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ABSTRACT: 

The traditional active noise control design aims to attenuate the energy of 

residual noise, which is indiscriminative in the frequency domain. However, it is 

necessary to retain residual noise with a specified spectrum to satisfy the 

requirements of human perception in some applications. In this paper, the evolution 

of active noise control and sound quality are briefly discussed. This paper emphasizes 

on the advancement of active noise control method in the past decades in terms of 

enhancing the sound quality. 
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1. Introduction 

Industrial noise, which becomes increasingly evident with the increased number 

of industrial equipment, affects the health of the human hearing, digestive system, 

nervous system, endocrine system, etc. [1, 2] People have understood the harmful of 

noise pollution, and countries worldwide have formulated strict norms for industrial 

noise control. In these norms, the sound power and A-weighted noise levels are 

usually used to measure the noise, but they are not adequate to characterize the 

perception of a listener [3]. The underlying concept of sound quality (SQ) is the 

accurate interference of human perception and was proposed by Blauert in 1994[4]. 

The character of sound that relates to acceptance is called sound quality, which 

has played a large role in determining satisfaction [5]. With the development of noise 

control technologies, sound quality research, which focuses on how people cognize, 

assess and improve noise, has gained attention, particularly in the fields of 

automobile, transportation and electric appliance industries worldwide [6]. 

1) Automobile: Noise studies originated from the automobile industry in  

Europe and America in the mid-1980s. The main theoretical and experimental works 

on the human perception of sound quality were conducted by companies of AVL LIST 

[7], Honda [8], Delphi [9], Ford [10], GM [11], etc. Many automobile companies 

optimized the design of their products based on those research data [12-14]. 

2) Transportation: Researchers also discussed the effects of the sound quality in  

aircraft [15], cabin [16], train [17] and maglev trains [18]. 

3) Electric appliances: The studies focused on air-conditioner, refrigerator,  



washing machine and mobile phone [19-21]. 

4) Other SQ studies: Involving experiments and applications are introduced in 

[22-25].  

Noise control can be classified into two types of methods: passive and active. 

The passive noise control (PNC) method mainly reduces the noise by vibration 

absorption, sound absorption and sound insulation with damping materials by using 

the interaction between sound and materials, and the sound energy can be 

transformed into other forms of energy to reduce noise [26]. 

 

 

 

 

 

 

 

The active noise control (ANC) method artificially adds a secondary source in the 

noise control process using Yaung’s interference principle of sound wave to control 

the original noise as shown in Fig. 1. Compared with passive control, the active 

control methods have obvious benefits. First, the control system parameters can be 

targeted to design or change based on different characteristics of the noise. Second, 

the active control method has better control effect on low-frequency noise and 

effectively remedies the problem of low-frequency noise reduction effect [27]. Finally, 

the active noise controller has the advantages of flexibility, low cost, and convenient 

Fig. 1. Schematic diagram of Yaung’s interference principle of sound  
wave control for (a) sinusoidal wave and (b) complex wave 
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installation; more importantly, it does not negatively affect the machine's structure 

and performance. The rapid development of large-scale integrated circuits and 

advancement of active control technologies have facilitated many successful 

implementations of ANC [28]. 

The active control method was proposed by Lueg in 1936 and applied for the 

process patent of acoustic-oscillation elimination in the United States  [29]; this patent 

is considered the starting point of the development of active noise control 

technology. In 1953, the first active noise control device, which was called "electronic 

sound absorber", was designed in the United States of America. This system consisted 

of a loudspeaker, an amplifier, and a microphone, and its target was to reduce the 

sound pressure level near the microphone [30].   

In the late 1950s, the acoustic field analysis technology was not mature, and the 

development of electronic technology was relatively slow. The active control 

technology was in a relatively quiet stage for a relatively long period of time until the 

1980s. With the rapid development of digital signal processing and large-scale 

integrated circuit technology, the practical active noise control technology began to 

rapidly develop [31]. Scientists in the United Kingdom first introduced the method of 

active noise control in automobiles and aircraft cabins [32]. The least-mean-square 

(LMS) algorithm of channel filtering was used to study interior noise in Japan, and the 

active noise control model was established [33]. In the United States of America, the 

detailed study and experiment of noise caused by engine vibration and road surface 

excitation were conducted by Jerome Couche, and the noise reduction of 6.5 dB was 



achieved in the range of 40-500 Hz [34]. Several prominent works on the 

development of ANC technology have been reported in the last three decades, such 

as the filtered-x least-mean-square (FxLMS) algorithm [35], genetic algorithm (GA) 

[36], functional link artificial neural network (FLANN) [37], simplified hyper-stable 

adaptive recursive filter (SHARF) algorithm [38] and frequency selective least-mean-

square (FSLMS) algorithm [39]. 

