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Global Supervenience Without Reducibility∗

Stephan Leuenberger

Many debates in philosophy are concerned with how properties in a given
class—mental properties, say, or ethical properties—are related to certain other
properties, which are supposed to be metaphysically less puzzling—such as the
physical, the descriptive, or the naturalistic properties. Specifically, it is often
asked whether the former are reducible to the latter.

In such debates, the concept of supervenience has played a central role. A
recent paper starts by observing that “[w]hen it comes to evaluating reductive
hypotheses in metaphysics, supervenience arguments are the tools of the trade.”1

As is familiar, supervenience is modal co-variation: it rules out differences in one
respect without differences in another respect. The theses that mental properties
and ethical properties supervene on physical properties are widely accepted.
But there is disagreement about what they imply. On one side, so-called “non-
reductive physicalists” in the philosophy of mind endorse a supervenience thesis
to distinguish themselves from dualists, while also opposing reductionism. As
Jaegwon Kim put it, “many philosophers saw in [supervenience] the promise of
a new type of dependency relation that seemed just right, neither too strong nor
too weak, allowing us to navigate between reductionism and outright dualism.”2

Likewise, metaethicists who repudiate reductive naturalism typically still accept
that the ethical supervenes on the natural. On the other side, a number of
philosophers—notably Kim himself in the mental and Frank Jackson in the
ethical case— have argued that such an intermediate position is untenable,
since supervenience entails reduction.3

Who is right? Before answering the question, we need to recall a distinction
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inburgh, in particular Michael Clark, Cian Dorr, Peter Fritz, Bryan Pickel, Stefan Roski, Jeff
Russell, Gabriel Uzquiano, Alan Weir, Nathan Wildman, and Timothy Williamson; and also
to a number of anonymous referees. My research on this paper was prompted by conversations
with Campbell Brown—special thanks to him, as well as to Bruno Whittle, whose detailed
comments and suggestions greatly improved the paper. This work was supported by the
Templeton Foundation, via the Durham Emergence Project, and by the Arts and Humanities
Research Council [grant number AH/M009610/1].

1Johannes Schmitt and Mark Schroeder, “Supervenience Arguments under Relaxed As-
sumptions,” Philosphical Studies, CLV, 133–162.

2Jaegwon Kim, “Supervenience as a Philosophical Concept”, in Supervenience and Mind:
Selected Philosophical Essays (Cambridge: Cambridge University Press, 1993), pp. 131–60,
at p. 147.

3Kim, “Supervenience as a Philosophical Concept,” op. cit.; Frank Jackson, From Meta-
physics to Ethics: A Defence of Conceptual Analysis, (Oxford: Oxford University Press,
1998).
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between two kinds of supervenience claims: local and global. The former con-
cern co-variation among properties of possible individuals, the latter co-variation
among property distributions of possible worlds. In this paper, my interest is
mainly in global supervenience claims. The result that certain local superve-
nience claims entail reduction would be significant only to the extent that the
claims themselves are plausible. However, in many areas where reductionism is
debated, local supervenience theses look untenable. Broadly physical properties
arguably do not locally supervene on microphysical ones, because of the phe-
nomenon of quantum entanglement. Furthermore, externalism about mental
content and mental states gives us reason to deny the local supervenience of the
mental on broadly physical properties. Likewise, many ethical theories seem
to imply that ethical properties need not be locally supervenient on ordinary
descriptive ones. The supervenience claims that are widely accepted in these
domains are global ones.4

I shall argue that global supervenience does not entail reductionism—that
what I call a “reduction principle” linking them is false. In a nutshell, my
argument is this: from the metaphysics of possible worlds, we learn that there
is no upper bound on the size of possible worlds; and from the model theory
of infinitary logics, we learn that if there is no such upper bound, then some
globally supervening properties are not reducible.

Roadmap: After presenting some technical background material in section 1,
I briefly survey the debate about whether global supervenience entails reduction-
ism, and present what I call the “Jackson–Stalnaker argument” for a positive
answer (section 2). I then identify a hidden premise in the argument, which I
argue should be rejected (section 3). In section 4, I sketch a counterexample to
the reduction principle, drawing on the model theory of infinitary logic. Before
concluding, I discuss a number of responses (sections 5 and 6).

1 Reduction and Definability

The term “reduction” has no settled meaning in philosophy. In philosophy of
science, reduction is often taken to be a relation between theories. My concern
here is with reduction among properties and relations instead. According to
a standard usage of the philosophy of mind, a mental property is reducible to
physical properties just in case it is identical with a physical property. General-
izing that usage, we could take the claim that a class of properties A is reducible
to a class of properties B to be simply the claim that every property in A is
also in B—or equivalently, that A is a sub-class of B.5

While this use of “reduction” is partly stipulative, it is well-motivated. It is
widely accepted that A’s being a sub-class of B is sufficient for reduction.

4A popular gambit to safeguard local supervenience claims from such apparent counterex-
amples is to include extrinsic properties in the base. I will discuss this in sections 2 and
7.

5I will typically use ‘properties’ in a broad sense, applying to include relations as well.
Context will make it clear when the term is to apply to monadic properties only.
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Our question would then become: does the global supervenience of A on B
entail that A is a sub-class of B? If properties are individuated very finely, the
answer to that question is bound to be negative. Being an equilateral triangle
modally co-varies with being an equiangular triangle, so supervenience does not
entail reduction if these are distinct properties. For the purposes of this paper,
I shall make the assumption that no two properties can be co-intensional. That
is, if F and G are instantiated by exactly the same things in all possible worlds,
then F = G. Without that assumption, the reduction principle that I am going
to criticize is a non-starter.

But even granted a coarse-grained individuation of properties, there seems
to be a simple argument to show that global supervenience does not entail
reductionism. Let F and G be such that it is possible for something to have one
but not the other, and suppose that H is the disjunction of F and G, in the sense
that in all possible worlds, an individual has H iff it has F or G. Obviously, {H}
supervenes on {F,G}—on any reasonable way of defining supervenience—even
though H is not a member of {F,G}.

Defenders of the link between supervenience and reduction can respond by
denying that membership is necessary for reduction. Intuitively, the disjunctive
H should count as reducible to F and G. There is a more general strategy
available, which does not merely deal with the case of disjunction: to say that
global supervenience implies definability, which in turn implies reducibility.6

We know what it is for a predicate to be definable from other predicates.
This gives rise to a corresponding relation of definability among the properties
expressed by these predicates. Thus for a given class of putative base proper-
ties we can consider the properties definable from that class. Obviously, H as
described above is definable from F and G, using disjunction.

The claim that definability implies reducibility is plausible and well-motivated,
at least if B is one of the usual suspects, such as the the physical, descrip-
tive, or naturalistic properties. Kim put the point well when he argued that
putative base properties do not need to satisfy what he calls the “resemblance
criterion”—that sharing of a property must ensure resemblance in some respect:

[I]t seems that we allow, and ought to allow, freedom to combine
and recombine the basic theoretical predicates and functors by the
usual logical and mathematical operations available in the under-
lying language, without checking each step with something like the
resemblance criterion; that would work havoc with free and creative
scientific theorizing.7

The idea is clear: when a physicist exercises her freedom and chooses to
define properties from a given stock of physical properties, she does not, at any
point in the process, stop doing physics. Likewise, nobody ceases to do science
by defining further properties in terms of naturalistic properties.

6An alternative response is to restrict the reduction principle: for any B closed under
definability, if A globally supervenes on B, then A reduces to B.

7Kim, “Supervenience as a Philosophical Concept,” op.cit, at p. 153.
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Kim’s claim needs to be qualified, however. The property of being a unit
set of an electron is definable from the language of physics using mathematical
operations, but it is hardly a physical property, nor reducible to physical prop-
erties. The difference between logical and mathematical operations matters in
this context. The relevant properties are those definable from B using such op-
erations as negation, disjunction, conjunction, and quantification, as well as the
identity predicate. This observation shows that we need to make the concept of
definability more precise, before we can properly assess whether it can serve as
a fulcrum between global supervenience and reduction.

Definition 1. Given a language L whose vocabulary includes all members of
B, an n-ary relational predicate F is L-definable from predicates in class B iff
there is an L-formula Φ, with no non-logical vocabulary except perhaps members
of B, such that the following is true in all possible worlds w:

∀x1 . . . ∀xn(F (x1, . . . , xn)↔ Φ(x1, . . . , xn))

Definability thus understood is relative to a language, here taken to be deter-
mined not just by a class of sentences, but also by a division of the vocabulary
into logical and non-logical terms.

Definition 1 is in broad agreement with definitions of explicit definability of
predicates given in logic textbooks, except that it quantifies over possible worlds
rather than over models.8 The purpose of these modifications is to ensure
that the theses of supervenience and of definability are stated in a common
idiom. If one thesis was about possible worlds and the other about models,
nothing interesting would follow from them, and in particular, no reductionist
conclusions would follow.

For the same reason, we need the notion of definability to apply to classes
of relations as well as predicates. I shall here assume that any formula Φ of L
expresses a relation, which is instantiated by exactly those things that satisfy
the formula.9 Given the assumption that no two properties are co-intensional,
there is one and only one property expressed by every predicate. In light of
this, no harm will be done by letting a predicate symbol F do double duty as a
name of the corresponding property, and by applying the term “definable” not
just to predicates, but also to the relations they express.

The fact that definability is relative to a language prompts the question of
which language is relevant, if we are interested in reduction. Those who claim

8For a representative example, see George S. Boolos, John P. Burgess, and Richard C.
Jeffrey, Computability and Logic, 4th edition (Cambridge: Cambridge University Press, 2002),
at p. 266.

For a discussion of logical issues concerning the relationship between non-global (local)
supervenience and definability, see Lloyd Humberstone, “Note on Supervenience and Defin-
ability”, Notre Dame Journal of Formal Logic, XXXIX, 2: 243–252.

Philosophers have considered more demanding notions of definition. See Gideon Rosen,
“Real Definition,” Analytic Philosophy LVI: 189–209.

9This amounts to a so-called “abstraction principle” for relations. For languages that do
not allow terms for such abstracts—such as L, to be introduced shortly—this principle will
be predicative and not susceptible to Russell’s paradox and its cognates.
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that supervenience entails reductionism have urged that we should be quite lib-
eral. What we are interested in is reducibility in principle, not reducibility given
some contingent limitations. In particular, we should allow the background log-
ical language to have infinitary resources.

