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ABSTRACT 19 

The elevation history of the Tibetan Plateau promises insight into the mechanisms and 20 
dynamics that develop and sustain high topography over tens of millions of years. We present the 21 
first nearly continuous Cenozoic elevation history from two sedimentary basins on the southern 22 
Tibetan Plateau within the latest Cretaceous to Eocene Gangdese arc. Oxygen isotope and Δ47 23 
clumped isotope compositions of non-marine carbonates allow us to constrain carbonate 24 
formation temperature and reconstruct the paleo-precipitation record of the Eocene to Pliocene 25 
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Oiyug basin and Paleocene to Eocene Penbo basin. We exploit the systematic decrease of surface 26 
temperature and meteoric water δ18O with elevation to derive paleo-elevation estimates for these 27 
basins. Minimally altered and unaltered pedogenic and lacustrine carbonates from the Oiyug 28 
basin yield Δ47, CDES values of 0.625 to 0.755, that correspond with temperatures of 1 to 30 °C 29 
using a Δ47 thermometer for low temperature carbonates (Zaarur et al., 2013). Similarly, the 30 
Penbo Basin yields Δ47, CDES values of 0.701 to 0.726, corresponding with temperatures of 6 to 31 
12°C. The apparent evidence for survival of primary clumped isotope values in the face of 32 
substantial burial and heating is an important result for the field of carbonate clumped-isotope 33 
thermometry. 34 

Our paleoelevation estimates for the Eocene to Pliocene Oiyug basin (~6.5-4.1 35 
kilometers) support previous evidence (Spicer et al., 2003; Currie et al., 2005; Polissar et al., 36 
2009; Currie et al., 2016) that high elevations were attained in southern Tibet by at least ~30 Ma. 37 
Stable isotope results allow for the possibility of significant topographic subsidence during the 38 
Miocene as a result of regional extension. In the Penbo basin, our paleoelevation estimates for 39 
the Paleocene to Eocene Nianbo Formation (4.4 +1.3/-1.7 km) and Eocene Pana Formation (4.1 40 
+1.2/-1.6 km) extend the altitude record of the southern Plateau to pre-India-Asia collision. These 41 
results support the “Lhasaplano” model of an Andean-type continental margin tectonic system. 42 

The rise of the Himalayas and Tibet is often invoked to understand isotopic proxies for 43 
global chemical weathering in the Cenozoic and has constrained the debate on the nature of CO2 44 
– climate – weathering feedbacks.  The nature of the Tibetan paleo-elevations from pre- to post-45 
collision, as presented here, indicates that high relief at low latitude prevailed on the Asian 46 
margin much earlier than previously thought. Thus high topography alone at low latitude is not 47 
sufficient to account for the Cenozoic weathering proxy record.  48 

 49 
INTRODUCTION 50 

The debate over when and how the largest and highest plateau on Earth reached its 51 

current altitude is re-framed in the context of recent evidence for an older onset of India-Eurasia 52 

collision. This has important implications for tectonics (Le Pichon et al., 1992; Kapp et al., 53 

2007), crustal mass balance considerations (Ingalls et al., 2016), and feedbacks among tectonics, 54 

weathering, climate, and the global carbon cycle (e.g., Raymo and Ruddiman, 1992). 55 

Recent efforts have established an age of onset of the India-Eurasia continental collision 56 

of ~58 Ma from the Indian deep-water, off-shelf passive continental margin environment 57 

represented by Eocene strata near Sangdanlin in south-central Tibet (DeCelles et al., 2014; Hu et 58 

al., 2015). Ingalls et al. (2016) use these and other data to suggest an age of ~56±2 Ma for 59 

collision of thicker (>20 km) continental crust in the vicinity of Sangdanlin, a younger age of 60 



~51 Ma in the Zanskar region farther west (Gaetani and Garzanti, 1991; Green et al., 2008), and 61 

an essentially unconstrained ~54±4 Ma age nearer to the eastern syntaxis.    62 

Our study of the tectonic history of Penbo and Oiyug Basins provides a framework for 63 

the land surface evolution of the southern margin of Eurasia and the sedimentary basins 64 

associated with the Linzizong volcanic arc and younger sedimentary basins during the Cenozoic 65 

collisional history spanning ~55 Ma to ~5 Ma. We present δ18Oc measurements on lacustrine, 66 

pedogenic, and groundwater calcites from both basins. We use clumped-isotope derived mineral 67 

formation temperatures from a subset of the calcite samples to calculate the original oxygen 68 

isotopic composition of meteoric water (δ18Ow) from δ18Oc measurements.  Finally, we assess 69 

alteration and secondary calcite precipitation with careful petrographic analyses and 70 

characterization of possible diagenesis coupled with our clumped-isotope results. 71 

