
DEPARTMENT OF
AEROSPACE

ENGINEERING

imm

.F-CGS-P:An Unfactored Method in
Parallel

)r Turbulent Pitching Aerofoil Flows

Engineuring
periodicals

K.J. Badcock

Aero Report 9323

AF-CGS-P:An Unfactored Method in
Parallel

for Turbulent Pitching Aerofoil Flows

K.J. Badcock

Aero Report 9323

Engh-’ering
PERIODICALS

September 14, 1993

AF-CGS-P:An Unfactored Method in

Parallel for Turbulent Pitching Aerofoil
Flows

K.J. Badcock *
Aerospace Engineering Department

University of Glasgow,
Glasgow, G12 8QQ, U.K.

EMAIL: giiaaSG &uk. ac. giasgow. udcf

September 14, 1993

Abstract

An unfactored implicit method for the unsteady, turbulent Navier-
Stokes equations is implemented in parallel. The algorithm uses the alter­
nating direction implicit (ADI) method as a preconditioner for a conjugate
gradient solution of the linear system at each time step. The sequential
nature of the ADI process is tackled by using a transposition method to
solve complete ADI sweeps on single processors. Results are presented for
a standard pitching aerofoil case solved on the iPSC.

‘This work wa.s carried out under SERC contract.

Contents
1 Introduction

2 AF-CGS Method

3 The Solution of the linear system

4 Parallel Implementation

5 Test Cases

6 Conclusions

3

4

5

6

9

10

1 Introduction
The solution of the Navier-Stokes equations is becoming increasingly com­
mon for aeroelastic problems (see [1] for a review). The major computa­
tional work in such an analysis is the solution of the unsteady aerodynamic
model. CFD research at Glasgow has centred on using upwind schemes
and fully implicit methods for hypersonic and transonic viscous flows. This
work is being extended to develop an unsteady 3-D Navier-Stokes solver
for incorporation into an aeroelastic simulation code.

Two main algorithms have been under development for aerofoil flows.
Parallel implementation has been a major consideration due to the ex­
tensive memory requirements of 3-D implicit schemes in general and the
intensive CPU needs of a 3-D unsteady Navier-Stokes solution.

The first algorithm is partially implicit. Normal-direction terms are
treated imphcitly to help to remove the stability limits arising from the
fine mesh spacing needed to resolve boundary layers. The terms in the
streamwise direction are differenced exphcitly. This yields an algorithm
which has very efficient parallel properties in that the implicit part can
proceed indepently on separate nodes without the need for any communi­
cation during this phase of the calculation. Parallel efficiencies of around
ninety percent have been achieved on 16 nodes of the iPSC. However, the
stability restrictions arising from the streamwise direction can prove re­
strictive and for aerofoil problems the algorithm is too slow unless a large
number of nodes are available to take advantage of its good parallel prop­
erties. The method has been tested for aerofoil and viscous shocktube
flows and fuU details can be found in [2].

To achieve a more efficient method it is necessary to examine ways of
increasing the allowable time step. The conventional way of achieving this
is to include more implicitness in the time-stepping method. By treating
all of the spatial terms implicitly the stability limits can be removed en­
tirely and the time step can then be chosen from accuracy considerations.

However, the large sparse linear system that needs to be solved at
each step represents a significant computational obstacle. Traditionally for
Navier-Stokes codes this system is solved by an approximate factorisation
method. There is an inherently sequential nature to this process which
limits the utility of parallel implementations. This was tackled in [3] l)y
using a special communication of the data known as transposition.

The factorisation error introduces a practical stability limit and also
degrades the accuracy of the solution. An unfactored method based on
an approximate factorisation as a preconditioner for a conjugate gradient
method was discussed in [4] and [1]. The method proved to be successful in

serial and in this paper a parallel version of the AF-CGS code is developed

using the transposition idea.
The AF-CGS method is briefly restated in the following two sections.

The reader is referred to previous publications for a more detailed descrip­
tion of the method and a more thorough demonstration of its capabilities.
Then the parallel version of the algorithm is given and results for standard

pitching aerofoil flows are given.

2 AF-CGS Method
The thin-layer Navier-Stokes equations in generalised co-ordinates are

given by

dt 0^ 01]
ds

where

p

II

1 pu
pv
e

j = .r1

s = •/

pU
PUU +^j!:P
PVV + iyp

U{e + p)-^tP

0

,g = •/ -1

(1)

pV
puV -f i]xp
pvV + 1]yP

V(e + p)- i]tp

Here.