To be able to discuss this move, I shall now introduce an infinitary language
L, which will play a major role in the following.10 L differs from the standard
language of first-order logic in two ways. First, instead of combining with a
single variable, as in ‘∃x’ or ‘∀x’, an existential or universal quantifier may be
attached to any expression standing for a set of variables, as in ‘∃X’ or ‘∀X’.
Just like in the familiar case of first-order logic, truth-conditions for formulas
in which they occur are stated relative to a variable assignment, or valuation.
For a world w, a w-valuation is any function that maps variables to things that
exist in w.11 A w-valuation g′ is an X-variant of a w-valuation g iff it differs
at most on X, that is, if g′(y) = g(y) for every variable y that is not a member
of X. Then for every world w:

• ∀Xp is true relative to w-valuation g iff for all X-variants g′ of g, p is true
relative to g′.

Existential quantification is defined in terms of universal quantification and
negation in the usual way.

Second, L has two new symbols
∨

and
∧

instead of ∨ and ∧, which may
be attached to any expression standing for a set of formulas, to form respec-
tively the disjunction and conjunction of its members. The truth-conditions for
conjunction are (again, disjunction is defined in the usual way):

•
∧
S is true relative to g iff every member of S is true relative to g.

For readability, I shall sometimes use the more familiar symbols, writing ∀x
instead of ∀{x}, and p ∧ q instad of

∧
{p, q}, for example.

In L,
∨

and
∧

apply to sets of formulas of any cardinality, and ∃ and ∀ to
sets of variables of any cardinality.

With definability thus specified, the two theses that jointly entail the reduc-
tion principle can be stated more precisely:

DefRed If A is L-definable from B, then A reduces to B.

SupDef If A globally supervenes on B, then A is L-definable from B.

I shall grant DefRed to the proponent of the reduction principle. But in
subsequent sections, I shall challenge SupDef.

10My presentation of infinitary logic aims for accessibility to readers familiar with first-order
prediate logic. Certain details that are not relevant for the philosophical point I wish to make
will be omitted.

11Such valuations will be “class functions.” For convenience, I will pretend that there are
such functions. A more rigorous discussion would work with valuations that are defined only
“locally”, for the variables in formulas of a relevant set.
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It is worth observing that the language L has more expressive power than
any of the other standard infinitary languages.12 Hence if a property is not
definable in L, it is not definable in any of these other languages either. The
decision to focus on L, and to assume that putative base properties are closed
under L-definability, is thus friendly to the proponent of the reduction principle.

2 The Jackson–Stalnaker Argument

Some philosophers have affirmed what is effectively the reduction principle with-
out argument. Thus David Lewis:

[I]f supervenience fails, then no scheme of translation can be correct
and we needn’t go on Chisholming away in search of one. If su-
pervenience succeeds, on the other hand, then some correct scheme
must exist; the remaining question is whether there exists a correct
scheme that is less than infinitely complex.13

Lewis did not specify what kind of supervenience he was talking about.
Other philosophers recognized that the answer to the question may be sensitive
to what variety of supervenience is at issue, and that at any rate an argu-
ment is required. Kim established that local supervenience entails reducibility.
More specifically, he proved this for the variety of local supervenience known as
“strong supervenience”, which holds between A and B iff for all individuals x
in w and x′ in w′, if x in w and x′ in w′ have the same B-properties, then they
have the same A-properties.14

While Kim’s result does not speak directly to the question of this paper,
it plays a pivotal role in the pertinent arguments. For this reason, it is worth
stating here (it is proved in appendix A). In fact, the version here is more general
than Kim’s, because it applies to relations as well as monadic properties.15

Proposition 1. For all sets of relations A and B, if A strongly supervenes on
B, then A is L-definable from B.

12In the literature (for example M. A. Dickmann, Large Infinitary Languages. Model Theory
(Amsterdam: North Holland Publishing Company, 1975), what I call L is usually called L∞∞.

13David Lewis, “New Work for a Theory of Universals,” in Papers in Metaphysics and
Epistemology (Cambridge: Cambridge University Press, 1999), pp. 8–55, at pp. 29–30.

Lewis speaks of ‘translation’ rather than ‘reduction’, but this makes little difference. A
translation would map a predicate to one that is co-intensional, and thus expresses the same
property, given our assumption that properties are coarse-grained. Translation suffices for
reduction.

14Kim, “Supervenience as a Philosophical Concept,” op. cit..
15The generalisation of the usual definition of strong supervenience to cover relations, which

I relegate to the appendix, is taken from Stephan Leuenberger, “Supervenience in Meta-
physics,” Philosophy Compass, III/IV, pp. 749–762. In the context of the present paper,
it does not matter whether that definition provides an adequate explication of strong su-
pervenience for relations. (I propose a different explication, which I take to be superior, in
Stephan Leuenberger, “Supervenience among Classes of Relations”, in Miguel Hoeltje, Ben-
jamin Schnieder, and Alex Steinberg, eds., Varieties of Dependence (Munich: Philosophia,
2013), pp. 325–346.) The concept only plays an auxiliary role in the argument to be discussed
here, and does not appear in either the premises or the conclusion.
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Kim considered the question whether global supervenience entails reduction
on a number of occasions.16 In one place, he wrote that “it seems a plausible
conjecture that if extrinsic properties are included in . . . [the subvenient set]—in
particular, if, along with the usual Boolean operations, identity and quantifica-
tion are allowed for property composition—. . . the equivalence will obtain.”17

Kim’s conjecture was supported by Frank Jackson and Robert Stalnaker.18

Even though their arguments were advanced independently, the key idea is the
same, such that it is appropriate to speak of the “Jackson–Stalnaker argument”.
While Stalnaker’s version is an important point of reference in the specialized lit-
erature on supervenience, Jackson’s has been more widely influential, especially
in contemporary metaethics. The version I present here is closer to Stalnaker’s,
which provides more formal detail.19 It is more general than either Stalnaker’s
or Jackson’s by applying to relations of any (finite) adicity, rather than just to
monadic properties.20

The key idea behind the argument is the one adumbrated by Kim in the
conjecture quoted above: to move from a claim of global supervenience to one
of local supervenience—specifically, strong supervenience—on a base expanded
to include extrinsic properties, and then appeal to Proposition 1 to infer a
definability claim. Given a putative base B, the associated class that includes
the relevant extrinsic properties—e.g. being such that something is F , where F
belongs to B—can be taken to be the class of all properties that are L-definable
from B.21 I shall call this class L(B). It is the so-called “closure” of B under
L-definability.

Suppose that we hold that the property of thinking of gold fails to strongly
supervene on microphysical properties: someone might duplicate me with re-
spect to microphysical properties, but live in a possible world where there is
schmold rather than gold, and hence fail to share my thought about gold. Then
the strategy is to find extrinsic microphysical properties that I have and my
duplicate lacks. In our example, it is easy to come up with examples of such
extrinsic properties, like being such that something has a nucleus with 79 pro-
tons. But in other cases, finding examples might be harder, whence the need

16Kim was influenced by the insightful discussion of the reduction principle in Bradford
Petrie, “Global Supervenience and Reduction,” Philosophy and Phenomenological Research,
XLVIII: 119–30.

17Jaegwon Kim, “Postscripts on Supervenience,” in Kim, Supervenience and Mind, op. cit,
at p. 170.

18Jackson, op. cit, Robert C. Stalnaker, “Varieties of Supervenience,” Philosophical Per-
spectives X: 221–241.

19For technical objections to Jackson’s specific version of the argument, see Timothy
Williamson, “Ethics, Supervenience and Ramsey Sentences,” Philosophy and Phenomeno-
logical Research, LXII: 625–630. Like Stalnaker’s, the version presented here is not vulnerable
to these objections.

20 Mark Moyer, “Weak and Global Supervenience are Strong,” Philosophical Studies,
CXXXVIII: 125–30, at pp. 148–49, also indicates how Stalnaker’s argument can be gen-
eralized to relations.

In many philosophical contexts, the putative global supervenience bases that are relevant
contain relations, such as spatiotemporal distance. See also footnote 36.

21This is no substantive claim about extrinsicality. The word “extrinsic” plays a purely
heuristic role in my presentation of the argument.
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for a general licence to move from a global supervenience claim to a strong
supervenience claim with extrinsic base.

A proof that we have such a general licence requires a precise explication
of global supervenience. I shall here adopt Stalnaker’s, which is called “strong
global supervenience” in the literature, and which I will simply call “global
supervenience” here.22 (“Strong global supervenience” is not to be confused
with “strong supervenience”, which is a species of local supervenience.)

Global supervenience is defined in terms of certain mappings between the
domains of possible worlds. Say that a function f from the domain D(w) of
world w to the domain D(v) of world v is a domain-isomorphism iff it is one-one
and onto; and say that it preserves A iff for all R ∈ A and x1, . . . , xn ∈ D(w),
〈x1, . . . , xn〉 instantiates R in w iff 〈f(x1), . . . , f(xn)〉 instantiates R in v. An
A-isomophism is a domain-isomorphism that preserves A. Finally:

Definition 2. A class of relations A globally supervenes on a class of relations
B iff every B-isomorphism is also an A-isomorphism.23

The following theorem, proved in Appendix A, is a generalized version of a
result that Stalnaker proved for the case of monadic properties:

Proposition 2. For all classes of relations A and B, if A globally supervenes
on B, then A strongly supervenes on L(B).

Armed with these two propositions, we can argue for SupDef as follows.
Suppose that A globally supervenes on B. By Proposition 2, A strongly super-
venes on L(B). By Proposition 1, A is L-definable from L(B). But L(B) is
itself closed under L-definability: what is L-definable from it is already in it.24

It follows that A is in L(B), that is, that A is L-definable from B.
It appears that SupDef has been proved! Given that I have granted DefRed,

the reduction principle seems to be vindicated.
Here is how Stalnaker describes the result himself:

[A] global supervenience thesis is in fact quite strong: Kim has shown
that if A strongly supervenes on B, then every A-property is nec-
essarily equivalent to a property definable in terms of B-properties.