The Oiyug basin sedimentary record spans nearly the entire Cenozoic, making it a unique 72 

site for reconstructing the elevation history of the southern part of the Tibetan Plateau (Fig.1). 73 

Previous paleoaltimetry studies of the basin include paleoenthalpy-derived estimates of ~15 Ma 74 

elevations from floral physiognomy (Spicer et al., 2003; Khan et al., 2014), oxygen isotope-75 

based estimates from carbonate minerals (Currie et al., 2005, 2016), and compound-specific δD 76 

of leaf wax n-alkanes (Currie et al., 2016). These studies have progressively added archives as a 77 

means of testing new proxies and validating prior reconstructions of past hypsometry and 78 

environmental conditions. We provide new stable isotope data from Paleogene nonmarine 79 

carbonates to extend the temporal range of the isotopic record in the Oiyug basin. Additionally, 80 

we present clumped isotope estimates of carbonate formation temperatures to better constrain 81 

paleo-water isotopic compositions for samples previously analyzed by Currie et al. (2016). These 82 



data thus help remove bias in paleo-elevation estimates through assumptions regarding 83 

carbonate-water fractionation temperatures.   84 

The clumped isotope paleothermometry and stable isotope paleoaltimetry results 85 

presented here support the existence of an Andean-type continental arc on the southern margin of 86 

Eurasia with elevations >4.1 km at the onset or just prior to the onset of the India and Eurasia 87 

collision in the Penbo/Linzhou region near Lhasa. We also advance the elevation record of the 88 

Oiyug Basin, ~160 km west of Lhasa, into the Eocene and provide additional support that the 89 

Oiyug basin was high throughout the Oligocene to Pliocene, building on the work of Currie et al. 90 

(2016). Our high paleo-elevations agree with aspects of the “Lhasaplano” model (Kapp et al., 91 

2007) – a high-standing Lhasa terrane before India-Asia collision – and provides additional 92 

evidence against models invoking en masse (England and Houseman, 1986; Harrison et al., 93 

1992, 1995; Molnar et al., 1993) or local plateau uplift (Wang et al., 2006) from significantly 94 

lower elevations in the Neogene. 95 

 96 

Stable isotope paleoaltimetry in the India-Asia collision zone 97 

Numerous investigations have reconstructed the elevation history of the Himalayas and 98 

Tibetan Plateau using the oxygen isotopic composition of non-marine carbonates (Garzione et 99 

al., 2000; Rowley et al., 2001; Currie et al., 2005; Rowley and Currie, 2006; DeCelles et al., 100 

2007; Quade et al., 2007; Saylor et al., 2009; Ding et al., 2014; Huntington et al., 2015). The 101 

isotopic composition of the carbonate minerals relates to that of the water from which they 102 

precipitated, which in turn depends upon the composition of meteoric water falling in the 103 

drainage basin. Paleoelevation estimates then derive from the sensitive relationship between 104 

elevation and the isotopic value of precipitation in low-latitude (<35°) orographic systems 105 



(Rowley and Garzione, 2007; Rowley, 2007). This connection is predicted based on atmospheric 106 

thermodynamic modeling of the expected isotopic lapse rate for water vapor and precipitation 107 

and is verified by modern observations (Rowley et al., 2001; Rowley and Garzione, 2007; 108 

Rowley, 2007). The primary determinants of the G18Ow-elevation relationship are the temperature 109 

(T) and relative humidity (RH) of the starting air mass. Rowley et al. (2001) used National 110 

Centers for Environmental Prediction (NCEP) reanalysis output of modern global monthly mean 111 

data over entirely oceanic, low latitude (<35°) regions to compute the probability density 112 

function of T and RH (Kalnay et al., 1996). Each starting T and RH populates a unique vertical 113 

trajectory through isotopic composition and elevation space. The set of these vertical trajectories 114 

define the expected isotopic compositions of low-latitude atmospheric vapor and use empirical 115 

fitting to the frequency distribution of isotopic composition of precipitation as a function of 116 

elevation. Model elevations are calculated using a quartic function that describes the relationship 117 

between elevation and Δ(δ18Op), where Δ(δ18Op) is the difference between the oxygen isotopic 118 

composition of precipitation at sea level and at high altitude. This function is the condensation-119 

weighted mean polynomial fit to a ~33000 iteration regression of 40 years of monthly global 120 

mean T and RH data: 121 

Elevation (m) = -0.0155(Δ(δ18Op))4-1.1302(Δ(δ18Op))3-33.939(Δ(δ18Op))2-642.71(Δ(δ18Op))   (1) 122 

