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SUMMARY

This report presents details of a new mathematical model of viscous, 
incompressible, unsteady flow around multiple closed bodies. A system of 

vortex particles is employed in the model, on all solid boundaries and in the 

wake, to represent quantities of vorticity. The method is a Lagrangian 

technique and does not require the generation of a flow mesh.
A review of recent advances in vortex modelling is provided in the 

Introduction. Many of these ideas are incorporated into the model or are 

planned for future inclusion.
Section 2 is the main core of the report where the theoretical 

development of the model is presented. The extensive numerical details have 

been omitted and will be presented in a future report.
Conclusions are made regarding the development of the model and the 

verification procedure required to validate the algorithm.
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1. INTRODUCTION.

1.1 Overview.
The main objective of this report is to provide details of a new two 

dimensional vortex algorithm which has been proposed as a means of 

enhancing the modelling capabilities of the low speed aerodynamics group 

within the Department of Aerospace Engineering. Starting initially with 

investigations into the dynamic stall of helicopter rotors, research activities 

have been expanded into the areas of blade-vortex interaction, low Reynolds 

number aerofoils and the aerodynamic analyses of vertical and horizontal axis 

wind turbines. The development of algorithms capable of modelling both the 

free and contricted flow fields should result in clarification of this situation.
The decision to employ vortex methodology as opposed to other 

techniques was based on three main factors:
(i) lower computational cost as compared with full Navier-Stokes 

(N-S) solvers (e.g. F.V., F.E.) - especially when the problem 

involves many unsteady cycles, multiple bodies in relative 

motion and numerous test cases;
greater amount of flowfield information as compared with 

methods based heavily on empirical “fits” of experimental 
data;
previous experience with vortex methods - many of the 

advantages and limitations of the methodology are already 

known.

(ii)

(iii)

1.2 Recent Developments in Vortex Methodology.
The starting point for vortex methods is the representation of the 

incompressible flow equations in vorticity/streamfunction form as opposed to 

pressure/velocity form. The velocity field is obtained from the vorticity field 

via the Biot-Savart law, and the vorticity field is updated by solving the 

associated transport equation.
The most popular methods approximate the continuous vorticity field 

by employing a finite number of small particles, each of which is tracked with 

time. It is this Lagrangian treatment of the vorticity field which is one of the 

main advantages of this approach, i.e. there is no mesh, body fitted or 

otherwise, to be generated and hence no fluxes across mesh boundaries. The 

vortices are normally defined by radially symmetric functions with either 

infinitesimal support (dirac distribution), finite support (e.g. constant vorticity



core) or infinite support (e.g. Gaussian core). The latter two are more 

commonly employed today because of their greater stability and the 

availability of error estimates for both Euler and N-S solutions (e.g. Beale and 

Majda,1982; Fishelov, 1990).
One of the main disadvantages is the requirement, according to the 

error estimates, for a large number of vortices with overlapping cores. Since 

the vortex interactions dominate the computational cost, this is a serious 

drawback if neither a limitation is put on the number of vortices (e.g. 
coallescing device) nor an efficient, accurate approximation scheme is 

employed. The two main types of approximation scheme available are:
(i) Particle-Mesh (PM) methods - vorticity is distributed over a 

previously generated mesh, and a “fast” Poisson solver is 

employed for the streamfunction. Numerical differentiation 

and interpolation are then used to obtain particle velocities 

(Hockney and Eastwood, 1981);
(ii) Taylor expansion (TE) methods - analytic expressions for the 

potential/velocity field are expanded in a Taylor series and 

truncated after a few terms. Advanced versions involve 

multipole expansions, combining the use of both Taylor and 

Binomial series to achieve high accuracy (Greengard and 

Rokhlin, 1987).
The main disadvantages of the PM methods are twofold. Firstly, there is 

the deterioration in accuracy due to interpolation, especially with large 

variations in particle density. Secondly, the requirement for a body-fitted mesh 

destroys one of the benefits of the Lagrangian method. In contrast the more 

advanced TE methods have controllable accuracy and adaptivity (Carrier and 

Greengard, 1988) and, despite the use of a grid (not body-fitted), retain the 

benefits of the Lagrangian formulation.
The inclusion of the viscous terms in the N-S equations has been 

tackled in two main ways:
(i) using Gaussian cores that expand with time, based on the 

exact solution of the pure diffusion equation (e.g. Leonard, 
1980);