22With the main rival explications of global supervenience, the result to be proved, Propo-
sition 2, does not hold. Following Williamson, op. cit, let a property be uniform iff in
every possible world, it applies to everything or to nothing, and let B be the class of all
uniform properties. It is easily seen that L(B) = B, and that for every class of proper-
ties A, A stands in both the relations of intermediate global supervenience and weak global
supervenience to B. (See Karen Bennett and Brian McLaughlin, “Supervenience,” in Ed-
ward N. Zalta, ed., Stanford Encyclopedia of Philosophy, (Spring 2018 Edition), URL =
¡https://plato.stanford.edu/archives/spr2018/entries/supervenience/¿. for these varieties of
global supervenience.) However, the class of physical properties, like many other classes,
obviously fails to strongly supervene on L(B).

23If A is a unit set {F}, I shall also say that F globally supervenes on B to mean that {F}
does.

24The idea behind this is that replacing a term occurring in a definition with its own
definition produces another definition. Proving this from Definition 1 is straightforward but
tedious.
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So our result implies that it is also true that if A globally supervenes
on B, then every A-property is necessarily equivalent to a prop-
erty definable in terms of B-properties. If necessary equivalence is
enough for property identity, then we can say that if A globally su-
pervenes on B, the A-properties all are properties definable in terms
of B-properties.25

3 Are world-sizes bounded?

Prima facie, Stalnaker’s version of the Jackson–Stalnaker argument is water-
tight. On closer inspection, however, it relies on a hidden extra premise: that
the class L(B) is a set. Without that premise, Proposition 1, which generalizes
over sets, does not apply.

How are we to decide whether that premise is justified? If the class B is not
a set—if it is a proper class—then since B ⊆ L(B), L(B) is not a set either.
The interesting question is this: under what conditions is L(B) a set given that
B is? The following result, proved in Appendix A, gives an answer:

Proposition 3. For any set of relations B, L(B) is a set iff there is a cardinality
κ such that for every possible world w, the cardinality of the domain of w is less
than κ.

We might have thought that the question whether there is such an upper
bound on the sizes of worlds would be of little interest beyond specialized debates
in the metaphysics of possible worlds. But if it had an affirmative answer,
then the gap in the Jackson–Stalnaker argument could be closed, in light of
Proposition 3. So the question turns out to be highly relevant for the fate of
non-reductive physicalism and analogous views in metaethics and other areas.

Recherché or not, it seems clear how the question should be answered. Draw-
ing on work by Daniel Nolan, I shall offer two considerations against the idea
that world sizes are bounded.

First, a plausible theory of possible worlds includes a principle of recom-
bination. This is a principle telling us what worlds there are in modal space.
Intuitively, it states that if you cut, copy, and paste portions of possible worlds,
the result is again a possible world. As we all know from our text processors,
you can paste a given item multiple times. In one canonical formulation, the
principle reads as follows: “for any objects in any worlds, there exists a world
that contains any number of duplicates of those objects.”26 In this version, it
immediately entails that there is no upper bound on the size of worlds. For any
such putative bound λ, there will be a number κ > λ, and, by the principle, a
world containing κ intrinsic duplicates of David Lewis. It then follows that λ is

25Stalnaker, “Varieties of Supervenience”, op. cit., at p. 228.
26Daniel Nolan, “Recombination Unbound,” Philosophical Studies, LXXXIV: 239–62, at p.

239.
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not an upper bound on the size of worlds. Modifying the principle to limit the
number of duplicates would seem to be ad hoc.27

Second, consider a statement of the form “there are fewer than κ individu-
als”. For some κ, this will be true in all possible worlds, if there is an upper
bound on world sizes. Given the link between necessity and possible worlds,
“there are fewer than κ individuals” will be necessary. However, such a state-
ment would hardly be a priori true. In this post-Kripkean age, we have become
used to some claims being necessary a posteriori. But the generally accepted
examples of such claims have certain features in common: most obviously, they
are stated using proper names or natural kind terms. But “there are fewer than
κ individuals” does not have these features. It would be a brute necessity of a
non-Kripkean kind.28 Those of us who share Leibniz’ view that “there is always
a presumption on the side of possibility, that is, everything is held to be possible
unless it is proven to be impossible”29 will be reluctant to accept it.30

4 Global supervenience without L-definability

We have seen that the argument for the reduction principle based on Kim’s and
Stalnaker’s result is not sound unless there is an upper bound on the size of
possible worlds. Moreover, I have argued on metaphysical grounds that there is
no such upper bound. Of course, it does not follow that the reduction principle
cannot be established, or is even false.31

In this section, I shall sketch an example of a relation S that globally su-
pervenes on a set of relations B, but is not L-definable from them. This is a

27In On the Plurality of Worlds (Oxford: Blackwell, 1986), at p. 103, David Lewis claimed
he needed such a restriction to avoid a reductio ad absurdum of the principle of recombination.
However, Nolan, “Recombination Unbound,” op. cit, showed that the alleged reductio was
fallacious. In David Lewis, “Tensing the Copula,” Mind, CXI: 1–13, at p. 8, Lewis acknowl-
eged that “Nolan . . . has made a fairly persuasive case that there are more possibilia than I
used to think, in fact proper-class many.”

28When Kripke considered the issue himself, he wrote “it seems to me to be reasonable to
suppose . . . that for every cardinality κ it is possible that there are exactly κ individuals” (Saul
Kripke, “A Puzzle about Time and Thought,” in Philosophical Troubles. Collected Papers,
volume I, pp. 373–379, at 378.

29G. W. Leibniz, Philosophical Essays, Roger Ariew and Daniel Garber, eds. (Indianapolis:
Hackett Publishing, 1989), at p. 238.

30The Jackson–Stalnaker argument, and in particular Proposition 2, rests on another as-
sumption that I shall not challenge here: that the domain of every possible world is set-sized.
Given that the quantifiers of L range over everything in the world, the assumption can only
hold if sets are not in the relevant sense “in the world”. I grant that assumption to the pro-
ponent of the reduction principle because it is standardly made in the debate about global
supervenience.

31Stalnaker himself briefly considered the question whether his result could be established
in a different way. Responding to Michael Glanzberg, “Supervenience and Infinitary Logic,”
Noûs, XXXV: 419–439, he wrote that “Michael Glanzberg has shown that a more sophisticated
argument establishes that a language that has infinite Boolean combinations but only finite
strings of quantifiers will suffice.” (“Postscript added in 2002”, in Ways a World Might Be.
Metaphysical and Anti-Metaphysical Essays (Oxford: Oxford University Press, 2003), pp.
105–108, at p. 105.) However, Glanzberg’s argument only applies if no possible world has an
uncountable domain, and hence does not avoid the objection of the last section.
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counterexample to the reduction principle, granted the following bridge princi-
ple:

RedDef If A reduces to B, then A is L-definable from B.

For the time being, I shall take this principle—whose converse DefRed was
introduced in section 1—for granted. I will consider challenges to it in section
6.

To understand why SupDef fails, it is helpful to consider a simpler example
first. Suppose that our non-logical predicates are F and K, meaning “is a fork
on the table” and “is a knife on the table”, and we wish to express in the
language of first-order predicate logic with identity that there as many knifes
and forks on the table. In this language, we can say very specific things that
entail that the knifes and forks are equinumerous—that there are 17 knifes and
17 forks, say. We can also say some slightly less specific things that still entail
it—that either there are 17 knifes and 17 forks, or 18 knifes and 18 forks, say.
It is not tempting to form the disjunction of all these claims, for every natural
number. But since there are infinitely many natural numbers, and since the
language only allows us to form finite disjunctions, this attempt expressing the
equinumerosity claim fails.

In the example to be presented, it will also be tempting to form a disjunc-
tion of the claims in a certain class—but since the class is not a set, no such
disjunction can be formed. So the obvious way of providing a definition fails.
Showing that no non-obvious way can succeed requires considerable work. The
counterexample to SupDef to be presented is an adaptation to our metaphysical
context of Jerome Malitz’ example to the effect that L does not have what is
called the “Beth definability property.”32

Let B consist of the monadic properties F and G and binary relations <F

and <G.33 A B-world is one that satisfies the following two conditions:34

• Everything is an F or a G, but not both.

• If x <F y, then Fx and Fy, and if x <G y, then Gx and Gy.

Thus a B-world is one that is in a certain sense compartmentalized by the
members of B: its domain is partitioned by the monadic properties in B, and
its relations never relate things from different cells of that partition.

The diagram below represents a B-world. The F s are represented in the top
half of the drawing, diagonally upwards. The Gs are represented in the bottom
half, diagonally downwards.

32Jerome Malitz, “Infinitary Analogs of Theorems of First Order Model Theory,” The Jour-
nal of Symbolic Logic, XXXVI: 216–228.

33I shall use the letters A, B, F , G, etc sometimes as names of the properties or sets of prop-
erties involved in my counterexample to the reduction principle, and sometimes schematically.
Context will disambiguate.

34I tacitly assume that worlds have non-empty domains.
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Further, suppose that S is a binary relation that is instantiated in all and
only B-worlds such that <F and <G form well-orderings that are isomorphic to
each other—in all and only BS-worlds, for short. More formally, say that s is
an FG-isomorphism in w iff w is a B-world, and s is a one-one mapping from
the set of F s onto the set of Gs in w such that x <F y iff s(x) <G s(y). Then
we can capture the distinctive principles governing the distribution of S in a
possible world w as follows:

(1) For all w, if there is an FG-isomorphism in w, then S is instantiated in
w.

(2) For all w, if S is instantiated in w, then there is an FG-isomorphism s
such that S(x, y) iff s(x) = y.

From a standard set-theoretic result, it follows that if there is an isomorphism
between the well-ordered sets of the F s and the Gs, it is unique. Given a BS-
world w, I can thus write Sw(x) for the s whose existence is guaranteed by
(2).

In the world depicted above, the well-orderings of the F s is not isomorphic
to the well-ordering of the Gs, since there are three F s and only two Gs. But
in the world below, these well-orderings are isomorphic. This world is hence a
BS-world. A dashed arrow from ai to bi represents that Sw(ai) = bi.

12
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The principles (1) and (2) are purely structural. They do not tell us much
about what S and the members of B are like. A plethora of properties and
relations with very different intrinsic natures will satisfy (1) and (2). To fix
ideas, imagine that all members of the domain of w are particles, and that they
fall into two kinds: F -particles and G-particles. If x and y are F -particles such
that x <F y, then x comes into existence earlier than y; and likewise for G-
particles. Since the F s and the Gs are well-ordered, there is a first F -particle,
and a first G-particle. We can think of S as a relation of simultaneity: S relates
x to y if and only if x is an F -particle and y a G-particle that come into existence
at the same time. Furthermore, (1) and (2) may be taken as expressing laws of
natures holding in virtue of the natures of F -particles and G-particles: if the
F s and the Gs are isomorphic, then there are distinct but simultaneous particle
births, given (1); otherwise there are not, given (2).