This model was assessed by sampling modern stream waters in the Himalaya to central 123 

Tibet, calculating Δ(δ18Op), and comparing their predicted elevations with the actual modern 124 

elevations. This isotopic method yields reasonable fits to these datasets (Rowley et al., 2001; 125 

Currie et al., 2005; Rowley and Currie, 2006; Rowley and Garzione, 2007; Hren et al., 2009). 126 

There is some tendency of the model to underestimate elevations rather than overestimate, 127 



suggesting that it is likely a conservative proxy for past elevations. Further discussion of the 128 

paleoaltimetry model parameters can be found in the Appendix.  129 

The Siwalik Group is favored as an archive for low-latitude, near sea level climate 130 

conditions in the Neogene, as both carbon and oxygen isotopic compositions are interpreted to be 131 

primary (Quade et al., 1995; Quade and Cerling, 1995), and there exists excellent control on 132 

depositional age and burial history. We calculate Δ(δ18Op) using the mean low elevation δ18Ow 133 

value determined from 2.5 to 12 Ma paleosol carbonates (1-5 cm diameter) of the Siwalik Group 134 

in Pakistan and Nepal (Quade and Cerling, 1995; Quade et al., 2013). The Siwalik carbonates are 135 

presumed to precipitate in near isotopic equilibrium from soil water, which is closely related to 136 

meteoric water. Temperature- and mineral-specific fractionation factors (DCO3-H2O) are used to 137 

derive paleo-surface or groundwater composition (δ18Ow) from carbonate isotopic values (δ18Oc). 138 

We calculate G18O of water in the mineralizing solution using fractionation equations for calcite 139 

(Kim & O’Neil, 1997), dolomite (Vasconcelos et al., 2005), and siderite (Zhang et al., 2001) 140 

(Tables 1 and 2), which are calculated using the average Δ47-derived temperature for each 141 

geologic unit. The dominant controls on δ18Oc values of unaltered to minimally altered carbonate 142 

are extent of Rayleigh distillation of water vapor in the air masses that deliver precipitation to the 143 

region, which scales with elevation (Dansgaard, 1954) and extent of evaporative 18O-enrichment. 144 

An assessment of evaporative enrichment is incorporated into our presentation of the isotopic 145 

data. 146 

T(Δ47) for paleosols from the upper 2.5 km (<5.5 Ma) of the Siwalik Group at Surai 147 

Khola in Nepal were <34°C (Quade et al., 2013). Although the deposits older than 5.5 Ma 148 

experienced greater burial depths and yielded higher T(Δ47), Quade et al. (2013) argues that the 149 

Surai Khola sedimentary package is rock-buffered and has undergone little recrystallization, and 150 



therefore ẟ18Oc is preserved. The average δ18Oc of the Neogene Siwaliks is -7.4‰VPDB (Quade 151 

et al., 2013). Due to the extent of Δ47 alteration during burial in Surai Khola, we do not use the 152 

clumped isotope-derived temperatures from deposits older than 5.5 Ma for the calculation of 153 

δ18Ow from δ18Oc. Instead, we use low elevation warm month mean temperatures (WMMT) of 154 

28.1±3.4°C derived from a CLAMP (Climate Leaf Analysis Multivariate Program) analysis of 155 

two lower Siwalik mid-Miocene fossil flora (Khan et al., 2014). We assign a δ18Ow of -6.6±2.8‰ 156 

VSMOW as our low elevation precipitation isotopic value (δ18Ow) in the Miocene and older 157 

sediments and -4.6±1.4‰ VSMOW to the Pliocene sediments to account for climate change 158 

during the Cenozoic.  Error is propagated through the paleo-elevation model using the sum in 159 

quadrature of the uncertainties associated with calculating mean δ18Ow values for each sample, as 160 

well as the 2𝜎 Δ47 uncertainty. 161 

 162 

A Case for Multiple Proxies in Reconstructions of Ancient Topography and Environments 163 