In recent years, many research groups attempted to improve the noise sound 

quality using adaptive active noise control (AANC) methods. In Müller-BBM company, 

the experiment was performed on an AANC system, which was installed on a vehicle. 

The engineers found that the sound pressure level and loudness value (an objective 

parameter of SQ) of the interior noise significantly decreased [40]. Spanish 

researchers conducted the engine noise active control in the lab, analyzed the 

psychoacoustic parameters, evaluated subjective evaluation results, and found that 

the reduction in sound pressure level did not necessarily reduce the annoyance of 

passengers to the engine noise, which was also related to the spectral characteristics 

of the noise [41, 42]. More theoretical studies on ANC systems to improve the sound 

quality were reported in [43–45]. 

ANC and sound quality studies have made significant progress in the last 30 

years, and several relevant review papers have been published [46–50]. Unlike the 

published reports, this paper aims to survey the development of ANC technology with 

an emphasis on SQ enhancement. The paper is organized as follows. A brief review of 

the concept of SQ and its evaluation methodology, which includes the subjective 



evaluation and objective evaluation, are discussed in Section 2. ANC methods in the 

field of SQ enhancement are studied in detail in Section 3. ANC schemes based on the 

selective attenuation method are briefly presented in Section 4. The conclusions are 

drawn in Section 5. 

2. Sound quality evaluation 

The concept of sound quality indicates that the noise control is not simply to 

reduce the pressure level of sound, but more importantly, the products can be 

adjusted according to the subjective feeling of the consumers. The most popular 

approaches to determine the sound quality of a product can be broadly classified into 

two domains: subjective and objective evaluations [51, 52]. The former emphasizes 

that sound can be subjective and sensitive for a person; the latter expresses the 

sound in terms of an objective numerical value such as the physical acoustics and 

psychological acoustics [53]. In addition to the frequency and intensity, other 

psychoacoustics factors should be considered. 

2.1 Objective evaluation 

Psychoacoustic parameters are used to describe different noises caused by the 

different subjective feelings about objective physical quantities. In the objective test, 

there are four international general main parameters: loudness, sharpness, roughness 

and fluctuation strength [54, 55]. 

The loudness describes the degree of psychological perception of sound in the 

hearing. The main methods to calculate the complex noise loudness were 

independently developed by Stevens and Zwicker [56, 57]. The former is suitable for 



the diffusing sound field, whereas the latter fits the diffusion and free sound field 

conditions. The sharpness represents the auditory perception related to the spectral 

correlation of the sound, the calculation model was introduced by Bismarck and 

Aures [58, 59]. The roughness reflects the auditory perception characteristic related 

to the frequency modulation, amplitude modulation and sound level for the sound 

with a frequency of 20-200 Hz [60]. The calculation model of roughness was 

introduced by Aures [61].The fluctuation strength is suitable for the evaluation of 

sound signal for low-frequency modulation below 20 Hz; it reflects the relief intensity 

of loudness for the subjective feeling of ears. The calculation model of fluctuation 

strength was proposed by Fastl and Zwicker [62]. 

2.2 Subjective evaluation 

The subjective perception test is an essential procedure to obtain the sound 

quality character of sound events and develop parametrical models that describe the 

sound quality quantities [63]. Two methods are commonly used [55, 64]. The 

Semantic Differential (SD) method which was created by Osgood in 1957 [65], offers a 

quick mean to measure people’s attitude and the emotional connotation of concepts. 

A series of semantic differential indices was studied, which include safe-unsafe, like-

dislike, quiet- boisterous, friendly-unfriendly, close-far and happy-sad [66-68]. This 

method has been applied to various problems in marketing, personality 

measurement, clinical psychology, cross-cultural communications, and the hearing 

perception of sound signals. The Paired Comparison (PC) method which was created 

by David [69], offers an easy way to present people’s attitude with a sequence of pairs 



of sounds A and B. For each pair, people must decide which sound is preferred. 

2.3 Relationship between objective and subjective evaluations 

The relationship between objective and subjective evaluations is drawn in Fig. 2.  