Recall that I am constructing a counterexample to the reduction principle: a
case of a globally supervening but irreducible property. We are now in a position
to show that S has the first of the two requisite features.

Proposition 4. If (1) and (2) are true, then S globally supervenes on B.

This is shown by verifying that for all worlds w and w′ and allB-isomorphisms
f between them, S(x, y) holds in w iff S(fx, fy) holds in w′. For the left-to-right
direction, suppose that S(x, y) holds in w. Then Sw is an FG-isomorphism in
w. Let fF be the restriction of f to the F s in w, and fG its restriction to the Gs
in w. Then it is easy to verify—the picture below should help—that fGSwf

−1
F

is an isomorphism between <F in w′ and <G in w′.
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world w′
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fG

fG

fG

Sw Sw Sw Sw′Sw′Sw′

By (1), S is instantiated in w′. By (2), Sw′ is an isomorphism from the
set of F s and the set of Gs in w′. Since there is only one such isomorphism,
as noted earlier, Sw′ = fGSwf

−1
F . It follows that Sw′(fx) = fGSwf

−1
F (fx) =

fGSw(x) = fG(y) = fy, and hence S(fx, fy) in w′. The right-to-left direction
is shown in the same way, mutatis mutandis. Since f was chosen arbitrarily, we
can conclude that S strongly globally supervenes on B.

While our assumptions (1) and (2) let us derive that S globally supervenes
on B, they do not guarantee the other feature of our desired counterexample,
namely, indefinability. It is easy to see that (1) and (2) are compatible with there
being no BS-worlds, in which case S would be L-definable (e.g. by ¬(x = x))
from any class. To show that S is not L-definable from B, we need some
principles of a broadly recombinatorial character, giving us many different BS-
worlds:

(3) For every order type, there is a B-world where <F has that order type.35

(4) For every order type, there is a B-world where <G has that order type.

(5) For any B-worlds w and w′, there is a B-world w′′ such that <F in w′′ is
isomorphic to <F in w, and <G in w′′ is isomorphic to <G in w′.

These assumptions allow us to prove the indefinability claim:

Proposition 5. If (1)–(5) are true, then S is not L-definable from B.

The main result of this paper is now immediate:

Corollary 1. If (1)–(5) are true, then global supervenience does not entail L-
definability.

35Order types are abstractions from well-orderings under the relation of order
isomorphism—two well-orderings have the same order type iff they are isomorphic.
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The rest of this section is devoted to sketching a proof of Proposition 5.
Details of the proof will be filled in Appendix B. Sections 5–7 of the paper do
not presuppose this technical material.

To see why Proposition 5 holds, recall what it would take for S to be in L(B),
according to Definition 1: that there is a B-formula Φ of L —i.e. a formula
with no non-logical vocabulary except perhaps predicates from B—such that
the following is true in all possible worlds:

∀x∀y(Sxy ↔ Φ(x, y))

Adapting Malitz’ strategy, I shall show that there is no formula Φ(x, y)
satisfying this condition.

Let Φ(x, y) be any such candidate definiens. I shall show that there are
worlds wΦ and w−Φ (pronounced “w-phi-minus”) such that:

(i) ∃x∃ySxy is true in wΦ.

(ii) ∃x∃ySxy is not true in w−Φ .

(iii) ∃x∃yΦ(x, y) is true in wΦ iff ∃x∃yΦ(x, y) is true in w−Φ .

From this, it follows that ∀x∀y(Sxy ↔ Φ(x, y)) is false in wΦ or in w−Φ . In either
case, it is not true in all possible worlds, and Φ does not define S. Since Φ was
chosen arbitrarily, we can conclude that S is not L-definable from B.

We can picture the worlds wΦ and w−Φ as follows: the F s of wΦ are isomorphic
with the Gs of wΦ and the F s of w−Φ , but not with the Gs of w−Φ .

a0

a1

<

a2

<

. . .
. . .

<

b0

b1

<

b2

<

. . . . . .

<world wΦ

a′0

a′1
<

a′2
<

<
. . .
. . .

b′0

b′1

<

b′2

<

. . .

<world w−Φ

fF

fF

fF

SwΦ
SwΦ

SwΦ

In proving that given a candidate definition φ, there are indeed such worlds
wΦ and w−Φ , the key move is to consider sentences in which all quantifiers are
restricted to the F s, and sentences in which all quantifiers are restricted to the
Gs. We can choose a world wΦ that is sufficiently large that the truth-values of
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such restricted quantifications determine the truth-value of ∃x∃yΦ(x, y) (The-
orem 2, below). Roughly speaking: since B contains no relations that link F s
with Gs, giving separate B-descriptions of the F s and the Gs is enough to give
a B-description of wΦ. Moreover, by a version of the Löwenheim–Skolem The-
orem (Theorem 1), the relevant sentences in which quantification is restricted
to the Gs fail to distinguish wΦ from world w−Φ , whose Gs are non-isomorphic
to those in wΦ.

To make this reasoning rigorous, we need to be able to keep track of vari-
ous sub-languages of L(B). For this purpose, we shall use a piece of standard
terminology for infinitary languages: for cardinals κ and λ, Lκλ denotes a lan-
guage just like L, except that

∨
and

∧
can only attach to sets of formulas of

cardinality less than κ, and quantifiers can only attach to sets of variables of
cardinality less than λ. If κ ≤ κ′ and λ ≤ λ′, then every formula of Lκλ also
belongs to Lκ′λ′ . Our L is the union of the languages Lκλ, for all κ and λ.
Hence the candidate definiens Φ is in Lκκ, for some κ.

It will turn out to be useful for me to also introduce another, not standardly
used measure of complexity of formulas. A candidate definiens φ has a certain
depth—an ordinal indicating how far it embeds atomic formulas. Specifically,
let the depth d be 0 for an atomic formula of L, and set d(¬ψ) = d(ψ), d(

∧
Γ) =

sup{d(ψ) : ψ ∈ Γ} + 1, and d(∀XΓ) = d(Γ) + 1 (with
∨

and ∃ treated like
∧

and ∀, respectively).
For a fixed infinite κ, define c(α) recursively as follows: c(0) = 22κ ; c(α+1) =

22c(α)

for successor ordinals α + 1; and c(α) as the sum of {c(β) : β < α} for
limit ordinals. (This is a “superexponentiation” function.) The function c is
extended to formulas of Lκκ, with c(φ) =df c(d(φ)).

Suppose the candidate definiens φ is in Lκκ. Given an order type of cardi-

nality 22c(φ)

, let wΦ be a world—whose existence is guaranteed by (3), (4), and
(5)—in which the F s and the Gs both have that order type. Clearly, the F s
and the Gs in wΦ are isomorphic, and using (1), we can infer that (i) is true.

For a predicate F and a formula φ of L, define φF to be the same formula as φ
except that all quantifiers are restricted to F . More formally: φF = φ for atomic
φ, (¬φ)F = ¬φF , (

∧
i∈I φi)

F =
∧
i∈I φ

F , and (∀Xφ)F = ∀X(
∧
x∈X Fx→ φF ).

We can now appeal to a version of the Downward Löwenheim–Skolem The-
orem, which is proved in the appendix:

Theorem 1. Let ν be any cardinal, and H a predicate. Suppose that the size of
Hw is at least 2ν , and that there are at most ν non-logical terms in Lνν . Then
there is D ⊂ Hw, of size 2ν , such that if H ′w = D, then for all sentences φ of
Lνν , φH is true in w iff φH

′
is true in w.

If we set ν = 2c(φ), Theorem 1 guarantees that there is a subset of GwΦ
, of

cardinality 2c(φ), which can be taken as the extension of the new predicate G′

to make (iv) true:

(iv) For all sentences φ of Lνν , φG is true in wΦ iff φG
′

is true in wΦ.

Since ν = c(φ) ≥ 22κ , and since the relation of being a well-ordering is
expressible in Lω1ω1

, the G′s will also be well-ordered by <G, and have an order
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type. By (4) and (5), there is a world which can serve as our w−Φ : its Gs have
the order type as the G′s in wΦ, and its F s are isomorphic to the F s in wΦ.

Since 22c(φ) 6= 2c(φ) by Cantor’s Theorem, there is no FG-ismorphism in w−Φ ,
and by (2), S is not instantiated in w−Φ . Hence (ii) is true as well.

It remains to show that our choice of wΦ and w−Φ makes (iii) true. Let a
B-sentence be a B-formula that is a sentence—i.e. a sentence in which every
non-logical term expresses a member of B. Then by a straightforward induction
on the complexity of formulas, we can show:

(v) For all B-sentences φ of Lνν , φG
′

is true in wΦ iff φG is true in w−Φ .

(vi) For all B-sentences φ of Lνν , φF is true in wΦ iff φF is true in w−Φ .

From (iv) and (v), we get:

(vii) For all B-sentences φ of Lνν , φG is true in wΦ iff φG is true in w−Φ .

Theorem 2, below, will allow us to infer the desired (iii) from (vi) and (vii).
In preparation for stating the theorem, I give a more general definition of the
condition on the distribution of B that is satisfied by the B-worlds of our ex-
ample.

Say that a relationR is restricted to φ in a class of worldsW iff ∀x1 . . . xn(Rx1 . . . xn →∧
1≤i≤n φ(xi)) is true in w ∈W .

Definition 3. A class of relations B, with F,G ∈ B, is compartmentalized by
F and G in W iff every member of B is either restricted to F in all w ∈W , or
restricted to G in all w ∈W , and ∀x(Fx↔ ¬Gx) is true in all w ∈W .

In light of this definition, the B-worlds introduced earlier form a class of
worlds in which B is compartmentalized by F and G.

The following theorem is proved in Appendix B:

Theorem 2. Let B be compartmentalized by F and G in W , and φ be a B-
sentence of Lκκ. Then if for all w,w′ ∈ W and B-sentences ψ of Lνκ, where
ν = c(φ), ψF and ψG have the same truth-value in w as they have in w′, so
does φ.