Carbonate stable isotope paleoaltimetry depends critically on the preservation of a 164 

primary δ18Oc signal in the variably altered rocks preserved in collisional zones. Primary 165 

carbonate isotopic compositions are prone to alteration and diagenetic resetting by deep burial 166 

(Leier et al., 2009), which can shift δ18Oc to lower values, eliminating the possibility of 167 

constraining elevation history using the stable isotope record (Garzione et al., 2004; Leier et al., 168 

2009). Such a lowering of δ18Oc would result in an incorrectly high paleo-elevation interpretation 169 

(Garzione et al., 2004). We employ petrography, vitrinite reflectance, thermochronometric data, 170 

and clumped isotope thermometry to assess alteration and rule out the use of isotopic data from 171 

thermally mature samples in paleo-elevation reconstructions. 172 



 The exploitation of multiple paleo-elevation and paleo-environmental proxies in a single 173 

stratigraphic package allows for calibration and checks among conventional archives. Currie et 174 

al. (2016) conducted such a study in the Oiyug basin, characterizing ~30 My of relative elevation 175 

stasis in the evolving depositional environment of the Oiyug Basin. Currie et al. (2016) 176 

synthesized multiple proxies for paleo-meteoric water (ẟ18OFeCO3, ẟ18OCaCO3, ẟDleaf wax) to provide 177 

mid-Miocene (5.1 km +1.3/-1.9 km) and late-Oligocene to mid-Miocene (4.1 km +1.2/-1.6 km) paleo-178 

elevation estimates of this region, and a unique opportunity for testing the fidelity of other stable 179 

isotope proxies. Khan et al. (2014) determined a mid-Miocene (~15 Ma) paleo-elevation of 180 

5.54±0.73 km by reevaluating paleo-enthalpy estimates for a fossil flora locality (Spicer et al., 181 

2003) in the Oiyug Basin relative to new fossil flora localities in the Siwaliks, their sea level 182 

proxy. 183 

Clumped isotopes can be powerful in studying the evolution of ancient land surfaces 184 

when the original isotopic signature is preserved (Ghosh et al., 2006b; Quade et al., 2007). In this 185 

study, we apply calcite Δ47-derived formation temperatures (T(Δ47); Table 3) to previously 186 

published (Currie et al., 2016; Fig. 1) and new oxygen isotopic compositions of lacustrine and 187 

pedogenic carbonates (n=141) to better estimate ẟ18Ow of paleo-waters (Tables 1 and 2). ẟ18Ow is 188 

the isotopic composition of the water from which the carbonate formed, assuming equilibrium. 189 

We use this value to represent the precipitation-weighted hypsometric mean isotopic 190 

composition of surface water, which then enters into standard stable isotope paleoaltimetric 191 

determinations (Rowley, 2007).  192 

 193 

Geologic setting 194 

Linzizong volcanic arc, southern Lhasa block 195 



Cretaceous-early Tertiary Gangdese arc magmatism is commonly attributed to this northward 196 

subduction of Indian oceanic lithosphere beneath Tibet (Burg et al., 1983; Tapponnier et al., 197 

1986, 1981). Neo-Tethyan oceanic lithosphere attached to Indian plate was subducted beneath 198 

southern Eurasia prior to and during the early stages of continent-continent collision along the 199 

Indus-Yarlung Suture (IYS)—the tectonic boundary between the Indian subcontinent and 200 

Eurasia (Murphy et al., 1997; Ding and Lai, 2003). The volcanism represented by the Linzizong 201 

Group (~69 to 43 Ma) and post-Early Cretaceous (<100 Ma) Gangdese batholiths constitute the 202 

active continental margin of southern Eurasia.  203 

Portions of the central to northern Lhasa terrane were covered in shallow marine platform 204 

sediments during the Aptian-Albian, potentially as far south as the Penbo basin (Kapp et al., 205 

2005; Leier et al., 2007), demonstrating that much of the Lhasa terrane was at sea level in the 206 

mid-Cretaceous (Zhang, 2000). These marine sequences place a lower bound on the uplift 207 

history of the southern margin of Eurasia, but the timing of the tectonic and magmatic rise of the 208 

southern Lhasa terrane and Linzizong volcanic arc to modern elevation remains controversial. 209 

 210 

Penbo/Linzhou Basin 211 

The Penbo, also referred to as the Linzhou, basin (Fig. 1B) is located approximately 35 212 

km north of Lhasa and 75 km north of the IYS. The modern hypsometric mean elevation of the 213 

basin drainage area is ~4200 m with surrounding peaks <5300 m. The samples in this study were 214 

collected from modern elevations of 3950 to 4200 m.  215 

This basin exposes a sedimentary and volcanic record spanning pre- to syn-collisional 216 

time (~67 to ~48 Ma) and is the type locality of the non-marine Linzizong Group (He et al., 217 