To find their relationship, it is useful to calculate the correlation factors and perform a 

regression analysis [70].The Sound Quality index (SQI) can be expressed as a linear 

combination of psychoacoustic parameters by  

                SQI = a + 𝑏1 ∙ 𝐿𝑑 + 𝑏2 ∙ 𝑆𝑝 + 𝑏3 ∙ 𝑅𝑔 + 𝑏4 ∙ 𝐹𝑠                    (1) 

where Ld is the loudness, Sp is the sharpness, Rs is the roughness, Fs is the fluctuation 

strength, and a, b1, b2, b3, and b4 are undetermined coefficients. 

 
Fig. 2. Schematic evaluation of the Sound Quality 

Eq. (1) shows that the SQI is affected by variations of the psycho-acoustic 

parameters, which is similar to human perception for sound. Currently, the ANC 

method has become a useful tool to change the psychoacoustic parameters of sound 
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to actively enhance the auditory qualities of sound fields.   

3. Active sound quality control algorithms  

ANC has been successfully demonstrated as an effective technique to reduce the 

unwanted sound for a few decades [28, 71]. The ANC introduces secondary sources, 

which produce additional noise to control the original source. However, in some 

applications, it is necessary to retain the residual noise with a specified spectrum [72, 

73] because an intentional residual noise can provide better natural feeling. For 

example, drivers may prefer to enhance the driving experience by hearing the engine 

and vehicle sound to safely drive the vehicle [74]. Moreover, in some applications, 

one desires to reduce the sound level and adjust the frequency [75] or balance the 

amplitudes [43, 76-78] towards the desirable sound quality targets [79, 80]. This 

approach is known as active sound quality control (ASQC) [43, 77, 78, 81–83], which 

is a variant of the active noise control method that features a specialized handling 

algorithmic of the unwanted signal. The ASQC algorithms that have broadly gained 

attention in the past two decades are reviewed in the following section. 

3.1 ANE algorithm 

The adaptive noise equalizer (ANE) algorithm, which was proposed by Kuo SM [83, 

84], can either attenuate or amplify a predetermined sinusoidal noise [74]. The block 

diagram of the ordinary narrowband ANE system is shown in Fig. 3 [85], where P(z) is 

the transfer function of the primary path; β is a gain factor to control the amplitude of 

initial noise [86]. 𝑥𝑠(𝑛) is a noise reference signal for the initial noise; 𝑒(𝑛) is an 

actual residual noise signal; 𝑒′(𝑛) is a virtual error signal, which is used to adjust the 



weight coefficient vector using the LMS algorithm.  

 
Fig. 3. Block diagram of the narrowband ANE system 

  In Fig. 3, if the effect of transfer function 𝐶(𝑧) is ignored, there should be  

𝑒(𝑛) = 𝑑(𝑛) − (1 − 𝛽)𝑦(𝑛)                          (2) 

𝑒′(𝑛) = 𝑒(𝑛) − 𝛽𝑦(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)                   (3) 

By introducing 𝑒′(𝑛), the updated weight adaptive algorithm will not change the 

convergence or divergence of the system. If the system achieves a stable convergence, 

where 𝑑(𝑛) ≈ 𝑦(𝑛), the system output can be written as  

𝑒(𝑛) = 𝑑(𝑛) − (1 − 𝛽)𝑦(𝑛) = 𝛽𝑦(𝑛) ≈ 𝛽𝑑(𝑛)             (4) 

 An advantage of the ANE system is the harmonic signal generator, which can 

decompose the initial noise signal into several narrowband periodic noise signals with 

different frequencies by digital filtering and substitutes some harmonic waves of the 

same frequency.  The computer simulation was conducted with M=8. 𝑥(𝑛) is the 

sinusoidal signal, the gain values are 𝛽1 = 0(to cancel the amplitude of 𝑥(𝑛) 
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completely), 𝛽2=0.5(to attenuate the amplitude of 𝑥(𝑛) by half), 𝛽3=1(to keep the 

amplitude of 𝑥(𝑛) unchanged) and 𝛽4=2(to amplify the amplitude of 𝑥(𝑛) by 2). 

The spectrum of 𝑒(𝑛) presents four results of different gain settings showing that the 

ANE system can reshape the residual noise [85]. This method reserves some other 

advantages of the active noise control such as the capability of adaptively tracking the 

exact phase and frequency of the interference, and easy control of bandwidth. 

