Test case 9 conditions:
Freestream Mach no. 0.73 
Incidence 3.19 degrees
Reynold’s no. 6.5 million
Transition trip 0.03 chord
Tunnel height / aerofoil chord ratio 

4
Test case 9 measurements:

Lift coefficient 0.803
Drag coefficient 0.0168
Pitching moment coefficient (0.25 chord)

-0.099
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Appendix 3: Comptational Resource Estimates

Listed below are run times and running costs on a Cray 2ATV1P for increasingly complex solution 
methods. Estimates are for high speed, low angle conditions around a single half-span wing up to 
"locally separating" flow. Values taken from reference [16].

TSD TSD-Visc Euler TLNS TLNS-Rades

Algorithm speed (psec/grid point/step) 3 6.2 60 65 65

Number of steps: Steady State 1000 1000 1000 5000 460
Dynamic 7 7 7 7

Steady State/Dynamic 300 300 300 1000

Number of grid points (Kilopoints) 200 400 240 650 920

Run time Cray 2/YMP (hrs)
Steady state 0.17 0.69 4.00 58.68 7.661

Dynamic 0.35 1.45 8.40 82.15

Cost @ $100 per hour per node 35 145 840 8,215 766

Solution Method
TSD : Transonic small disturbance

TSD-Visc : Transonic small disturbance with interacted boundary layer model 
TLNS : Thin-Layer Navier-Stokes

TLNS-Radespiel : Multigrid method Thin-Layer Navier-Stokes solver [17].

It is clearly shown that increasing the complexity of the governing equations for the solution method 
requires a substantial increase in run time and hence cost. The inclusion of the TLNS-Radespiel method 
also demonstrates that large reductions in cost are possible even with Navier-Stokes methods by using 
improved codes.
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Appendix 4: The Economics of High Performance Computing

Basic Tnformation 
Exchange rate ($ per £)
BytesAvord 
No of hours in year

Specification of CRAY YMP
No. of Processors
CPU rate per prrocessor (Megaflops)
Memory per processor (Mwords)
Cost per hour per node ($ per hour)
Overall CPU rate (Megaflops)
Overall memory (Mwords)
Cost per year (£) (academic rates - info from RAL)

Specification of Workstation (predicted 1994 technology1)
CPU rate per woricstation (Megaflops)
Memory per workstation (Mbytes)
Cost per workstation (£)
Cost of Site Software Licences (one off)
Expected lifespan

Workstation Cluster equivalent to CRAY YMP
No. of workstations to make a CRAY 
Memory of clustered workstations (Mwords)
Capital Cost £
Cost £ per year

Comparison
Annual cost YMP/Annual cost Equivalent Cluster 
Memory CRAY/ Memory Equivalent Workstations

High Performance Computer Using multiple Workstations

1.5
8

8,760

8
333
128
100

2,664
1,024

4,672,000

100
256

10,000
10,000

3

26.64
852

276,400
92,133

50.71
1.20

No of workstations? 8 32 64
Overall CPU rate (Megaflops) 800 3,200 6,400
Overall memory (Mwords) 256 1,024 2,048
Capital Cost £ 90,000 330,000 650,000
Cost £ par year 36,667 116,667 223,333

Note:
The CRAY YMP costs are based on academic rates supjpUed by Rutherford Appleton Laboratory.
The 1994 Workstation specifications are prredieted from current development trends.
A CRAY YMP can only be accessed through a workstatiorL

The relatively small annual cost of the Workstation cluster compared with the Cray YMP suggests that 
Workstation cluster development will become increasingly impxntant in the future.
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