By construction, wΦ and w−Φ are B-worlds, and as noted, B is compartmen-
talized by F and G in all B-worlds. It follows from (vi) and (vii) that for all
B-sentences ψ of Lνν—and a fortiori of Lνκ, since κ < ν—ψF and ψG have the
same truth-value in wΦ as they have in w−Φ . Theorem 2 then entails that φ has
the same truth-value in w as it does in w′. This shows that (iii) is also true,
and completes the proof of Proposition 5.36

36 While S is a binary relation, the argument also shows that the monadic property expressed
by ∃ySxy globally supervenes on B without being L-definable from it.(See also footnote 20.)
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5 Are there real counterexamples?

I have shown that if there are properties and relations satisfing all of (1)–(5),
then there is an instance of global supervenience without L-definability. But
are (1)–(5) jointly satisfied? After all, my counterexample was quite fanciful,
involving properties and relations not dreamt of in contemporary science.

My response to this turns on David Lewis’ influential distinction between
sparse properties—roughly, properties whose sharing makes for objective resemblance—
and abundant properties. Perhaps we do not have a reason to think that there
are sparse properties corresponding to S or the members of B. However, in a
context in which supervenience and reduction are under discussion, we typically
quantify over abundant as well as sparse properties. One of the chief uses of
the notion of supervenience is exactly in articulating the relationship between
sparse and abundant ones. It is true that in the last section, I pretended that
F , G, <F and <G are sparse. But this was just to make the example vivid. Its
target, the reduction principle, is supposed to apply to abundant properties just
as much. The members of B may be gerrymandered and disjunctive. Once we
realize this, there is no immediate reason to think that no actually instantiated
properties satisfy (1)–(5).

An objector may try to limit the range of potential counterexamples: she
might argue that properties whose reducibility we are interested in can only
be instantiated in a certain restricted class of worlds, with bounded size. We
can easily adapt the Jackson–Stalnaker argument to show that such properties
will be L-definable from a set B if they globally supervene on B.37 But what
would the restricted class of worlds be? Suppose that the actual laws of nature
limit the cardinality of the world—they might say that everything is a fusion of
spacetime points, say, and that there are continuum many such points. Then
the suggestion would be that since the relevant properties are only instantiated
in worlds where the actual laws hold, the reduction principle holds for them.

I am happy to grant that if we have reason to think that members of A are
only instantiated in worlds with the same laws as ours, then A is L-definable
from every class upon which it globally supervenes. But I deny that many
interesting classes A are of that kind. I submit that the mental and certainly
the moral properties are not like that. Suppose we have reason to think that F
is only instantiated in worlds with our laws. Then it is these reasons, and not
merely the global supervenience claim, that support reductionism. It would be
highly misleading to claim that the global supervenience claim by itself entails
reductionism.

37If A globally supervenes on a set B, and no member of A is instantiated in a world with
more than κ individuals, then there is a cardinal λ such that A strongly supervenes on the
properties that are Lλλ-definable from B. These properties form a set, and Proposition 1
applies.
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6 Definitions in a more powerful language?

My counterexample to the reduction principle relied on there being properties
and relations that satisfy (1)–(5). In the last section, I considered challenges to
that existence claim. Here, I consider responses that grant that claim, but deny
that it refutes the reduction principle.

In theory, one could adopt a more demanding notion of global supervenience.
However, this is not attractive: if anything, the formulation we used seems
stronger, not weaker, than the informal notion it explicates. An initially more
promising option is to reject the principle RedDef, introduced in section 4,
and take a notion of definability that is less demanding than L-definability as
sufficient for reduction.

The reason why the Jackson–Stalnaker argument failed is that L cannot
form the disjunction of proper class many disjoints. So we could consider a
more powerful language which can. This takes us beyond standard infinitary
logic into largely uncharted territory.

There is more than one way to implement such a proposal. The simplest
is to change the formation rules for

∨
and

∧
in such a way that they apply

to every class to form a new formula. But then a version of Russell’s paradox
threatens: let φ be

∨
{ψ : ψ is a formula of the language that does not contain

itself as a disjunct}, and ask whether φ contains itself as a disjunct.
A more cautious approach is to define the formulas of a language L′ in such a

way that a class can be “collected together” once, as it were, but not repeatedly:

• Every L-formula is a formula.

• If S is a class of L-formulas, then
∨
S and

∧
S are formulas.

• If φ and ψ are formulas and x a variable, then ¬φ, φ ∧ ψ, φ ∨ ψ and ∀xφ
are formulas.

Now the above route to Russell’s paradox is blocked, since the formation rules
do not guarantee that

∨
{ψ : ψ is a formula of L′ that does not contain itself

as a disjunct} is a formula of L′. Inspecting the proofs of Propositions 1 and 2,
we can verify that if A globally supervenes on B, then A is L′-definable from
B. But I would argue that the new required bridging premise is implausible:

DefRed* If A is L′-definable from B, then A reduces to B.

This is because L′-definabilty does not really deserve to be called “definabil-
ity.” To put it differently: in the context of a language like L′, Definition 1,
which says what it is for a predicate to be definable in a language, should be
rejected. The reason is that definitions should be eliminable: the definiendum
can be replaced by the definiens in any context, without loss of well-formedness
or truth. But in L′, this is not guaranteed. Suppose that for a proper class
S of L-formulas, ∀x(Fx ↔

∨
S) is a L′-sentence true in all possible worlds.

If S′ is a proper class of L-formulas, then
∨

(S′ ∪ {Fx}) is a L′-formula, but
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∨
(S′ ∪ {

∨
S}) is not. Replacing F with its supposed definiens has resulted in

the loss of well-formedness!
A third implementation would iterate the above move. Just as L′ was de-

fined from L, it defines L′′ from L′, and likewise for every finite number of
superscripted primes. The language L+ is then the union of all these languages
in the hierarchy.

This approach avoids paradox, and guarantees the eliminability of definien-
tia. But it introduces a new hierarchy of proper classes. By a generalization of
Cantor’s argument, there will be more classes at every stage in the hierarchy. I
would argue that on this picture, the cardinals do not exhaust the sizes—there
are many proper class sizes above them. The considerations from section 3
then suggest that there should be possible worlds with these sizes. But if there
are, it is no longer guaranteed that L+ provides a definition for every globally
supervening property.

Thus I do not see how the strategy of allowing disjunctions and conjunctions
of proper class size could be implemented in a way that saves the reduction
principle.38

The infinitary language L is a first-order language, allowing quantification
into name position only. A further response to the counterexample is to allow
quantification into predicate position. In the language L2, the quantifiers then
range over classes. It is routine to give a second-order definition of S in terms
of B. For we can express that X is a bijection from the F s to the Gs such that
if Xxy and Xx′y, then x <F y iff x′ <G y′. Let this claim be abbreviated as
ISOF,G(X). Then ∀xy(Sxy ↔ ∃X(ISOF,G(X) ∧Xxy)) is a L2-definition of S
in terms of B.

Unlike with L+, I do not see how we could use L2 to give a general argument
from global supervenience to definability. Be that as it may, I think the strategy
fails anyway. Once again, the second premise is implausible:

DefRed** If A is L2-definable from B, then A reduces to B.

The problem here is that the proposed L2-definition is impredicative: S is
defined by existentially quantifying over classes, including relational classes, and
S itself is one of those. I do not think that there is anything wrong with impred-
icative definitions. But I would insist that they do not serve the reductionist’s
purpose. They may help fix the reference of a new predicate, but only because
we antecedently had a variable ranging over the referent.39

38Alan Weir, “Naive Set Theory, Paraconsistency and Indeterminacy: Part II,” Logique
& Analyse, CLXVII–CLXVIII: 283–340, discusses infinitary languages all of whose sentences
can be conjoined. But he is working in a non-standard set-theoretical framework that requires
a revision of classical logic.

39Billy Dunaway, “Supervenience Arguments and Normative Non-naturalism,” Philosophy
and Phenomenological Research, 91: 627–655, objects to the Jackson–Stalnaker argument on
the grounds that definability is too cheap, and does not even require global supervenience. He
is in effect considering definability in a second-order language where the range of the second-
order quantifiers is restricted. My response would be that it is only impredicative definability
that is too cheap in the debate about the reduction principle.
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7 Conclusion

I have shown that global supervenience does not entail reducibility, not even
given the very generous assumption that definability in an infinitary language,
with no cardinality restrictions, suffices for reducibility. The Jackson–Stalnaker
argument for the opposite conclusion relies on the hidden premise that world
sizes are bounded—a claim we have good reason to reject.

I would like to finish by mapping out the relationship between three concepts
that played a role in this paper: strong supervenience (SS), global supervenience
(GS), and L-definability (Df ). Notice that Definition 1 endows this last relation
with many of the characteristic features of supervenience relations, such as being
reflexive, transitive, and monotonic.

It is immediate from their respective definitions (Definition 2 and Definition
4, given in Appendix A) that SS(A,B) entails GS(A,B)—that is, that strong su-
pervenience claims entail the corresponding global supervenience claims. More-
over, that Df(A,B) entails GS(A,B) can be shown by induction on the complex-
ity of B-formulas of L. Hence global supervenience is entailed by both strong
supervenience and by L-definability. Without further assumptions, the con-
verse entailments are not guaranteed, and strong supervenience does not entail
L-definability, nor vice versa.

However, we have seen that certain conditions secure further entailments.
Given a B that is closed under L (B = L(B)), we can infer with Proposition

2 that GS(A,B) entails SS(A,B), and hence that global supervenience and strong
supervenience are equivalent in such a case. Since Df(A,B) entails GS(A,B), it
also follows that L-definability entails strong supervenience.

Given a B that is a set, SS(A,B) entails Df(A,B), by Proposition 1.
So if B satisfies both the condition of being a set and of being closed under

L-definability, then exactly the same classes A will be strongly supervenient on,
globally supervenient on, and L-definable from B. The three notions collapse.
But given Proposition 3, no B satisfies both these conditions unless there is an
upper bound on the size of possible worlds. As we have seen in section 3, it is
highly implausible that there is such an upper bound.

The results of this paper suggest avenues for further work on both sides of
the debate on reductionism.

The paper has brought good news for those who wish to endorse super-
venience claims while eschewing reductionism: the most formidable argument
against their combination of views, the Jackson–Stalnaker argument, does not
work. They now have a foot in the door. For them, the challenge is to push it
open further, by supplying a story that makes it plausible that moral or mental
properties, say, fall in the same category as our relation S from section 4.