One year later, Kuo SM extended the narrowband ANE technology to a 

broadband noise control area [87].Based on this new technology, Jinwei Feng 

proposed the self-tuning ANE algorithm [88], which used a nonlinear adaptive gain 

factor to compress the disturbance noise level to a band limited range [74]. Jinxin Liu 

and Xuefeng Chen tuned the gain factors of the ANE based on its derivative and 

estimation of transmissibility to address the mis-equalization problem [89]. Gonzalez, 

who introduced the common error multiple-frequency ANE and its multichannel 

version, successfully performed a real-time 2×2 multichannel system for the active 

spectral reshaping of multi-frequency noise [90]. 

3.2 FELMS algorithm 

The effective noise reduction of the FxLMS algorithm [35] is premised that the 

initial noise and reference noise signals should contain the identical frequency of the 

narrowband periodic signal. Thus, the secondary source signal can effectively cancel 

the initial noise signal based on the waves from the reference noise signal. In fact, the 

initial noise contains some unrelated signals to the random elements, and these 

acoustic signals may cause the pass-band disturbance, which can affect the 



convergence speed and control performance of the ANC system [85]. A proper 

introduction of the second adaptive filter is extremely important to weaken the pass-

band disturbance [91-93]. Based on the FxLMS [94], an upgraded algorithm called the 

filtered-error least-mean-square (FELMS) was proposed in the literature [95, 96], 

which can effectively compensate for the deficiency of the FxLMS algorithm. 

Fig. 4 is the block diagram of the adaptive control system of the FELMS 

algorithm. In Fig. 4, the difference between FxLMS and FELMS algorithms is the 

introduction of the secondary adaptive filter, which can be used to purify the residual 

noise signals. Here, 𝑊2 (𝑧) is roughly equivalent to a bandpass filter for the center 

interference from other frequency components. The irrelevant noise signal in 
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       Fig. 4. Block diagram of the ANE system based on the FELMS algorithm 



𝑒(𝑛) is significantly reduced when 𝑒(𝑛) is filtered by the adaptive filter 𝑊2 (𝑧). 

Furthermore, instead of 𝑒(𝑛), the output signal 𝑒2
′ (𝑛) is entered into the adaptive 

filter 𝑊1 (𝑧), which produces the error signal 𝑒1
′ (𝑛). 𝑒1

′ (𝑛) is used to update the 

weight vector of the adaptive filter 𝑒1
′ (𝑛) to maintain the convergence speed and 

control performance of the system. 

Simulations are divided into two parts. The first part verifies the superiority of 

FELMS algorithm compared to FXLMS algorithm. The simulation has been done for 

the FELMS and FXLMS algorithms under the same conditions and environments. The 

calculation results show that the FELMS algorithm provides better control 

performance and faster convergence than the FxLMS algorithm due to the secondary 

adaptive filter in the FELMS algorithm. While in the second part, the simulation is 

conducted with 𝑓1 = 50𝐻𝑧, 𝑓2 = 100𝐻𝑧, 𝑓3 = 200𝐻𝑧, and different gain values 

(β < 2). The input signal 𝑥(𝑛) is the combination of the three sine waves with the 

same power. The simulation result shows that the FELMS algorithm can effectively 

control the residual noise spectrum by different gain settings, without affecting 

neighbour components. 

Another variant of the ANE algorithm is the Normalization equalizer filtered-x 

LMS (NEX-LMS) algorithm, which was developed in [77]. In this algorithm, a 

normalization filter is added to offer better convergence ability than the ANE 

algorithm with limited computational complexity. 

3.3 SF-cFxLMS algorithm 

A simplified Fx-LMS (SF-FxLMS) algorithm was proposed in [97], which enables 



one to estimate the relationship between the psychoacoustic analysis results and the 

parameters of the disturbance. Then, Jaime introduced the complex-domain data to 

improve the stability of the SF-FxLMS algorithm in response to impulsive 

disturbances, and developed the SF-cFxLMS algorithm (simplified-form complex 

FxLMS) [98].  

In Fig. 5, the residual noise is measured by the error microphone in the SF-

cFxLMS ANC system and written as 

          𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) = 𝑑(𝑛) − 𝑆(𝑧)[𝑊𝑙+1
𝑇 (𝑛)𝑥(𝑛)]               (5) 

where y(n) is the control actuation that superimposes with the primary disturbance 

d(n), S(z) is the real secondary path, Wl+1(n) is the adaptive weight vector and x(n) is a 

normalized reference signal. Based on the NEX-LMS strategy [77], the estimated 

primary disturbance 𝑑̂(𝑛) is [99]:                                            