2007). Here, the stratigraphic thickness of the Linzizong Group is approximately 3500 m (He et 218 



al., 2007). We focus our paleoelevation reconstruction in the Penbo Basin primarily on the ~56.5 219 

to ~53 Ma Nianbo Fm and the ~50 Ma upper Pana Fm because they preserve abundant lacustrine 220 

limestone, groundwater and paleosol carbonate nodules, and they have pre- to early syn-221 

collisional depositional ages. The age range of the sampled Linzizong stratigraphy of the Penbo 222 

Basin is well constrained by zircon U/Pb radiometric ages of tuffs near the base and top of the 223 

measured stratigraphy (Ding et al., 2014; He et al., 2007). Additionally, a hornblende 40Ar/39Ar 224 

age from a mafic dike intruding the Nianbo Formation provides a latest possible age of 225 

Linzizong deposition within Penbo basin (Yue and Ding, 2006).  226 

The sedimentary rocks of the Nianbo Formation in the Oiyug Basin are mapped as age-227 

correlative with the type Nianbo in the Penbo Basin. These ages together with stratigraphic and 228 

lithological correlation allow us to place the paleo-altitude results from the Nianbo Formation, 229 

discussed below, in the Oiyug Basin into temporal and regional context. 230 

The ~240 meter-thick Paleocene-Eocene Nianbo Fm (Fig. 2) unconformably overlies the 231 

lower Upper Cretaceous Shexing Fm in this section. Nearby, the Nianbo conformably to 232 

disconformably overlies the Paleocene Dianzhong Fm, that in turn unconformably overlies the 233 

Shexing and Takena Formations.  The Linzizong Group and particularly the Nianbo Fm are 234 

spatially heterogeneous such that no section in the field is representative. Nonetheless, the 235 

overall stratigraphy and sedimentology of the Nianbo Fm can be broken into three lithologic 236 

sequences: two upward-fining packages with an ash-flow tuff and massive conglomerate 237 

between the two. The lower subunit is dominated by purple and green laminated mudstones and 238 

volcaniclastic-dominated sandstones at its base. The mudstones contain nodular carbonate, 239 

pedogenic features, mottling, and bioturbation, and at least one non-deformed snail shell. These 240 

are overlain by fine-grained red siltstones abundant in pedogenic carbonate interbedded with 241 



yellow to brown lacustrine marls. Fossil ostracods are found in the marls. Shell morphology is 242 

preserved but body cavities have sparry calcite infill. The uppermost part of the lower Nianbo 243 

Fm preserves well-developed calcic paleosols (Fig. 3). 244 

The middle Nianbo subunit is defined by a period of vigorous volcanic activity. The 245 

volcanic agglomerate base is topped by a 5 meter-thick andesitic lava flow. A 25 meter-thick 246 

welded tuff/ash flow tops this sequence, followed by ~40 meters of gravel conglomerate. 247 

The basal 10 meters of the upper Nianbo subunit is composed of interbedded red 248 

mudstones and medium to very coarse sandstones. The uppermost mudstones contain 249 

groundwater carbonate horizons and abundant pedogenic carbonate. Approximately 10 meters of 250 

coarse to gravel conglomerate overlies the ped-rich layers. The conglomerate is topped by ~10 251 

meters of alternating fine and coarse sandstones. The uppermost ~80 meters of the Nianbo are 252 

more variable in composition and depositional conditions: fining-upwards conglomerates, meter-253 

thick micritic limestone beds, horizontally laminated medium-grained sandstones, sandy 254 

limestones, and paleosol horizons. Ostracods are found in one of the uppermost lacustrine 255 

limestone beds, implying a period of relatively shallow and open lakes with long residence times 256 

(Ding et al., 2014). The majority of the samples used for measuring paleo-elevation of the 257 

Nianbo Fm were derived from this upper subunit. 258 

 The uppermost preserved rocks of the Linzizong Group are the Pana Formation, a lower 259 

sequence of mostly andesitic volcanics and volcaniclastics overlain by a predominantly 260 

lacustrine succession of shales, mudstones, sandstones, and both pedogenic and lacustrine 261 

carbonates. The upper subunit of the Pana Formation was deposited between 50.5 ±2.4 Ma and 262 