The paper has brought bad news for those who wish to squeeze out a re-
ductionist thesis from a supervenience claim. But the failure of the Jackson–
Stalnaker argument does not imply that they need entirely new tools if they
wish to close the door on supervenience without reduction again.

I recommend that they work with the concept of strong supervenience. As
we have seen, if the base B is a set, then strong supervenience, but not global
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supervenience, entails the L-definability of A in terms of B. This is because the
pertinent argument does not appeal to the closure of B under L-definability—
the step where bounds on worlds sizes become relevant. When formulating their
strong supervenience claim, aspiring reductionists need to take care that their
specification of a base for A ensures that it is a set. Such a base may well
contain many highly extrinsic properties. But there are limits: it needs to be
possible for objects to be indiscernible with respect to all the base properties
even though they are in worlds with different domain sizes. Specifically, the
base cannot be closed under L-definability.

Strong supervenience may thus afford a route to reductionism that goes via
supervenience, despite the negative result of this paper. But in many philosophi-
cal contexts, that road is arduous, since it is the global supervenience claims that
are immediately obvious. In so far as we have intuitions about whether strong
supervenience claims involving highly extrinsic properties and relations hold,
they are typically derived from intuitions about global supervenience claims. I
conclude that when evaluating reductive hypotheses in metaphysics, we can use
strong supervenience as a tool—but we need to specify the putative base, and
the extent to which it includes extrinsic properties, much more carefully than
we have been accustomed to.
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A Supervenience, sets, and classes: proofs

A well-known result due to Kim states that if a set A of monadic properties
strongly supervenes on a set of monadic properties B, then each member of A
is definable from B. To generalize this to relations, as Proposition 1 does, I will
use a definition of strong supervenience that applies to sets of relations, unlike
the standard one.40

For worlds w and w′, a partial domain-isomorphism is a bijection from X ⊆
D(w) to Y ⊆ D(w′). A partial domain-isomorphism f from w to w′ preserves
R just in case 〈x1, . . . , xn〉 has R in w iff 〈f(x1), . . . , f(xn)〉 has R in w′; it
preserves A—is a partial A-isomorphism—iff it preserves every R ∈ A.

Definition 4. A class of relations A strongly supervenes on a class of relations
B iff every partial B-isomorphism is a partial A-isomorphism.

The following is then a generalization of Kim’s result.

Proposition 1. For all sets of relations A and B, if A strongly supervenes on
B, then A is L-definable from B.

Before proving this, I introduce some auxiliary notions.
I shall write ‘φ[g] is true in w’ to mean that φ is true in w under w-valuation

g(where a w-valuation maps variables only to elements of the domain of w).
Let V be a set of variables, and let at(B, V ) be the class of atomic formulas all
whose non-logical predicates are in B, and all whose variables in V . For a world
w and a w-valuation g, we define:

• POSB,Vw,g =
∧
{φ : φ ∈ at(B, V ), and φ[g] is true in w}

• NEGB,V
w,g =

∧
{¬φ : φ ∈ at(B, V ), and φ[g] is not true in w}

• LOCB,Vw,g = POSB,Vw,g ∧ NEGB,V
w,σ

Heuristically, we can think POSB,Vw,g as giving a complete positive description

of w with respect to the things in the range of g, and NEGB,V
w,g a complete

negative description of w with respect to those things—the features they do not
have. LOCB,Vw,g is then a local description in the sense of only concerning the
things in g[V ], which may be a subset of the domain of w.

If g maps xi to ai, for 1 ≤ i ≤ n, we can think of LOCB,Vw,g as expressing the
n-ary relation that holds of n things if they have the same B-profile as the ai’s
have in w. Clearly, LOCB,Vw,g [g] is true in w.

If B and V are sets, so is at(B, V ). Hence LOCB,Vw,g is indeed a sentence of L.

Since every sentence LOCB,Vw,g corresponds to a subclass of at(B, V ), the class

of all sentences LOCB,Vw,g , for any world w and function g from V to the domain
of w, also forms a set.

40Leuenberger, “Supervenience in Metaphysics,” op. cit.
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Lemma 1. Suppose that for some w′ and w′-valuation g, LOCB,Vw′,g′ [g] is true in
w. Then there is a partial B-isomorphism f from w to w′ such that f(g(x)) =
g′(x) for all x ∈ V .

Proof. To show that f(g(x)) = g′(x) defines a function from g[V ] to g′[V ], we
need to verify that for all x and y in V , if g(x) = g(y), then g′(x) = g′(y).

Suppose g(x) = g(y). Then (x = y)[g] is true in w. Since LOCB,Vw′,g′ [g] is true in

w, and (x = y) ∈ at(B, V ), (x = y) is a conjunct in POSB,Vw′,g′ . Hence (x = y)[g′]
is true in w′, and thus g′(x) = g(y). The same argument, mutatis mutandis,
shows that if g′(x) = g′(y), then g(x) = g(y), and hence that f is one-one. To
show that f is onto, suppose that a ∈ g′[V ]. Then for some variable x in V ,
g′(x) = a, and thus a = fb for b = g(x).

To show that f preserves B, suppose that Fxj(1) . . . xj(n)[g] is true in w,
where xj(i) ∈ V for 1 ≤ i ≤ n. Since Fxj(1) . . . xj(n) ∈ at(B, V ), and since

LOCB,Vw′,g′ [g] is true in w, Fxj(1) . . . xj(n) is a conjunct in POSB,Vw′,g′ . Hence
Fxj(1) . . . xj(n)[g

′] is true in w′. The argument from the falsity of Fxj(1) . . . xj(n)[g]
in w to the falsity of Fxj(1) . . . xj(n)[g

′] in w′ is similar.

Proof of Proposition 1. Pick n-ary F ∈ A. Let V be {x1, . . . , xn}. Let BF
be {LOCB,Vw,g : Fx1 . . . xn[g] is true in w}. Then

∨
BF ∈ L(B). To establish

the Proposition, it thus suffices to show for every world w and w-valuation g,
Fx1 . . . xn[g] is true in w iff

∨
BF [g] is true in w.

⇒: Suppose that Fx1 . . . xn[g] is true in w. Then LOCB,Vw,g ∈ BF . Since

LOCB,Vw,g [g] is true in w,
∨
BF [g] is true in w.

⇐: Suppose that
∨
BF [g] is true in w. Then for some w′ and w′-valuation

g′, LOCB,Vw′,g′ ∈ BF and LOCB,Vw′,g′ [g] is true in w. Hence Fx1 . . . xn[g′] is true in
w′. By Lemma 1, there is a partial B-isomorphism f from w to w′ such that
f(g(x)) = g′(x) for all x ∈ V . Since F ∈ A and A strongly supervenes on B, f
preserves F . Hence Fx1 . . . xn[g] is true in w.

Remark : Since all relations in B are of finite adicity, A is in fact L∞ω-
definable from B given the assumptions of Proposition 1.

In preparation for proving Proposition 2, some further definitions:

• COMV
w = ∀y(

∨
{x = y : x ∈ V })

• GLOB,V
w,g = LOCB,Vw,g ∧ COMw,g

Heuristically, we can think of COMw as asserting that the values of the
variables in V provide a complete inventory of the domain of the world w, and
of GLOB,V

w,g as a global description of w, covering everything in the domain of
w.

Proposition 2. For all classes of relations A and B, if A globally supervenes
on B, then A strongly supervenes on L(B).

Proof. Suppose that A globally supervenes on B, and let f be a partial L(B)-
isomorphism from w to w′. Pick n-ary R ∈ A. In light of Definition 4, we need
to show that f preserves R.
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Suppose 〈a1, . . . , an〉 instantiate R, with a1, . . . , an in the domain of f . Pick
a class of variables V equinumerous with D(w), and a w-valuation g whose
restriction to V is a bijection from V onto D(w). Then GLOB,V

w,g [g] is true in w.
Let Vg be {x : g(x) ∈ {a1, . . . , an}}, and V ′ = V \Vg. Then the formula ∃V ′

GLOB,V
w,g expresses a relation in L(B). Since f preserves L(B), ∃V ′ GLOB,V

w,g [g′]
is true in w′, where g′(y) = f(g(y)) whenever y ∈ Vg. By the evaluation clause
for the existential quantifier, GLOB,V

w,g [g′′] is true in w′, for some V ′-variant g′′

of g′. By Lemma 1, there is a partial B-isomorphism f∗ from w′ to w such that
f∗(g′′(x)) = g(x) for all x ∈ V . To show that f∗ is onto D(w), suppose that
a ∈ D(w). Since g is onto D(w), a = g(x) for some x ∈ V . Then f∗(g′′(x)) = a.
Moreover, since COMV

w is true, g′′[V ] is D(w′). Hence f∗ is a B-isomorphism
from w′ to w. Then f ′ = f∗−1 is a B-isomorphism from w to w′. By Definition
2, and the hypothesis that A globally supervenes on B, f ′ is an A-isomorphism.
Since g′ and g′′ agree on {y : g(y) ∈ {a1, . . . , an}}, f ′ extends f , and hence f
also preserves A, and in particular R.

Proposition 3. For any set of relations B, L(B) is a set iff there is a cardinality
κ such that for every possible world w, the cardinality of the domain of w is less
than κ.

Proof. ⇒: Suppose that for any set of relations B, L(B) is a set. Then in
particular, L(∅) is a set. For a given κ that is a cardinality of some world,
let V be a set of variables of size κ. Then the sentence ∃V (

∧
{¬(x = y) :

x, y distinct variables in V } ∧ ∀y(
∨
{x = y : x ∈ V })) is true in w iff the cardi-

nality of w is κ. If there is a world with κ things, we can take the sentence to
express the property “being such that there are exactly κ things”, and otherwise
a property that is necessarily uninstantiated. Since L(∅) is a set, there is a set
λ of such cardinals κ such that the property “being such that there are exactly
κ things” is expressible in L(∅).

By the axiom of union, the union of λ is a set. Hence it has a cardinality
ν. It follows that no member of λ has a cardinality higher than ν. Since
the cardinalities of worlds are the members of λ, ν is an upper bound for the
cardinality of worlds.
⇐: Suppose that κ is an upper bound for the size of worlds, and let B

have cardinality λ. Then ν = 2λκ
ω

is an upper bound for how many different
worlds there are, up to B-isomorphism. (Since L(B)-formulas that have the
same extension in a world w also have the same extension in every w′ that is
B-isomorphic to w, we can take equivalence classes of B-isomorphic worlds, in
effect.) Further, (2(κω))ν is an upper bound for how many distinct relations
there can be in ν worlds of cardinality κ.