                𝑑̂(𝑛) = 𝑒(𝑛) + 𝑆̂(𝑧)[𝑊𝑙+1
𝑇 (𝑛)𝑥(𝑛)]                    (6) 

The Fastest Fourier Transform in the West (FFTW) is used to calculate 𝑑̂(𝑛); 

then, the first (N/2+1) bins are retrained for subsequent operations. The amplitude 

and relative-phase (block of “Amp/Rel. Phase” in Fig. 5) of the desired components 

can be estimated as follows: 

𝐷̂𝑘 (𝑙) = ℱ[𝑑̂(𝑛)] = ℱ ([𝑑̂0(𝑛)𝑑̂1(𝑛) ⋯ 𝑑̂𝐿−1(𝑛)]
𝑇

)  

= [𝑑̂𝐷𝐶 (𝜔)𝑑̂1(𝜔) ⋯ 𝑑̂𝑁/2(𝜔)]
𝑇
                         (7) 

Similar to 𝑑̂(𝑛), 𝑒(𝑛) and 𝑥′(𝑛) are estimated as follows: 

 𝐸𝑘
′ (𝑙) = [𝑒𝐷𝐶 (𝜔)𝑒1(𝜔) ⋯ 𝑒𝑁/2(𝜔)]

𝑇
                    (8) 

  𝑋𝑘
′ (𝑙) = [𝑥𝐷𝐶 (𝜔)𝑥1(𝜔) ⋯ 𝑥𝑁/2(𝜔)]

𝑇
                    (9)  



 

 

Fig. 5. Block diagram of the SF-cFxLMS ANC system 

From Fig. 5, 𝐸𝑘
′ (𝑙) = 𝐸𝑘 (𝑙) − 𝐷̂𝑘 (𝑙) and 𝑥′(𝑛) = 𝑆̂(𝑧) ∗ 𝑥(𝑛) are calculated. Then, 

after the updating operations ([98] Section 3), the missing complex conjugate part can 

be calculated from the updated (N/2+1) weights. Therefore, the weight vector 

𝑊𝑙+1(𝑛) is obtained as follows: 

       𝑊𝑙+1(𝑛) = ℱ−1[𝑊𝑙+1(𝜔)] = ℱ−1([𝑊𝐷𝐶 (𝜔)𝑊1(𝜔) ⋯ 𝑊𝑁 (𝜔)]𝑇)    (10) 

Eq. (10) is the weight update equation of the SF-cFxLMS algorithm. It is useful to 

reduce the computational burden and improve the stability of the updating algorithm; 

thus, the control signal is generated by the adaptive controller: 

                 𝑢(𝑛) = 𝑊𝑙+1
𝑇 (𝑛)𝑥(𝑛)                              (11) 



Computer simulations for controlling the sound quality of low frequency based 

on loudness and roughness were conducted. Capabilities such as the independent 

control of a number of narrowband components with a single adaptive filter, 

adequate convergence speed and an improved convergence procedure face to 

impulsive disturbances are thoroughly demonstrated through different computer 

simulation scenarios [98]. Furthermore, the SF-cFxLMS algorithm can emerge as a 

promising control scheme, as sound quality targets can be achieved with the 

implementation of the proposed algorithm, even if the disturbance is contaminated 

with broadband noise. 

In the continued study [100], Jaime’s group introduced the Multiple-Input, 

Multiple-Output (MIMO) arrays [101,102] and established the MIMO ASQC system, 

which compensated for the amplitude and relative phase interferences, while 

retaining an active effect on the SQ metrics, namely, Loudness and Roughness.   

3.4 CMD algorithm  

Based on the principle of minimal disturbance [103], the constrained minimal 

disturbance (CMD) algorithm was proposed by Walter J Kozacky [104]. In this study, 

constraints are added to limit the filter gain, filter convergence, and filter output 

power. Then, the Lagrange multiplier [105] method, which helps the CMD algorithm 

obtain a faster convergence speed, is used to solve the constrained optimization 

problem [106]. Fig. 6 shows the input, weight, and error vectors of the CMD adaptive 

filter, which are given by 



 
Fig. 6. Block diagram of the CMD adaptive filter with frequency-domain processing 