(ii) randomly perturbing the position of the vortices to reproduce 

the diffusion process statistically (e.g. Chorin, 1973).
The expanding core technique has been proven to approximate the 

wrong equation when convection is present (Greengard, 1985). The random 

vortex method, however, has been shown to converge, albeit with low order.



to the solution of the N-S equations (Roberts, 1985). Fishelov has recently 

presented a deterministic method for modelling the viscous terms which 

involves directly differentiating the vortex core functions. Vortex strengths 

and positions are updated as a result of interactions with other vortices, 
including some with zero strength initially. This suggests, however, that the 

process would be very costly computationally, although higher order 

convergence appears to be obtainable.
Presentation and discussion of these and other aspects of vortex 

methods can be found in the comprehensive reviews of Leonard (1980), 
Spalart (1988) and Sarpkaya (1990).

1.3 Proposal for a New Model.
In the following sections the details of a new mathematical model of 

unsteady, incompressible, viscous flow around closed bodies is presented. 
Vortex "blobs" are employed exclusively, both in the vortical wake and in all 
solid boundary zones.

The boundary condition of zero flow across solid boundaries is applied 

in integral form rather than the more traditional collocation form. The 

governing constraints are more accurately satisfied in this way, especially 

when significant amounts of vorticity exist close to the boundary surfaces.
A new scheme for the removal of vortices is proposed. The aim is to 

cause as little disturbance to the solution as possible when vortices traverse a 

boundary or when the separation point is prescribed. Details of this and other 

features are presented herein.



2. MATHRMATTCAL MODEL.

The theoretical development of the model pertaining to the exterior 

flow past multiple closed bodies is given below. The additional details 

associated with external boundaries, in particular wind tunnel walls, are 

provided in Appendix 1.

2.1 Governing Equations.
The two dimensional domain, consisting of the fluid region, the solid 

bodies and boundary surfaces, is illustrated in Fig. 1.

boundary normals 
directed into domainfar field boundary, S

fluid region. F
Convention

body surface, S .

Fig. 1 Domain and boundary definitions.

The equations in velocity/pressure form are:

INCOMPRESSIBILITY : 

MOMENTUM : 

SOLID REGION:

V -U

DU
Dt

= 0 in

= - Iv p + V V2 U in F

U. = U j0 + Q.xCr-r.J in B.iO

(2.1. 1) 

(2.1.2) 

(2.1.3)

with kinematic boundary conditions:



U = U. on S .
1 1

U=U„ on S„

[no penetration and no slip ]
(2.1.4)

Since both the fluid and body velocity fields are solenoidal, vector 

potentials exist such that:

Velocities

Vorticities

U=Vx'P and U . = V x VF.
1 1

CO = V X (V X and 2Q . = V X (V X 'P.)1 v r1
(2.1.5)

In 2-D the vorticity and vector potential are defined in the k direction, 
i.e. kco and k'F, where 'F is the stream function. It can be of benefit to 

decompose the stream function into onset and perturbation components:

'P = Y00 + \1/
^i = Y00 + Vi

From relations (2.1.5) we get the governing equations in vorticity I stream 

function form:

INCOMPRESSIBILITY : < S3

II 1 8 in F (2.1. 6)

VORTICITY TRANSPORT : a =vv2“ in F (2.1.7)

SOLID REGION: V2y.=-20. 
T1 1

in B.
1

(2.1.8)

with boundary conditions:

n X V\|/ =-n* X V\|;. 

n • Vy = - n* V y. 

y —> constant as ||r|| °°

on S. [n* = - n] (2.1. 9)

(2. 1. 10)

Conditions (2.1.9) cannot be applied explicitly as only one component 
can be specified on the boundary. However both conditions are satisfied, for 

the continuous problem, due to the representation of the internal kinematics of 

each solid body by the appropriate amount of constant vorticity.