_! pmiu^ -f {p/i)m-2^x
pniiv^ + (p/3)in2^y

pmims -f (p/'i)rn2{^,xu + ^yV)

U = G -|- u

V = i]t -t- ih-u + Vx V

mi = C + ^2y

m2 — Vx + 1ly

m3 = («2 + t’2)/2 + Pr-1 (7 ~ 1)_1 (‘■2 k

and J is the determinant of the Jacobian of the transformation ,r =
.r(^, 7/,t) and y = yii. pj). Here p, u, v, e, p. Pr. Re. c. 7 denote density,
the two components of velocity, energy, pressure, the Prandtl numl)er, the
Reynolds number, the speed of sound and the constant ratio of the speciflc
heats respectively. The viscosity is composed of a part due to the natural
viscosity of the fluid and a term to account for turbulence. Sutherland's
law is used to describe the variation of the fluid viscosity with teiiiperatuie.
The Baldwin-Lomax model is used to provide a value for the turbulent vis­
cosity. Since none of the flows examined herein involve massive separation
no modification of the turbulence model is used.

To solve this system of partial differential equations a finite volume
scheme is used which has various features. For the spatial terms Osher's
method is used. For general geometries the details of Osher s method are
described in [5]. A MUSCL interpolation is used to provide second or third
order accuracy and the Von Albada limiter prevents spurious oscillations
from occuring around shock waves. Central differencing is employed for
the viscous terms. Far-held boundary conditions are imposed by Riemann-
invariants and no vortex correction is applied due to the unsteadyness of
the how.

The temporal discretisation is based on the backward Euler method.
An efficient mixed analytic and hnite difference procedure is used to gen­
erate the required .lacobian of the spatial discretisation. The linear system
obtained is solved by the conjugate gradient squared (CGS) method with
the alternating direction implicit approximate factorisation providing a
preconditioner. The reader is refered to [4] [1] for full details. A summary
is given in the next section.

The problems we consider herein relate to pitching aerofoils. Since
no deformation of the aerofoils is considered the mesh can be rotated
rigidly with the aerofoil. Dehning the starting mesh points by {.r = x0}ij,
{y = yo}i,j the transformed mesh at time tj is given by

{.r = rocos(a{ti) - a0) + 1{1 - co.sfao))},^

{y = rosin(a(ti) - a0) -|- lsin{a0)}i,j

where the aerofoil pitches about the point (1,0), the initial incidence is a0
and r'n = -vl -f tJn ■ The mesh velocities can be easilv evaluated given
an analytical form for a. No-slip boundary conditions on the aerofod can
then be imposed.

3 The Solution of the linear system
One time step of the method can be denoted by

(I + At^ + At^)6 w = -At{ -f i?,,:
r)tn r))r

OR
aw ow

where R^ and Rv are terms arising from the spatial discretisation in the
^ and 1] directions respectively. The derivatives required on the left-hand
side of 2 are calculated by an efficient mixed analytic/finite difference
procedure [6]. The alternating direction implicit (ADI) factorisation of 2

is
dRr,

dw dw
)Sw

{I+At^)(I+ At^)6w = -At{R^ + R,,).
,1...dw

(3)

Equation 3 is much easier to solve than 2 because each of the factors is
typically block tridiagonal or block pentadiagonal. However, the solution
to the ADI factored system is not an exact one for equation 2 and in
practice the factorisation error leads to a stability limit on the time step
and introduces another source of error to the calculation.

The approach adopted in the present work involves solving equation 2
to a required tolerance by using a conjugate gradient method. Denoting
the unfactored linear system 2 to be solved at each time step by

Ax = b (4)

we seek an approximation to A-1 ss C'_1 which yields a system

C~1Ax = C'-^h (5)

more amenable to conjugate gradient methods. The ADI method gives a
fast way of calculating an approximate solution to 4 or, restating this , of
forming the matrix vector product

c-1b = X. (6)

Hence, if we use the inverse of the ADI factorisation as the preconditioner
then multiplying a vector by the preconditioner can be achieved simply by
solving a linear system with the right-hand side given by the multiplicand
and the left hand side given the approximate factorisation. The factors
in C can be diagonalised once at each time step with the row operations
being stored for use at each midtiplication by the preconditioner.

The exact form of the algorithm for one step of the Navier-Stokes
solution is

• calculate matrices and diagonalise ADI factors

• calculate updated solution by ADI

• use this solution as starting solution for CGS

• perform CGS iterations until 4 has been solved to required tolerance

4 Parallel Implementation
The major obstacle to an efficient parallel implementation of the AF-CGS
method is the inherently sequential nature of the ADI procedure. This was
overcome in [3] by using a transposition of the data to allow complete ADI
sweeps to proceed independently on each processor. We use this approach
here although extra communication is required for the present method
because of the matrix-vector products required in the CGS algorithm.