48.4±1.0 Ma, as dated by U/Pb zircon laser ablation geochronology (Ding et al., 263 

2014).  Additionally, Eocene-age volcanic dikes cut the Nianbo and lower Pana Formations (He 264 



et al., 2007). Locally Linzizong sediments may have experienced elevated temperatures due to 265 

this intrusive activity. 266 

Oiyug Basin 267 

        The Oiyug Basin (Fig. 1C), also referred to as the Wuyu Basin, and mischaracterized as 268 

the Namling Basin (Spicer et al., 2003) that actually lies slightly farther west, is located 160 km 269 

west of Lhasa and 60 km north of the Indus Yarlung Suture (IYS). The basin covers an area of 270 

approximately 300 km2 (Wang and Chen, 1999) of the Lhasa terrane. Sampled localities are 271 

currently at elevations of 4300-4400 m with surrounding elevations >5600 m. The modern 272 

hypsometric mean elevation of the basin drainage area is ~4600 m. 273 

        Paleogene-Neogene strata in the Oiyug Basin consist of the Paleocene Dianzhong, 274 

Paleocene-Eocene Nianbo Formation, the Oligocene-Miocene Rigongla Formation, the Miocene 275 

Gazhacun Group, and the Miocene-Pliocene Oiyug Formation.  In this basin, the Nianbo 276 

Formation is comprised of andesite, fluvial volcaniclastics, lacustrine sandstones, mudstones and 277 

limestones, and argillaceous/calcareous paleosols. In this study, an approximately 500 m-thick 278 

section of the Nianbo Formation was measured in the northern part of the Oiyug Basin (Fig. 4). 279 

The section is bordered to the south by a low angle thrust fault that places Nianbo sediments 280 

above the younger Rigongla Formation. To the north, the section is separated from the overlying 281 

Rigongla Formation by an angular unconformity. The angular unconformity marks an erosional 282 

surface that removed upper Nianbo and Pana Fm sediments from this location prior to Rigongla 283 

Fm deposition (Fig. 1C).  284 

The lower parts of the measured Nianbo Formation (Fig. 4) consists of ~270 m of 285 

andesitic volcaniclastic rocks sparsely interbedded with thin (~20-30 cm-thick) paleosol 286 

horizons.  Pedogenic calcite (W0628-1) was collected from a moderately developed paleosol 287 



horizon ~275 meters above the base of the section. Pedogenic calcite nodules in this part of the 288 

section are gray-green, texturally micritic, and typically elongate (~1 cm by 2-3 cm), surrounded 289 

by red muddy matrix. The matrix material is primarily composed of weathered volcanics.   290 

Above the volcanics and weathered volcanics, the Nianbo Formation is dominated by 291 

lacustrine limestone, sandstone, and mudstone. The depositional environment is interpreted as 292 

marginal lacustrine. The dominant lithology at the base of the thick limestone package is 293 

laminated sandy limestone (W0628-2) with very fine-grained calcareous matrix and fine to 294 

medium quartz grains. The sandy beds interbedded with the marl limestone cliffs are interpreted 295 

as terrestrial alluvium deposited in an offshore to near-shore lake environment (Mack and 296 

Rasmussen, 1984). The sedimentology of this sequence and environmental interpretations align 297 

with the lithology and sequence stratigraphy of the upper subunit of the Nianbo Formation in the 298 

Penbo basin (Ding et al., 2014; this study). Approximately 10 meters above this sampling 299 

locality, sandy limestone fines to oxidized siltstone and red mudstone with authigenic calcareous 300 

concretions (W0628-3).  The Nianbo Formation in the Oiyug Basin is mapped as Paleocene to 301 

early Eocene in age. While undated in the immediate study area, U/Pb ages from the Nianbo 302 

Formation sampled ~40 km to the west near Namling range from 63.78±0.46 Ma to 50.2±2.2 Ma 303 

(Wang et al., 2014) in line with dating in the type area in the Penbo Basin to the east.   304 

Rigongla Formation rhyolitic and andesitic volcaniclastic rocks lie unconformably above 305 

the described section of Nianbo.  A rhyolite (W0628-4) sampled from these volcanics yielded a 306 

late Oligocene age of 28.90±1.52 Ma (potassium feldspar 40Ar/39Ar; Table 4; Fig. A1), similar to 307 

a ~31 Ma K/Ar age reported for the lower Rigongla Formation elsewhere in the basin (Zhu et al., 308 