𝑥(𝑚) = [𝑥(𝑛)𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝑁 + 1)]𝑇 

𝑤(𝑚) = [𝑤0(𝑛)𝑤1(𝑛 − 1) ⋯ 𝑤𝑁−1(𝑛)]𝑇 

                 𝑒(𝑚) = [𝑒(𝑛)𝑒(𝑛 − 1) ⋯ 𝑒(𝑛 − 𝑁 + 1)]𝑇              (12) 

where N is the block size; m is the block iteration. By updating m in each block, the 

weight vectors are updated using the CMD algorithm, which can minimize the 

squared Euclidean norm of the frequency domain weight change. The equation is  

              𝑊𝑘 (𝑚 + 1) = 1 − 𝜇𝛾𝑘 𝑊𝑘(𝑚) + 𝜇𝑘 𝑆𝑘
∗(𝑚)𝑋𝑘

∗(𝑚)𝐸𝑘(𝑚)      (13) 

where 𝜇 is the convergence step size; 𝛾𝑘 =
𝛼𝑘

𝜇(1+𝛼𝑘)
;  𝛼𝑘 is a Lagrange multiplier. By 

taking the IFFT (Inverse Fast Fourier Transform) on both sides of Eq. (13) and casting 

into a delay-less structure, we obtain the new algorithm  
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𝑤(𝑚 + 1) = 𝑤(𝑚) + 𝜇𝐼𝐹𝐹𝑇{
𝑆∗ (𝑚)𝑋∗(𝑚)𝐸(𝑚)

𝑆(𝑚)2 𝑋(𝑚) 2
− 𝛤(𝑚)𝑊(𝑚)}    (14) 

where 𝛤(𝑚) is a diagonal matrix of variable leakage factors. 

(14) is called the weight update equation of the CMD algorithm. The simulations 

verify the superiority of the CMD algorithm compared to the leaky LMS algorithm in 

both power-constrained and gain-constrained applications. The frequency response 

and convergence of the two algorithms are compared in the power-constrained 

simulation. The CMD algorithm provides faster convergence performance than the 

leaky LMS algorithm and maintains a 6 dB power reduction over frequency. The CMD 

algorithm allows the power constraint to be set explicitly, while the leaky LMS 

algorithm requires a trial and error approach to determine the parameters. In the 

gain-constrained simulation, the CMD algorithm has better frequency response 

performance and faster convergence than the leaky LMS algorithm, particularly in 

coloured noise environments [104].  

3.5 PSC-FxLMS algorithm 

The phase scheduled command FXLMS (PSC-FXLMS) algorithm, which was 

proposed by Rees and Elliott [107], uses an internal model to obtain an estimate of 

the disturbance signal [89,108]. The block diagram of PSC-FXLMS is shown in Fig. 7 

[107]. 



 
Fig. 7. Block diagram of the PSC-FxLMS algorithm 

  In Fig. 7, the error signal can be written as 

𝑒(𝑛) = 𝑑(𝑛) + 𝑔𝑇𝑢(𝑛)                        (15)  

𝑒′(𝑛) = 𝑒(𝑛) − 𝑐(𝑛)                          (16) 

where 𝑔𝑇 is the impulse response vector, 𝑐(𝑛) is a command signal. The filter 

weight 𝑤(𝑛) of PSC-FXLMS algorithm can be updated as 

𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇𝑟̂(𝑛)𝑒′(𝑛)                 (17) 

where 𝜇 is the step size and 𝑟̂(𝑛) is the filtered reference signal vector. The 

disturbance signal 𝑑̂(𝑛) is estimated by plant model 𝐺̂(𝑧), and 𝑑̂(𝑛) can be 

expressed as 

             𝑑̂(𝑛) = 𝑒(𝑛) − 𝑔𝑇𝑢(𝑛) = 𝑑(𝑛) + 𝑔𝑇𝑢(𝑛) − 𝑔𝑇𝑢(𝑛)          (18) 

Furthermore, 𝑢(𝑛) is dependent on 𝑐(𝑛), since 𝑢(𝑛) = 𝑤(𝑛)𝑥(𝑛), then the 
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update weight equation for a single filter coefficient can be written as 

  𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇𝑟̂(𝑛)𝑒′(𝑛) = 𝑤(𝑛) − 𝜇𝑟̂(𝑛)[𝑑(𝑛) + 𝑔𝑇𝑢(𝑛) − 𝑐(𝑛)]  (19) 

Then, Rees and Elliott incorporated automatic phase command technique into PSC-

FXLMS algorithm to deal with the problem of phase instability when large system 

gains are needed.  