6

The computational space in generalised coordinates is mapped onto the
nodes by grouping several mesh lines in both the ^ ^^d the i] directions
onto one node. Care has to be taken to make sure that ^ hues separated
only by the wake cut are mapped to the same processor. The computation
then falls into three phases. First, the matrix is generated and the factors
are diagonalised. The next phase is the multiplication of a vector by the
matrix and finally we have multiplication of a vector by the preconditioner
which reduces to back substititutiou on the diagoiialised factors of the ADI
factorisation. For each phase data is held on a node for complete lines
in one direction and the entire computation relating to that direction is
completed. The data is then communicated so that information for lines
in the other direction is held on each node and the computation for that
direction proceeds.

For the calculation of the matrix, the solution from the previous time
step is initially held on nodes by lines in the ?/ direction. The fluxes and
derivatives are calculated for each line and the contributions to the residual
are formed. At this stage the factor

I + d w
(7)

is diagonalised. The solution and the residual are then transposed so that
each node holds information on complete lines in the ^ direction. No
communication of the components of the matrix dRv/dtu is made. They
are stored on the nodes on which they are calculated. The calculation
proceeds so that we have the left hand side of 2 stored in complete ^ and
1] lines on a node and the solution and residual stored on complete ^ lines
only.

Next, one step of ADI is performed to obtain a starting solution for
CGS. This is achieved by performing ADI sweeps in the ^ direction first,
then transposing the solution obatined and performing sweeps in the //
direction to yield the updated ADI solution. A multiplication by the
preconditioner is performed in the same way. To ensure that the CGS
starting solution and the right hand side of the hnear system are stored in
the same direction the residual is transposed.

The CGS solution proceeds with inner products and matrix multipli­
cations being recpiired. Contributions to an inner product are calculated
locally on each node and are then transmitted to a chosen node for sum­
ming. The results is then transmitted back to all the nodes for use. A
matrix multipUcation is achieved by finding the product in the current di­
rection (?/), transposing the multiplicand and the partial product and then
finding the product in the other direction. This has the effect of changing
the direction of the storage. The matrix multipfication is always followed

Xi fluxes and matrix — (eta)
i

Eta fluxes and matrix
i

ADI sweep eta direction
l . . (tp)

(xi)

(xi)

(eta) (eta)vector ops

(eta)
(et»- xi)

C(AX) (xi* eta)
vector ops (eta)

(eta) test solution (eta)

CGS solution

Calculate lift/ drag/turbulence (eta)
1

restart
Figure 1: Schf inatic diagram of the imrallel AF-CGS method. Here the operation
is denoted on the left hand side, the direction of storage is indicated in parenthesis
and TP denotes when a transposition of the data takes place. The box inset shows
the flow of the main parts of the CGS algorithm computation.

by a multiplication by the preconditioiier as described above and this re­
verses the direction back again. As a result of this all of the C GS vectors
lie in the direction which is current on entry to the CGS subroutine. The
complete sequence of transpositions is shown in figure 1.

Finally, the turbulent viscosity and the lift and drag coeffients are
calculated in parallel before the next step proceeds.

The parallel code was tested on the Intel Hypercube at the SERC
Daresbury Laboratory. The test case considered was to calculate thiee _
non-dimensional time units of the flow for the pitching aerofoil case 2 de­
fined below. The CPU times are shown in table 1 and indicate that the
transpositions degrade the parallel efficiency. However, this is the case for
most parallel preconditioned conjugate gradient solvers and the efficien­
cies are good compared to the incomplete ILU-conjugate gradient solvei
of [7]. It is anticipated that the efficiency will increase on finer meshes as
the amount of computation increases on each node. A significant speed
up is still achieved in the present case. In addition, the large storage re­
quirements of the algorithm have been divided amongst the processors.
The breakdown of the time taken by each main phase of the calculation is

Machine CPU time efficiency
SPARC 10 338 -

4 nodes 187 1.00
8 nodes 106 0.88
16 nodes 68 0.69

Table 1: CPU times in seconds on various machines. The parallel efficiency is
based on the CPU time for 4 nodes since the problem is too large in terms of
memory to fit onto one node.