2.2 Solution for the Stream Function/Velocitv.
A solution to equation (2.1.6) can be obtained by employing Green's 

second identity:



J [(j) V2\|/- \j/V2(j)]dF = J [ \|/n V(|) - (j)n V\|/]dS
F S

Function (j) is ihQ fundamental solution to the problem;
V (t> =-5(r- r„) in F

given by: f = ‘"{iTF^} (2.2.1)

Hence the value of the stream function at r = rp is given by:

\|/p= J [\|/n V<t) - (J)n V\i/]dS + J ([xm dF
S F

Applying to interior regions Bi also, the combined solution becomes 

[note V2(]) = 0 in Bj]

\|/p = J [(\|/- \|/i)n V(t) - (t)n V(v(r - \j/i)] dSi + J [\j/n V(l) - (j)n V\|/]dS0
Sj

+ J <()C0 dF + J 2<t)Qj dBj
F Bi

Implementation of boundary conditions (2.1.9) and (2.1.10), and 

relation (2.2.1) results in the final equation for the stream function (excluding 

the arbitrary constant):

2Wp = CO In r- r dF + 2Q . In !!—-—n- dB. 1 II r - r II 1 
B. P

1

(2.2.2)

The perturbation velocity field is obtained from (2.1.5):

27CUp = - CO
k X (r- rD) 

II r - r„
dF - 20. r

k X (r - rD)
dB.

in II2 iII r - r„ll B P
1

(2.2.3)

and the total velocity is then: Up = U00 + Up



Equation (2.2.3) is the representation of the Biot-Savart law, which 

enables the calculation of the velocity field from a known distribution of 

vorticity. It is appropriate to make the following comments regarding the 
vorticity distribution at this point:

(i) the fluid vorticity, co, consists of that which has been 

previously generated (i.e. known) on the solid boundaries 

and subsequently convected and diffused into the fluid wake 

region, and that which has been newly created (i.e. unknown) 

to satisfy the surface boundary conditions (see section 2.2);
(ii) the body internal vorticity exists only when rotation is 

present, and the volume integration can be recast as the 

following equivalent integral around the bounding surface:

2Qkx J V0(t) dBj = X n J(l)dSi
F S i

where V0 is the differential operator in the ”r" space rather 
than the "rp" space. [Note; V0<1) = -V(])].

2.3 Boundary Conditions.
In the method presented herein the the newly created vorticity 

occupies boundary region Fb, and the remainder occupies region Fw. The
indeterminacy of the new vorticity is removed by applying the kinematic 

constraint (2.1.9) on the velocity field:

2kus =
i

k x(rs -r)
to

rp-r

k x(rs -r)

n X 2Q. In 
1

:^dFb+

---- 1—ir dS.r„ -rll 1

CO

rp-r
:^dFw

w

(2.3.1)

where VT V F UVF 
b w

Note that implementation of equation (2.3.1) directly would 

overspecify the problem. Only one component of the velocity should be 

taken, the other is implicit in the specification of the body interior vorticity. In 

this model the normal component is explicitly implemented, i.e. we have:



n • u = Hi • Uj on Sj.

2.4 Uniqueness of Solution.
The solution for the vorticity occupying region Vpb is not unique until

the total amount of new vorticity created on each Sj is known. The flow is
initially vorticity free and irrotational, hence the circulation around a separate 
contour enclosing each body and moving with the fluid, T^. , is constant.

Thus we have:

Ju-sdSi =
Si

Jk.(n X U)dSi = 2QiAj 
Si

JusdSi =
Si

Jk.(n X U)d(Si+Sci) - 

Si+SCi
Jk(n
SCi

J-k.(V X U ) dVp. -

vFi
J U-s dS( 
Sq

i-e rq = fcodVpbi + f to dVpwi + 2QjAj (2.4.1)
% w;

The unknown vorticity is, therefore, dependent on the value of Tc-. 

Initially this is set to some arbitrary constant (e.g. zero).

2,5 Discrete Body and Vorticitv Representation.
The vorticity in region Vpw , i.e. the wake, is represented by a

distribution of vortex "blobs" as described in section 1.2. These blobs provide 

a more accurate approximation to the vorticity field than point vortices, which 

in addition cause stability problems. Thus we have

“ = Srk g(r - rk)
k

where the core function g satisfies the condition

(2.5.1)

J gdV = 1.

Note that the point vortex method corresponds to the case where g = 6 .
The corresponding velocity field is obtained by substituting (2.5.1) into 

(2.2.3), the form of which depends on the particular choice of core function.