B Limitations of infinitary languages: proofs

Recall that for a predicate F and a formula φ, φF results from restricting quan-
tifiers in φ to F . For a world w, let Fw denote the extension of predicate F in
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w. Then the following is a version of the Löwenheim Skolem theorem, proved
by the method of closing off under Skolem functions:

Theorem 1. Let ν be any cardinal, and H a predicate. Suppose that the size of
Hw is at least 2ν , and that there are at most ν non-logical terms in Lνν . Then
there is D ⊂ Hw, of size 2ν , such that if H ′w = D, then for all sentences φ of
Lνν , φH is true in w iff φH

′
is true in w.

Proof. The aim is to define a monotonically increasing sequence 〈Dα|α < ν+〉
of subsets of Hw whose union

⋃
α<ν+ Dα is the desired D that can serve as the

extension of H ′ (where ν+ is the cardinal successor of ν).
Since the world w is fixed for the whole proof, I shall often suppress relativi-

sations to it.
Pick a subset X of Hw of cardinality 2ν .

• D0 = X.

Assume that Dξ has been defined. Let Tξ be the set of triples 〈φ,Z, f〉, where
φ is a formula of Lνν , Z a subset of the variables occurring free in φ, and f a
valuation that maps variables in Z to members of Dξ. Say that a valuation g is
suitable for 〈φ,Z, f〉 iff (i) φ[g] is true, (ii) g(x) ∈ Hw for every x free in φ, (iii)
g(x) = f(x) for all x ∈ Z, and (iv) g has the same range as its restriction to the
variables free in φ. Let C be a function that maps a triple in Tξ to a suitable g
if there is one, and is undefined otherwise. Then:

• For successor ordinals ξ′, Dξ′ = Dξ ∪
⋃
t∈Tξ Range(C(t))

• For limit ordinals ξ, Dξ =
⋃
{Dα : α < ξ}

Set D =df

⋃
α<ν+ Dα.

Let the extension of H ′ be D. We need to show that the following holds for
all formulas φ ∈ Lνν and all g that map the free variables in φ to members of
D:

φH [g] is true⇔ φH
′
[g] is true.

This is proved by induction on the complexity of formulas.
Let φ be atomic. Then φH = φH

′
, and the claim holds trivially.

The steps for negation and conjunction are straightforward.
Let φ = ∃Zψ. For the⇐-direction, suppose that φH

′
[g] and hence ∃Z(

∧
z∈Z H

′z∧
ψH

′
)[g] is true. It follows that

∧
z∈Z H

′z ∧ ψH′
[g′] is true for some Z-variant

g′ of g. Since
∧
z∈Z H

′z[g′] is true, the range of g′ is in D, and we can ap-
ply the induction hypothesis to obtain that ψH [g′] holds; and since D ⊆ Hw,∧
z∈Z Hz[g

′] holds. Hence ∃Z(
∧
z∈Z Hz ∧ ψH)[g] and thus φH [g] is true.

For the⇒-direction, suppose φH [g] and hence ∃Z(
∧
z∈Z Hz∧ψH)[g] is true,

where g takes its values in D. Then
∧
z∈Z Hz ∧ψH [g′] is true in w for some Z-

variant g′ of g whose range is in Hw. By cardinal arithmetic, we can show that
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the range of g is included in Dα, for some α.41 Consider the triple 〈ψH , Z, g〉 ∈
Tα. The existence of g′ ensures that C is defined for that triple; let it be g∗. By
the definition of C, ψH [g∗] is true in w. By the definition of Dα′ , the range of
g∗ is included in it, and hence in D. Hence g∗ is a valuation whose range is in
D. By the induction hypothesis, ψH

′
[g] is true in w. It follows that φH

′
[g] is

true in w.
It remains to show that card(D) = 2ν . We prove by induction that for every

α, Dα has cardinality 2ν . It then follows that as a union of at most 2ν sets of
cardinality 2ν , D has cardinality 2ν .

By hypothesis, D0 = X has cardinality 2ν . Assume that Dξ has cardinality
2ν . Then the index set Tξ has at most 2ν members. For given that Lνν has at
most ν non-logical terms, there are 2ν formulas in Lνν , and at most 2ν subsets
Z of the set of the less than ν free variables in any given formula. Since there
are 2ν elements in Dξ, by the induction hypothesis, and since there are at most
ν free variables in Z, there are at most (2ν)ν = 2ν functions from a given Z
to Dξ. Moreover, Range(C, t) has cardinality at most ν, since there are fewer
than ν free variables in a formula. Suppose now that ξ is a limit ordinal, and
that for all α < ξ, Dξ has cardinality 2ν . Then Dξ is union of at most 2ν sets
of cardinality 2ν , and thus has cardinality 2ν itself.

In preparation for proving Theorem 2, recall the definition of compartmen-
talization:42

Definition 3. A class of relations B, with F,G ∈ B, is compartmentalized by
F and G in W iff every member of B is either restricted to F in all w ∈W , or
restricted to G in all w ∈W , and ∀x(Fx↔ ¬Gx) is true in all w ∈W .

(A relation R was defined to be restricted to φ in a class of worlds W iff
∀x1 . . . xn(Rx1 . . . xn →

∧
1≤i≤n φ(xi)) is true in w ∈W .)

Let BF be the subclass of relations of B which are, in some world, instan-
tiated by F s; and analogously for BG. If B is compartmentalized by F and G,
these classes will be disjoint.

We divide the variables of L into three disjoint classes VF , VG, and V \(VF ∪
VG), none of which is set-sized. Let FormF

κλ (FormG
κλ) be {φF : φ a BF -formula

of Lκλ, with no variables in VG} ({φG : φ a BG-formula of Lκλ, with no variables
in VF }).

Say that a w-valuation g is sorted just in case Fx[g] is true in w whenever
x ∈ VF , and Gy[g] is true in w whenever y ∈ VG.

Definition 5. Formulas φ and ψ are W -equivalent (φ ∼W ψ) just in case for
all worlds w ∈W , and all sorted w-valuations g, (φ↔ ψ)[g] is true in w.

41To see this, note that the range of g has cardinality less than ν+. For reductio, suppose
that it is not included in any Dα. Consider the set {β: there is a variable x not in Z and free
in φ such that g(x) is in Dβ′ but not in Dβ}. This set of ordinals, ordered by inclusion, is

cofinal in ν+. But then the cofinality of ν+ is smaller than ν+, which is impossible.
42The proof is adapted from those of Corollary 5.2.6 and Theorem 5.2.2 in Dickmann, op.

cit.
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The following features are immediate:

(A) ∼W is an equivalence relation.

(B) If φ ∼W φ′, then ¬φ ∼W ¬φ′, and if φi ∼W ψi for all i ∈, then
∧
i∈I φi ∼W∧

i∈I ψi and
∨
i∈I φi ∼W

∨
i∈I ψi.

(C) If φ and ψ are strictly equivalent, then φ ∼W ψ.

Definition 6. A B-formula φ of Lκκ is ∼∧W -normalizable in ν (relative to F
and G) iff there is φ∧ =

∧
l∈L

∨
j∈Jl φlj, such that

(i) φ ∼W φ∧, and no variable is free in φ∧ that is not free in φ.

(ii) all φlj are in FormF
νκ∪ FormG

νκ.

(iii) L and Jl are smaller than ν.

(To reduce clutter, I shall sometimes write ∼ instead of ∼W ; and I shall
omit

∧
if L has one member, and

∨
if every Jl has one member.)

The definition of what it is for a B-formula φ of Lκκ to be ∼∨-normalizable
in ν is the same, except that what is required is the existence of a φ∨ =∨
l∈L′

∧
j∈J′

l
φlj satisfying these three conditions. Finally, φ is ∼-normalizable

in ν if it is ∼∧-normalizable in ν as well as ∼∨-normalizable in ν.

Lemma 2. If φ is ∼∧-normalizable (∼∨-normalizable) in ν, then it is ∼∨-
normalizable (∼∧-normalizable) in 22ν .

Proof. Suppose φ is ∼∧-normalizable, with φ∧ =
∧
l∈L

∨
j∈Jl φlj satisfying con-

ditions (i)–(iii) of Definition 6. Define:

φ∨ =
∨

f∈
∏
l∈L Jl

∧
l∈L

φl,f(l)

Clearly, φ∨ is strictly equivalent to φ∧, and hence φ∨ ∼ φ∧ by (C). By (A) and
the fact that φ ∼ φ∧, it follows that φ ∼ φ∨. Since all φlj are in FormFX

νκ ∪
FormG

νκ, they are also in FormF
22νκ
∪ FormG

22νκ
. Finally, since L and all the Jl

are smaller than ν,
∏
l∈L Jl is smaller than 22ν . Hence φ is ∼∨-normalizable in

22ν .
The argument in the other direction is the same, mutatis mutandis.

Lemma 3. If B is compartmentalized by F and G in W , then every B-formula
φ of L is ∼-normalizable in c(φ).43

Proof. Fix a cardinal κ, a world w ∈W , and a sorted w-valuation g. (Reference
to w shall hence be omitted.) We show by induction that the result holds for
all B-formulas of Lκκ. Since κ was chosen arbitrarily, and since every formula
of L belongs to Lκκ, for some κ, the result holds.

43Thanks to Bruno Whittle for showing me how to solve a problem with an earlier version
of the proof of this Lemma.
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(1) φ atomic:
Let φ be an atomic formula of Lκκ. Then d(φ) = 0, and c(φ) = 22κ . Set
φ = φ∧ if φ is in FormF

κκ∪ FormG
κκ, and φ =⊥ otherwise. Then condition (ii) of

Definition 6 is satisfied because atomic formulas and ⊥ are in FormF
κκ∪ FormG

κκ;
and condition (iii) is satisfied because L and J have just one member. As for
condition (i), let g be a sorted w-valuation. We need to show that (φ↔ φ∧)[g]
is true. If φ is in FormF

κκ∪ FormG
κκ, we are done. So suppose it is not, and

distinguish two cases.
Case (i): φ is of the form v = v′. Without loss of generality, suppose v ∈ VF

and v′ ∈ VG. Then since g is sorted, Fv[g] and Gv′[g] are true. Since W is
compartmentalized by F and G, v = v′[g] is false, and (v = v′ ↔⊥)[g] hence
true.

