Nonlinear properties of the shear dynamo model

Robert Teed, Mike Proctor

DAMTP, University of Cambridge

2nd Conference on Natural Dynamos, 28th June, 2017

Solar surface features

- Solar surface features exist on a range of scales
- Convection is granulated: granules (\sim 1,500km), mesogranules (5,000 10,000km ?), supergranules (\sim 30,000km)

Solar dynamo

- Magnetic field also exists on a range of scales from the granular bright spots to global scales
- Sunspots, flares, prominences, etc.
- 11-year solar cycle evidenced by sunspot activity

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

HATHAWAY/NASA/ARC 2014/09

Field generation

 Small-scale field: turbulent motions of plasmas amplify magnetic fluctuations via fluctuation dynamo effect

- Large-scale field: more complicated, traditionally modeled using mean-field theory
- A flow with global net helicity twists and stretches field lines
- Large-scale field generated by the 'α-effect'

Problems with mean-field theory

- Is mean-field theory valid in solar conditions?
- Mean-field theory should only apply when $Rm = UL/\eta$ is small, yet $Rm_{\odot} \gg 1$
- At large Rms increased turbulence causes models to be dominated by small-scale fields
- Poorly correlated EMFs (due to turbulence) lead to a small α -effect in large domains relevant to the Sun

Alternatives to mean-field theory

If the mean-field ansatz is not valid under solar conditions then a new mechanism for generating large-scale field is required

Several proposals have suggested a combination of turbulence and shear to produce large-scale field:

- $lue{}$ enhancement of lpha via greater correlation of small-scale motions by the shear (Courvoisier et al., 2009)
- interaction with a fluctuating α -effect (Richardson & Proctor, 2012)
- shear dynamo model (Yousef et al., 2008)

Shear dynamo model

- Periodic box MHD simulations performed in a long domain to reduce computing requirements
- Forced non-helical motion (no α -effect) in the presence of a uniform shear
- Large-scale structures in magnetic field can be generated (Yousef et al., 2008)
- Structures wander in time and space

Equations

- Solve the incompressible MHD equations in the presence of a uniform shear flow, $\mathbf{U} = -Sx\hat{\mathbf{y}}$
- Shear-periodic box subject to a white-noise nonhelical homogeneous isotropic body force, f

$$\frac{d\mathbf{u}}{dt} = u_{x} S \hat{\mathbf{y}} - \frac{\nabla \rho}{\rho} + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi \rho} + \nu \nabla^{2} \mathbf{u} + \mathbf{f}, \tag{1}$$

$$\frac{d\mathbf{B}}{dt} = -B_{x}S\hat{\mathbf{y}} + \mathbf{B} \cdot \nabla \mathbf{u} + \eta \nabla^{2}\mathbf{B}, \tag{2}$$

where $d/dt = \partial_t - Sx\partial_y + \mathbf{u} \cdot \nabla$

Box dimensions: L_x , L_y , L_z where $L_z \gg L_x$, L_y

Input parameters

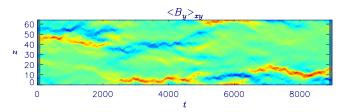
Use broadly the same parameter values as the previous work:

- 0.125 < *S* < 2
- $L_x = 1 = L_y$, $8 \le L_z \le 128$
- Energy injected in a shell centred at $k_f/2\pi = 3$ or, equivalently, $I_f = 1/3$
- Most cases have $\nu = 10^{-2} = \eta$ giving $Rm = Re = u_{\rm rms}/k_{\rm f}\nu \sim 5$

Kinematic regime

Growth rate scales linearly with S

- Lengthscale, I_B , scales as $S^{-1/2}$
- Confirms results of Yousef et al., 2008


$$\frac{1}{I_B} = \overline{\left(\frac{\langle (\partial B_y^{<}/\partial z)^2 \rangle_z}{\langle (B_y^{<})^2 \rangle_z}\right)^{1/2}}$$

Wandering field

zt-plots of B_y averaged over x and y

 $S = 2, L_z = 16$ (normalised by rms value)

 $S = 0.5, L_z = 64$ (normalised by rms value)

Large-scale field in *y*-direction wanders in space and time

Two saturated regimes

Saturated state appears to admit two rather different regimes (Teed & Proctor, 2016, 2017)

Clearly seen in different energy equilibration

$$E_{M} \sim E_{K}$$
, $(S = 0.5, L_{z} = 16, Pm = 2)$

Lengthscales

Quenched state (Teed & Proctor, 2016)

$$I_B \ll I_u$$
, $(S=2, L_z=16, Pm=1)$

Quasi-periodic state (Teed & Proctor, 2017)

$$I_B \sim I_u$$
, $(S=2, L_z=16, Pm=1)$

Quasi-periodic behaviour

- Two lengthscales: one on the size of the box and another on the intrinsic scale of the kinematic regime
- $lue{}$ System moves between periods with $I_B^s \sim L_z$ and $I_B^s \sim I_B^k$

Linear dependence of I_B^s on I_B^k

Triangles: values of I_B^s calculated during the periods when $I_B^s \sim L_z$ (box scale).

Squares: values of I_B^s calculated during the periods when $I_B^s \sim I_B^k$ (kinematic scale).

Relaxation oscillations I

- Possible explanation for quasi-cyclic is relaxation oscillations between a 'mean-vorticity dynamo' (Elperin, Kleeorin, and Rogachevskii, 2003) and a shear dynamo (for the magnetic field).
- Large z-dependent shearing flow generated by a vorticity dynamo when field is weak
- Stronger magnetic field suppresses this mechanism → weaker vertical shear and operational shear dynamo (Käpylä & Brandenburg, 2009)
- Only occurs if the kinetic and magnetic energies are of a similar order (quasi-cyclic state below)

Relaxation oscillations II

- If vorticity dynamo greatly dominates, no large-scale field can be generated by a shear dynamo mechanism
- In this case the (weak) magnetic field is generated by a fluctuation dynamo mechanism
- Hence lengthscale is reduced to that of the imposed forcing (quenched state below)

Tweaking the model

- Only basic linear shear (dependent on x) considered thus far
- Generates large-scale field with some cyclic properties but not solar-like
- Altering shear and/or forcing may promote more cyclic behaviour similar to the solar cycle
- Two main tweaks considered:
 - Changing shear profile; sinusoidal dependence,
 z-dependence
 - Adding a small amount of helicity into the forcing

Tweaking the model - preliminary results

Conclusions

- Pure linear shear case shows that the shear dynamo could form the basis for a model of the solar dynamo
- Saturated state admits two regimes: i) quenched state with small-scale field (not solar-like); ii) quasi-periodic state (possibly solar-like)
- Quasi-periodic state displays times of differing field length scale, proportional to the imposed shear rate
- Tweaking the purely linear shear case (z-dependent shear/small amount of helicity) could promote cyclic behaviour in the kinematic phase
- Analysis of further parameter regimes and larger boxes required
- Effects of rotation, compressibility?

MREP 2017

Meeting to celebrate Mike Proctor's retirement!

- Abstract submissions welcome on dynamo theory, MHD, convection, magnetoconvection and other relevant topics.
- Dates: September 11-12, 2017
- Venue: Centre for Mathematics Sciences, Cambridge with conference dinner at King's College, Cambridge
- Organisers: Rob Teed & Valeria Shumaylova