The solid, generally curved, boundary is approximated by a series of 

linear panels as illustrated in Figs. 2a and 2b. The distribution of total vorticity



in region Vpb, i.e. adjacent to the solid boundary, is represented by piecewise

linear and continuous functions over the panels, as illustrated in Fig.2c. That 
is;

Y = ^1 - Yj + ^ Yj+i on jth panel.

This continuous distribution is further discretised into vortex blobs of the form 

of equation (2.5.1), with separation distance d (Fig. 2d). That is:

Position of vortex on panel - sm = j (im - l)

Strength of mth vortex on panel - Fm = dj^l - Yj + ^ Yj+i

solid boundary

boundary surface

'=ih<

. — linear panel approximation
^ ^ to surface.

Define y = Jo0) dn

linear distribution on j panel m vortex blob on panel

(d)

Fig. 2 Representation of solid boundary and total vorticity.

2.6 Vorticitv Transport.
The evolution of the vorticity field is governed by the vorticity 

transport equation (2.1.7). This nonlinear equation describes both the 

convection and diffusion of the vortex field, and must be solved in addition 

to the equation of incompressibilty. A two stage process is adopted here, i.e. 
convection and diffusion are treated separately and the contributions added 

together.



Convection

The equation to be solved is: 5^ = 0
Dt u (2.6.1)

For a system of point vortices, i.e. (2.5.1) with g = 5, (2.6.1) is satisfied exactly 

by moving the vortices with the velocity of the flow:

^ = u(rk,t) (2.6.2)

where rk is the position of the k* vortex.

When vortex blobs are employed (2.6.2) provides an approximation to 

the vortex velocities, the accuracy depending on size and type of core (Beale 

and Majda,1982).

Dijfusion

The governing equation is: 3o)
ar = v V2to (2.6.3)

The solution of (2.6.3) at time t for a unit vortex diffusing from the origin at t 
= 0is:

. _(x2+y2)
(0 = ------ e 4vt

47Wt

'2a2
V 2tco2 a/ 2tio2

. e 2a2 (2.6.4)

where ■=v2vt .

Equation (2.6.4) is the form of the Gaussian probalility density function 

for the independent random variables x and y with zero mean and variance 

2vt, denoted N(0,2vt). It is assumed that time t is obtained from a number of 

smaller time steps, PAt say. If x and y are obtained from a summation of 
Gaussian random variables Xj, yj with distributions N(0,2vAt), then the
distribution at time t of x = ^ Xj and y = yi is N(0,2vt).

i=l i=i
The Random Vortex Method simulates the diffusion process by incrementing

10



the vortex positions as follows;

where r|x and riy are N(0,2vAt).

Axv = Tlx
Ayv =

2.7 Calculation of Pressure.
Applying the momentum equation (2.1.2) on the solid surface, an 

expression for pressure can be obtained. Taking n x (2.1.2) on Sj, the
pressure gradient along the surface is given by:

p 3s
= - s-

DUi
+ V

3co (2.7.1)
01 3n

The last term represents the rate of creation of vorticity on the surface
(with negative sign), and the total for the body is obtained by integrating 

(2.7.1) around the surface;

'■-!-a-EdSi 
p 3s 

Si

= 2Ai
DQj
Dt

3(0V ---dS;
3n 1

= 0 (2.7.2)

Si

This is an expression of the fact that the pressure field must be single 

valued everywhere in the flow. It can be shown that (2.7.2) is equivalent to 

the uniqueness condition (2.4.1). Therefore, implementation of (2.4.1) ensures 

a single-valued pressure field (neglecting the effect of time discretisation). 
Surface vorticity creation is considered further in section 2.8.

2.8 Vorticitv Creation and Absorption.
An element of the boundary region Vpb is illustrated in Fig. 3.

Vorticity is generated in this region by the processes of creation at the surface 
and absorption from the external flow (Vpw).

1 1



Volume dV. Flux of absorbed vorticity

Creation of new vorticity at rate

3n

J
,30)

X T 3o)Note: 5“------ os 3n

Fig. 3 Vorticity creation and absorption in elemental boundary zone.

In time dt, the total amount of vorticity in elemental region dVF. is given
Di

by:

Hence,

codVp = -V— dtdSj + V— dtdSi 
bi 3n 3n

3co , 3o)-V — dt = 7 - V — dt 
3n 9n

(2.8.1)

In the formulation presented herein vorticity is aborbed whenever vortex 

blobs transgress the boundary zone. Therefore we must have:

dtdSi = fXrf 

'Si

We can identify a quantity of total vorticity equivalent to that absorbed in 

time dt. That is:
a da A ya = V— dt 

3n
(2.8.2) 

and therefore.