Case (ii): φ is of the form Rv1 . . . vn. Without loss of generality, suppose
R ∈ BF and vi ∈ VG for some i. Since w ∈W , and B is compartmentalized by
F and G in W , Rv1 . . . vn[g] is true in w only if Fvi[g] is true in w for every i.
Since g is sorted and vi ∈ VG, Gvi[g] is true in w, and hence Fvi[g] false. Thus
Rv1 . . . vn[g] is false in w, and (Rv1 . . . vn ↔⊥)[g] is true.

Hence in all cases, (φ↔ φ∧)[g] is true. Moreover, it is clear that no variable
is free in φ∧ that is not free in φ. (In subsequent steps of the proof, verification
of this condition will remain implicit.) It follows that φ is ∼∧-normalizable in
κ.

By the same reasoning, φ is ∼∨-normalizable in κ, and hence ∼-normalizable
in κ.

(2) φ = ¬ψ.
By the induction hypothesis, there is ψ∨ =

∨
l∈L′

∧
j∈J′

l
φ′lj , with φ′lj in FormF

νκ∪
FormG

νκ, where ν = c(ψ), and L,L′, Jl and J ′l smaller than ν. Define:

φ∧ =
∧
l∈L′

∨
j∈J′

l

¬φ′lj

By the induction hypothesis, ψ ∼ ψ∨. By (B), ¬ψ ∼ ¬ψ∨, that is, φ ∼ ¬ψ∨.
But φ∧ is strictly equivalent to ¬ψ∨. Hence φ∧ ∼ ¬ψ∨ by (C), and φ ∼ φ∧

by (A). This shows that φ is ∼∧-normalizable in ν = c(ψ). A similar argument
shows that φ is ∼∨-normalizable in ν = c(ψ)

(3) φ =
∧
i∈I φi (with card(I < κ)

Suppose that the supremum of the depths among the conjuncts is α. By the
induction hypothesis, for all i ∈ I, φ∧ is of the form

∧
l∈L

∨
j∈Jl φlj , with φlj

in FormF
νκ∪ FormG

νκ (where ν = c(α)), and L, Jl smaller than ν. It is enough
to show that φ is ∼∧-normalizable in ν. It then follows by Lemma 2 that φ is
∼∨-normalizable in c(φ) = 22ν .

Set
φ∧ =

∧
i∈I

φ∧i =
∧

k∈
⋃
i∈I Li

∨
j∈Jk

φk,j
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By (B), φ∧ ∼ φ, such that condition (i) of Definition 6 holds. Clearly, (ii) is
satisfied. Since I is smaller than κ < c(α) and every Li smaller than c(α) by
the induction hypothesis,

⋃
i∈I Li is smaller than ν, such that (iii) is satisfied.

The case of disjunction is similar.

(4) φ = ∀Xψ (with card(X) < κ)
Suppose c(ψ) = ν. For every x ∈ X, let xF (xG) be a VF -variable (VG-variable)
that does not occur in ψ, such that xF and yF (xG and yG) are distinct variables
whenever x and y are distinct. Further, XF is {xF : x ∈ X}, and XG {xG : x ∈
X}. Given Y ⊆ X, Y =df X \ Y . Let ψ(x/xY ) be the result of substituting, in
ψ, every variable x ∈ Y by xG, and every variable x ∈ Y by xF . Set:

φ1 =
∧

Y ∈P(X)

[∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YG

Gy → ψ(x/xY ))]

We need to show that φ ∼ φ1. Let g be a sorted w-valuation.
Suppose first that φ[g] is false. Then for some X-variant g′ of g, ψ[g′] is

false. Let g′′ be like g except that g′′(xF ) = g′(x) for all x ∈ X such that Fx[g′]
is true, and g′′(xG) = g′(x) for all x ∈ X such that Gx[g′] is true. It can be
verified that for Y = {x ∈ X : Gx[g′] is true}, ψ(x/xY )[g′′] is true iff ψ[g′] is
true. Hence ψ[g′] is false. Moreover, g′′ differs from g at most on the variables
in Y F and YG. Hence ∀Y F∀YG(

∧
x∈Y F Fx ∧

∧
y∈YF Gy → ψ(x/xY )[g] is false,

and it follows that φ1[g] is false.
For the other direction, suppose that φ1[g] is false. Then for some Y ,∧

x∈Y F Fx∧
∧
y∈YF Gy → ψ(x/xY )[g′] is false for some g′ that differs from g at

most on the variables in Y F and YG. Let g′′ be like g except that g′′(x) = g′(xF )
whenever xF ∈ Y F , and g′′(x) = g′(xG) whenever xG in YG. Then it can be
verified that ψ(x/xY )[g′] is true iff ψ[g′′] is true. Moreover, g′′ differs from g at
most on the variables in X. Hence ∀Xψ[g], that is, φ[g], is false.

By the induction hypothesis, ψ(x/xY ) ∼ ψ(x/xY )∧. Set:

φ2 =
∧

Y ∈P(X)

[∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YF

Gy → ψ(x/xY )∧)]

To show that φ1 ∼ φ2, consider any sorted w-valuation g.
Suppose φ1[g] is false. Then for some Y and some g′ that differs from g

at most on Y F ∪ YG,
∧
x∈Y F Fx ∧

∧
y∈YG Gy → ψ(x/xY )[g′] is false. Now

suppose x ∈ VF . Then x 6∈ YG, since VF and VG are disjoint. If x is in
Y F {xF : x ∈ X \ Y }, then Fx[g′] is true because

∧
x∈Y F Fx[g′] is true. If

x 6 Y F ∪ YG, then g′(x) = g(x), and thus Fx[g′] is true because g is sorted.
Similarly, we show that if x ∈ VG, then Gx[g′] is true. It follows that g′ is
sorted.

By the induction hypothesis, (ψ(x/xY )↔ ψ(x/xY )∧)[g′]. Hence
∧
x∈Y F Fx∧∧

y∈YG Gy → ψ(x/xY )[g′] is false. Since g′ that differs from g at most on

Y F ∪ YG, ∀Y F∀YG(
∧
x∈Y F Fx ∧

∧
y∈YF Gy → ψ(x/xY )∧[g] is false. If follows

that φ2[g] is false.
In a similar way, we prove that if φ2[g] is false, so is φ1[g].
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The formula ψ(x/xY )∧ is of the form
∧
l∈LY

∨
j∈Jl ψlj , with ψlj in FormF

νκ∪
FormG

νκ, and L and all Jl smaller than ν. Consider a conjunct of φ2, for some
Y :

∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YF

Gy →
∧
l∈LY

∨
j∈Jl

ψlj)

This is logically equivalent to:∧
l∈LY

[∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YF

Gy →
∨
j∈Jl

ψlj)]

Consider now a conjunct of this conjunction, for some l ∈ L:

∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YF

Gy →
∨
j∈Jl

ψlj)

Let JF,l (JG,l) be {j : ψlj is in FormF
νκ} ({j : ψlj is in FormG

νκ}). Since for
every l and j, ψlj is in FormF

νκ∪ FormG
νκ,

∨
j∈Jl ψlj is equivalent to

∨
j∈JF,l ψlj ∨∨

j∈JG,l ψlj . Hence the above is equivalent to:

∀Y F∀YG(
∧

x∈Y F

Fx ∧
∧
y∈YF

Gy →
∨

j∈JF,l

ψlj ∨
∨

j∈JG,l

ψlj)

Since no variables in VF occur in
∨
j∈JG,l ψlj , and no variables in VG occur

in
∨
j∈JG,l ψlj , this is logically equivalent to:

(∀Y F
∧

x∈Y F

Fx→
∨

j∈JF,l

ψlj) ∨ (∀YG
∧
y∈YF

Gy →
∨

j∈JG,l

ψlj)

By repeated use of (B), we can show that φ ∼ φ∧, for φ∧ defined as follows:

φ∧ =
∧

Y ∈P(X)

∧
l∈L

[(∀Y F (
∧

x∈Y F

Fx→
∨

j∈JF,l

ψlj) ∨ (∀YG
∧
y∈YF

Gy →
∨

j∈JG,l

ψlj)]

Since for each l and each j ∈ JF,l, ψlj is in FormF
νκ, JF,l is smaller than ν,

and X smaller than κ, ∀Y F (
∧
x∈Y F Fx →

∨
j∈JF,l ψlj) is in FormF

νκ; a similar

argument shows that ∀YG(
∧
x∈YG Gx →

∨
j∈JG,l ψlj) is in FormG

νκ. Since Y ≤
22κ ≤ ν, there are fewer than ν conjuncts. Hence φ is ∼∧-normalizable in ν.
By Lemma 2, φ is normalizable in c(φ).

The case of existential quantification is similar.

Theorem 2. Let B be compartmentalized by F and G in W , and φ be a B-
sentence of Lκκ. Then if for all w,w′ ∈ W and B-sentences ψ of Lνκ, where
ν = c(φ), ψF and ψG have the same truth-value in w as they have in w′, so
does φ.
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Proof. Let φ be a B-sentence of Lκκ, of depth α. By Lemma 3, φ is ∼-
normalizable in ν = c(φ). That is, there is a B-sentence φ∧ of Lνκ such that
φ∧ ∼ φ. By Definition 5, and since w and w′ are in W , the following holds for
every sorted variable assignment g:

• φ[g] is true in w iff φ∧[g] is true in w.

• φ[g] is true in w′ iff φ∧[g] is true in w′.

Since φ is a sentence, so is φ∧, given that no variable is free in the latter
that is not free in the former. As sentences, they are true iff they are true under
every sorted assignment. Hence:

• φ is true in w iff φ∧ is true in w.

• φ is true in w′ iff φ∧ is true in w′.

The formula φ∧ is of the form φ∧ =
∧
l∈L

∨
j∈Jl φlj , where all φlj are in

FormF
νκ∪ FormG

νκ. Since for all B-sentences ψ of Lνκ, ψF and ψG have the
same truth-value in w as they have in w′, so do φlj . By a trivial induction, we
obtain:

• φ∧ is true in w iff φ∧ is true in w′.

Putting the last three bulletted biconditionals together, it follows that φ is true
in w iff it is true in w′.
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