Experimental Sound profiling of a tone was conducted under the condition of a 

pure 1000 rad (159.16 Hz) tone at a sample rate of 16 samples per period (2.55 kHz) 

[107]. Experimental results show that the control effort is not excessive when the 

output is enhanced. The properties of the command-FXLMS algorithm, the internal 

model FXLMS algorithm, and the PSC-FXLMS algorithm were evaluated, including: the 

convergence speed, the stability, and the control effort. The command-FXLMS is 

stable due to the simplicity of the algorithm, but it has excessive control effort. The 

internal model FXLMS is stable at low gains, and it requires low values of control 

effort relative to the command-FXLMS. The PSC-FXLMS shows not only to achieve 

those modes of control capable by the internal model FXLMS with increased gain 

accuracy, but also with an increase in stability to plant model magnitude errors.  

In the continued study [109], Patel and Cheer introduced the MPSC-FxLMS 

algorithm which allows the phase of the disturbance signal to be detected directly 

without the need for an additional internal plant model. 

3.6 ANNs algorithm 

Artificial neural networks (ANNs) recently became a forceful candidate for active 

noise cancellation [110-114], particularly for the system identification with active 



vibration control [115] and nonlinear dynamic problems [116-122]. ANNs, which have 

been used to model the relationship between subjective and objective evaluations, 

can describe an annoyance model with a non-stationary noise signal [123-125]. 

The structure of the ANNs system in [126] is shown in Fig. 8. The outputs of 

ANNs are the objective rate of sound quality; if it has great correlation with the 

subjective rate, the outputs of the ANNs become a good sound quality index. 

 
Fig. 8. Structure of ANNs for the noise index: (a) single neuron i; (b) three-layer, back-propagation 

(BP) network 

The main purpose of the ANNs algorithm is to map an input vector x ∈ 𝑅𝑁 into 

the output vector y ∈ 𝑅𝑀 , which can be written as: 

                  𝑥𝑁×1 → 𝑦𝑀×1                                (20) 



In general 

𝑥(𝑝) → 𝑦(𝑝) , and p=1, 2, 3,…, k                  (21) 

where k is the number of patterns. The network performs this mapping, which 

consists of processing neurons and their connections. The ith single neuron is shown 

in Fig. 8(a); the input signals xj are cumulated in a neuron-summing block Σ and 

export the only output yi via function F: 

𝑦𝑖 = 𝐹(𝑧𝑖), 𝑧𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=𝑖 𝑥𝑗 + 𝑏𝑖                   (22) 

where zi  is the potential parameter, wi ,j is the weight of connection, and bi is the 

threshold parameter. The sigmoid function can be written as: 

𝐹(𝑧) =
1

1+𝑒−𝜇𝑧
𝜖(0,1)    for µ>0                 (23) 

A standard multiplayer network of the input, hidden and output layers is shown 

in Fig. 8(b). In this figure, N = 4 is the number of inputs; H1 = 5, and H2 = 3 are the 

numbers of neurons in their respective hidden layers; M = 2 is the number of outputs 

in the output layer. This network can be called the 4–5–3–2 structure network. In this 

structure, the biases 𝑏𝑖
𝑙  and weights 𝑤𝑖,𝑗

𝑙  (where 𝑙 is the number of layers) are the 

network’ parameters [125]. Mathematically, the sound quality index using 𝑏𝑖
𝑙  and 

𝑤𝑖,𝑗
𝑙  is written by 

Sound quality index = 𝐹2[𝐿𝑤2𝐹1(𝐼𝑤1𝑥 + 𝑏1) + 𝑏2]        (24)  

where function F follows the form of Eq. (23), Iw1 and Lw2 are the weight matrices of 

the input layer and the first hidden layer. The trained ANNs were applied to 

investigate the characteristics of the interior sounds [121-125]. The calculation results 

show that the output of the trained ANNs has the significant correlation with the 



averaged subjective rating of sounds. It is concluded that the output vector of the 

ANNs can objectively estimate the rate of noise sound. Eq. (24) can be used as a 

design guide for sound quality with sufficient accuracy and reliability to improve the 

human subjective satisfaction [123]. 

4. Selective attenuation method for the ASQC-based ANC scheme 

Selective attenuation methods were recently used in ANC schemes [39,126-129], 

which can reduce the sound pressure level and adjust the sound characteristics. The 

frequency selective least-mean-square (FSLMS) algorithm has been shown in [39] to 

be an effective candidate towards the desired selective noise control target; it 

simultaneously properly eliminates the dysphoric composition and retains the 

element of pleasure [130].   