Jyds, = fXn
Si V k

(2.8.3)

1 2



Hence from (2.8.1) and (2.8.2), the rate of vorticity creation term in the 

pressure equation (2.7.1) can be written equivalently as:

3(0
3n

(y-Ya)
dt (2.8.4)

The condition for a single valued pressure field, equation (2.7.2), can thus be 

written:

DOi
2Ai Dt ^ dt+ J (Y-V3) dSj = 0

Equation (2.8.5) is consistent with the uniqueness condition (2.4.1).

(2.8.5)

2.9 Solution Procedure.
The time evolution of the vorticity field is obtained via a solution, at

each time step, of the boundary equation (2.3.1) in discretised form. The
surface flux conditions are implemented in integral form to improve the
robustness and stability of the algorithm, i.e.

J (u - ui).ni dSj = 0 
ASj

The resulting matrix equation for the new total vorticity is represented by:

Ky = R-Ra (2.9.1)
where Ra represents the influence of vortices to be removed by absorption.

The solution for y is made unique by implementing the following condition 

on the circulation for each body:

JydSi + flrt - flrkal +
si Vk / V k

2QiAi = 0 (2.9.2)

A similar set of equations are developed for the absorbed total vorticity:

Ky3 = Ra

jfdSi - fXn
Si I k

= 0

(2.9.3)

(2.9.4)

1 3



Once equations (2.9.1) to (2.9.4) have been solved the pressure 

gradient, and hence aerodynamic loads, can be calculated from (2.7.1) and 

(2.8.4). Time can then be advanced and the procedure repeated for the 

incremented flow field.
The numerical details of the implementation of the above algorithm will 

be presented in a future report, along with a number of test cases to illustrate 

the behaviour of the model.

14



3. CONCLUSIONS.

Details of the theoretical development of a mathematical model of 

viscous, incompressible, unsteady flow around closed bodies have been 

presented in the previous section. The vortex methodology employed has 

been aimed at maximising the stability, accuracy and robustness of the 

algorithm, often a problem with models of this kind. A number of features, e.g. 
the vortex absorption scheme and the integral formulation, have been 

designed with this aim firmly in mind.
A future report will be produced which will provide details of the 

numerical implementation of the method. A series of test cases will be 

presented illustrating the behavior of the various features incorporated into 

the algorithm. The extent to which the above aims have been realised will 
then be able to be assessed.

1 5
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GLOSSARY

Roman symbols.

A
B
d
F
g
h
i,j,k
K
1
n, n
P
R
r
S, s,s 

t, dt 
U, u 

V
X, y,z

Roman subscripts/superscripts.

a
b
C
i
j
k
m
o
P
V

w
x,y

interior area of solid body.
region inside solid body.
separation of surface vortices.
fluid region.
vortex core function.
extent of surface boundary zone.
cartesian base vectors.
matrix of influence coefficients.
length of body panel.
direction normal to boundary surface.
static pressure.
vortex influence vector.
position vector.
distance along boundary surface, 
time, time step, 
total/perturbation velocity, 
volume.
cartesian coordinates.

absorbed vorticity.
boundary region adjacent to body.
contour enclosing body.
solid body counter.
body panel counter.
vortex counter.
panel vortex counter.
coordinate system origin.
point in flowfield.
vortex.
fluid wake.
cartesian coordinate directions.
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Greek symbols.

*

P
5
<t>
r
y,Y
11
V

p
a
a, Q
CO, CO

solid body side of boundary surface, 
number of time steps.
Kronecker delta function.
fundamental solution.
circuit circulation , vortex strength
total vorticity in boundary zone.
random variables.
kinematic viscosity.
fluid density.
standard deviation.
rotational velocity of body.
fluid vorticity.
total/perturbation stream function, 
vector potential.

Greek subscripts/superscripts.

far field.

Mathematical operators.

D
Dt

Lagrangian derivative.

e exponential function.
In natural logarithm.
N normal distribution function
II II norm or magnitude.
X vector cross product.
V gradient operator.
V2 Laplace operator.
Vx curl.
V- divergence.
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scalar product, 
summation function.
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