Machine total Jacobian calculation
and ADI diagonalisation

ADI step CGS solution

SPARC 10 338 8.00 0.31 1.82
iPSC-8 nodes 106^ 2.27 0.21 0.58

speed up 3.2 3.5 1.48 3.14

Table 2; Breakdown of calculation CPU times in .seconds on a parallel and a

serial machine.

shown in table 2. The net speed up achieved by using the parallel machine
is 3.2. The main computational work is involved with calculating the jaco-
bian and diagonalising the ADI factors It is clear that the parallelisation is
most effective for this phase of the calculation which takes up about eighty
percent of the total work. The second most intensive part of the work is
the CGS solution and this too is effectively parallelised even though the
ADI part of the CGS solution slightly degrades the efficiency. Finally,
an ADI step is relatively inefficient due to the large communication time
relative to the computational time involved.

5 Test Cases
The AGARD sub-committee on aeroelasticity defined test cases to act
as standard flows for computer code evaluation and verification. In this
paper we present results for two of these test cases for pitching aerofoils.
The motion is defined by the angle of attack as a function of time and the
centre of rotation .vc which is given herein as a distance along the chord
as a percentage of the chord length. The angle of attack is defined as

o(r) = am + c\Q.sin{ kr) («)

where r = is the non-dimensional time.

number aerofoil 3/inf Be X lO6 ^ m c>o k ■>‘c

1 NACA0012 0.60 4.8 4.86 2.44 0.1620 0.25
2 NACA64A010 0.796 12.56 0. 1.0 0.204 0.248

Table 3: Test cases examined in this paper.

The cases considered, which are Usted in table 3. were selected because
detailed pressure distributions are available at a number of points during
the cycle. All of the results were obtained on all by 33 C-mesh which was
generated by the Eagle grid generation package. The far field was set at 10
chords. The AFCGS method was used throughout with the CGS tolerance
set at 10_1. The number of time steps per cycle for each case is 150. The
unsteady computations are started impulsively from the converged steady
solution at the mean angle of attack and the results are shown after two
cycles of the motion. Detailed comparisons for all the cases are shown for
the pressure distril)utions at eight separate times during one cycle. Data
for case 2 was only available for the upper surface. For a more detailed
discussion of the results the reader is referred to [1]. The detailed pressure
distribution comparisons are shown in figures 2-3. Excellent agreement
with the experimental data of [8] is noted.

6 Conclusions
It was demonstrated in [4] and [1] that the AF-CGS method can produce
efficient and accurate results to attached aerofoil flows. A parallel version
of the algorithm was presented in this paper and an efficiency comparable
with other preconditioned conjugate gradient algorithms was achieved.
Accurate results for standard pitching aerofoil flow's can be achieved in
less than 15 minutes per period using eight nodes of the iPSC. A drawback
of implicit methods is the substantial of memory required. The parallel
version tackles this problem by splitting the memory needs between nodes
without duplication.

Tackling three-dimensional unsteady aerodynamic problems on the iPSC
with the AF-CGS method now seems feasible and will for the next major
task of this work. It is also intended to examine some two-dimensional
aeroelastic apphcations in collaboration with British Aerospace.

10

a = 5.94°

O' = 6.59°

o = 3.51°

o = 2.67°

a = 6.96°

a = 5.12°

o = 2.44°

Q = 4.27{

Figure 2: —CP vs x/c for case 1. x-experiment. line - computed

11

o = 1.00° Q = 0.74°

a = -1.06° a = -0.73°

a = -1.01° a = -0.59°

a = 0.21° a = 0-870

Figure 3: -Cp vs x/c for case 2. x-experiment, line - computed

12

References
[1] K.J.Badcock. Computation of turbulent pitching aerofoil flows. Tech-

irical report. G.U. Aero report 9-322, 1993.

[2] K.J.Badcock. A parallelisable partially implicit method for unsteady
viscous aerofoil flows. Technical report, G.U. Aero report 9312, 1993.

[3] R. Pelz T. Chyczewski, F. Marconi and E. Churchitser. Solution of
the Euler and Navier-Stokes eciuations on a parallel processor using
a transposed/Thomas ADIalgorithm. In 11th AIAA Computational
Fluid Dynamics Conference. AIAA, 1993.

[4] K.J.Badcock. An efficient unfactored imphcit method for unsteady
aerofoil flows. Technical report, G.U. Aero report 9313, 1993.

[-5] S.Osher and S.R.Chakravarthy. Upwind schemes and boundary con­
ditions with apphcations to Euler equations in general coordinates. ./.
Cejinp. Phys.. .50:447-481. 1983.

[6] K.J.Badcock. Newton’s method for laminar aerofoil flows. Technical
report, G.U. Aero report 9310, 1993.

[7] P.J. Wesson. Parallel Algorithms for Systems of Equations. PhD thesis.
Oxford University Computing Laboratory, 1992.

[8] J.J. Olsen. Compendium of unsteady aerodynamic measurements.
Technical Report 702, AGARD, 1982.

13