Fig. 9 is the block diagram of the FSLMS algorithm, where the awaiting 

cancellation of the original signal is given by: 

       𝑑(𝑛) = 𝑑1(𝑛) + 𝑑2(𝑛)                         (25)                               

where x (n) is strongly correlated with d (n), after x (n) is filtered by H(z), x'(n) is 

related to d1(n), but x'(n) and d2(n) are irrelevant.                                                

  
Fig.9. Block diagram of the FSLMS algorithm 
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output, error vector, and weight of the FSLMS adaptive filter are given by: 

                     𝑥′(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)                           (26) 

           𝑦(𝑛) = 𝑊𝑇(𝑛)𝑥′(𝑛) = 𝑑̂1(𝑛)                           (27) 

             𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) = 𝑑(𝑛) − 𝑑̂1(𝑛) ≈ 𝑑2(𝑛)           (28) 

                 𝑤(𝑛 + 1) = 𝑤(𝑛) + 2𝜇𝑒(𝑛)𝑥′(𝑛)                   (29) 

where (29) is the weight update equation of the FSLMS algorithm, which is relatively 

near the autocorrelation matrix eigenvalue of signal x'(n), and its convergence 

condition is: 

                   0 < 𝜇 <
1

𝐸[𝑥′ (𝑛)2 ]
                                       (30) 

The FSLMS algorithm based on the feed-forward ANC scheme [131], as shown in 

Fig. 10, must be considering the effect of the secondary-channel sound delay on the 

algorithm stability. By imitating the derivation process of the FxLMS algorithm, the 

equations of the FSLMS algorithm based on the feed-forward ANC scheme are given 

by: 

𝑦(𝑛) = 𝑊𝑇 (𝑛)𝑥′(𝑛)                                    (31) 

𝑊(𝑛 + 1) = 𝑊(𝑛) − 2𝜇𝑒(𝑛)𝑟(𝑛)                           (32) 

𝑟(𝑛) = 𝑥′(𝑛) ∗ ℎ2(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛) ∗ ℎ2(𝑛)                   (33) 

where 𝑟(𝑛) is the input signal of the weight coefficient iterative updating. In Fig. 10, 

𝑟(𝑛) is obtained from the input signal 𝑥(𝑛) and filtered by 𝐻(𝑧) and 𝑆̂(𝑧). 

In practical applications, a multiple FSLMS system can be configured in parallel to 

cancel the residual noise spectrum when the original noise has multiple harmonics. 

The simulation was conducted with M=16, step size µ=0.002. The original noise signal 



consists of two sine waves with different amplitude embedded in white Gaussian 

noise of variance 0.1. The spectrum of the original noise signal, d(n), and the 

spectrum of the converged system output, e(n), are displayed in [39]. It shows that 

the corresponding frequency components in the original noise signal are offset when 

the input signal is a single-frequency harmonic signal. While the input signal is 

superposed by two single-frequency harmonics, the corresponding frequency 

components in the original noise signal is also adaptively cancelled.  

Based on the FSLMS algorithm, some experimental works were conducted by the 

research group of Wang [132-134]. In these works, an ASQC system in a passenger car 

was established. Then, the experimental results showed that an obvious offset 

frequency noise attenuation, with little effect on other frequency noise components, 

and the loudness and sharpness values were also effectively reduced. 

 
Fig.10. Block diagram of the FSLMS algorithm based on the feed-forward ANC system 

5. Conclusion 

Sound noise control is desirable to reduce the pressure level and enhance the 
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auditory qualities of sound fields. The paper has introduced the concept of sound 

quality, objective evaluation, subjective evaluation and their relationships. Then, we 

reviewed the active noise control methods with an emphasis on recent developments 

in sound quality enhancement, which is briefly shown in Table 1. This paper can serve 

as a reference or a tutorial for beginners in the field of ASQC. 

Table 1 Main characteristic of active sound quality control. 

Authors Algorithms Characteristic Reference 

Kuo ANE  Attenuate or amplify sinusoidal noise [83,84] 

Kuo / Bao FELMS  Introduce the secondary adaptive filter to 

weaken the pass-band disturbance 

[95,96] 

Sun/Jaime SF-cFxLMS  Estimate the relationship between 
psychoacoustic analyses results and the 

parameters of the disturbance 

[97,98] 

Walter  CMD  Provide faster convergence and improve 

frequency response performance 

[104] 

Rees and Elliott PSC-FxLMS Increase the gain accuracy and the stability 

of the phase errors 

[107] 

Lee et al. ANNs  Sound quality index [123-125] 

Jiang and Wang FSLMS  Eliminate the dysphoric composition and retain 

the element of pleasure  

[39] 
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