2006). Given these ages, and the ~50 Ma age for the upper Nianbo in the region, ~20 million 309 

years of rock record is likely missing at the unconformity between the Nianbo and Rigongla 310 



formations in the study area. Additional radiometric ages of volcanics interbedded with the 311 

Linzizong strata are needed in order to assess the continuity of the rock record preserved in the 312 

Oiyug basin.  313 

The Rigongla Formation measured at the headwaters of the Ramaqu, consists of dacitic to 314 

andesitic volcanic rocks interbedded with an upward-fining >500 meter thick sedimentary 315 

sequence of conglomerates, sandstones, and mudstones (Fig. 1C) (Currie et al., 2016). Paleosol 316 

and groundwater carbonate nodules were collected from a ~20 meter thick mudstone horizon 317 

between alluvial fan and fluvial channel conglomerate sequences in the Rigongla Formation 318 

(Currie et al., 2016). The nodules are texturally micritic and 3-15 cm in diameter. 319 

        The Gazhacun Group, previously described as the Manxiang Formation (Zhu et al., 320 

2006), directly overlies the volcanics of the upper Rigongla Formation. The base of the 321 

Gazhacun Group is comprised of ~140 meters of red and gray overbank mudstones and sparse 322 

fluvial channel sandstones and conglomerates (Currie et al., 2016). The overbank mudstones host 323 

clay-rich paleosol horizons with well-developed pedogenic calcite nodules 0.25 to 1.5 cm in 324 

diameter. The middle Gazhacun is interpreted to record a lacustrine depositional environment, 325 

represented by ~225 meters of gray, green, and light red shale and mudstone, and thin beds of 326 

siltstone and fine-grained sandstone (Currie et al., 2016). Samples from lacustrine strata of the 327 

middle Gazhacun are both early diagenetic calcite and dolomite nodules. Given the paucity of 328 

datable volcanics in the Rigongla Formation and lower-middle Gazhacun Group strata, the age of 329 

this stratigraphic interval is liberally bracketed between two K-feldspar 40Ar/39Ar ages from the 330 

units above and below the lower Gazhacun: a rhyolite in the Rigongla Fm (28.90±1.52 Ma) and a 331 

felsic tuff in the upper Gazhacun (~15 Ma; Spicer et al., 2003). 332 



The upper Gazhacun Group, measured along the Badamaqen, consists of ~100 meters of 333 

tuffaceous conglomerate and fining upwards sandstone, interbedded with carbonaceous siltstone, 334 

mudstone, shale, and coal. A siderite nodule (618A) and four shales were collected for isotopic 335 

analyses near the top of the floral locality section of Spicer et al. (2003) and Khan et al. 336 

(2014). The age of the top of the upper Gazhacun Group is constrained by 40Ar/39Ar age of ~15 337 

Ma from felsic tuff deposits within the upper part of the unit and from the base of the overlying 338 

Zongdang Group (Spicer et al., 2003). The Zongdang Group consists of ~1900 meters of ash 339 

flow tuffs and volcaniclastics (Zhu et al., 2006; Chen et al., 2008). Ash flow tuffs from the 340 

uppermost Zongdang Group yielded K/Ar ages ranging from 8.23±0.13 to 7.92±0.15 Ma (Chen 341 

et al., 2008). 342 

        The upper Miocene-Pliocene Oiyug Formation conformably to unconformably overlies 343 

the Zongdang Group. This unit is an ~1 km-thick package of basin-centered lacustrine deposits 344 

and associated basin margin fan delta, fluvial, overbank, and swamp deposits (Zhu et al., 2006). 345 

The upper Oiyug Formation is dominated by lacustrine marl and mudstone (Currie et al., 2016). 346 

Lacustrine marl calcitic limestone, shales, nodular calcite, and nodular siderite were collected for 347 

isotopic analyses from the middle to upper Oiyug Formation, with an interpreted depositional 348 

age of ~5 Ma (Chen et al., 2008). 349 

 350 

METHODS 351 

In this study, we determined the δ18Ocarb and δ13Ccarb values of 105 carbonate samples 352 

collected from Paleocene to Eocene strata in the Penbo basin and 36 carbonate samples from the 353 

Eocene to Pliocene strata in the Oiyug basin. Of these samples, 7 from Penbo and 12 from Oiyug 354 

were used to determine clumped-isotope estimates of carbonate precipitation temperature 355 



T(Δ47).  Currie et al. (2016) reported carbon and oxygen stable isotopic compositions of 356 

Oligocene to Pliocene strata in the Oiyug basin, and this work adds new stable isotope 357 

compositions from Paleogene strata. We obtained a potassium feldspar total fusion 40Ar/39Ar age 358 

for Rigongla Formation volcanics in the Oiyug basin in order to provide an upper bound for 359 

Nianbo Formation deposition. We measured apatite (U-Th)/He ages for the Qianggeren granite 360 

in the Penbo basin in order to constrain the erosional unroofing age.  361 

 362 

Carbonate Sample Preparation 363 

The outer layer of carbonate samples was removed to expose fresh material for stable 364 

isotope analysis and making petrographic slides. Samples were powdered using a Foredom TX 365 

low speed drill with a Brasseler US#2 HP Round bit at low speed to avoid significant frictional 366 

heating and the potential for carbonate C-O bond reordering. 367 

Petrographic slides were made for a subset of samples that appeared minimally or 368 

unaltered in hand sample in order to evaluate for visual signs of aqueous alteration (dissolution 369 

features, recrystallization textures, secondary carbonates, authigenic metal oxide precipitates, 370 

etc.; see Tables 5-6). Petrographic analyses allow distinction between two contrasting textural 371 

relationships among preserved carbonates. One group consists of pedogenic carbonate nodules 372 

and lacustrine limestone, some of which preserve ostracods and charophyte debris within a 373 

micritic matrix with only very minor spar-filled vugs and/or microspar recrystallization (Tables 5 374 

and 6). This minimally altered group also includes wackestones lacking evidence of secondary 375 

recrystallization. The second group, consisting of lacustrine limestone and pedogenic carbonate 376 

nodules, is characterized by varying degrees of alteration including extensive development of 377 

sparry calcite, oxidation, cross cutting veins, and increase in grain size of the formerly micritic 378 



matrix and sparry calcite veins. We discuss our isotopic results with respect to our petrographic 379 

assessment of degree of alteration. 380 

For the Penbo Basin, the ∆47 analyses were carried out independently from the 381 

petrographic observations (isotopic measurements and petrographic observations shared only 382 

after both were completed). This blind test was carried out at Miami University as a means of 383 

assessing our ability to correctly characterize alteration by petrographic observation. For the 384 

Oiyug Basin, petrographic and ∆47 analyses were both completed at the University of Chicago. 385 

 386 

Standard stable isotope measurements 387 

Isotopic measurements were completed in the stable isotope facility in the Department of 388 

the Geophysical Sciences at The University of Chicago. All samples were analyzed for calcite 389 

δ18Oc and δ13Cc and weight % CaCO3 using a Gas Bench II (Thermo, Bremen, Germany) 390 

connected to a Delta V Plus (Thermo) stable isotope ratio mass spectrometer.  Stable oxygen and 391 

carbon isotopic measurements are reported in ‰ using conventional delta notation: 392 

δ18Oc= (((18O/16O)sample/(18O/16O)standard) - 1) × 1000 ‰     (2) 393 

with analogous formulation for δ13Cc. All carbonate oxygen and carbon isotopic compositions 394 

are reported on the VPDB scale.  395 

Samples were weighed out to yield roughly 100-200 μg CaCO3 equivalent.  Comparable 396 

size ranges of the isotopic standards NBS-18 (δ13C = -5.01‰ VPDB; δ18O = -23.20‰ VPDB; 397 

Coplen et al., 2006), NBS-19 (δ13C = 1.95‰ VPDB; δ18O = -2.19‰ VPDB; Gonfiantini, 1983), 398 

and periodically LSVEC (δ13C = -46.6‰ VPDB; Coplen et al., 2006) were interspersed with the 399 

Tibetan samples.  These standards were used to assess, and correct when needed, for linearity 400 

and drift. Results for carbonate δ13Cc and δ18Oc are reported on the VPDB scale (±0.1‰ 401 



analytical uncertainty).  The calculated values for water in isotopic equilibrium with the 402 

carbonate minerals, ẟ18Ow, are reported on the VSMOW scale. 403 

 404 

Clumped isotope (Δ47) analyses 405 

The carbonate clumped isotope thermometer is established using the temperature-406 

dependent enrichment of “clumped” isotopologues in carbonates, and can be used to determine 407 

carbonate mineralization temperature (Ghosh et al., 2006a; Ghosh et al., 2006b; Eiler, 2007; 408 

Huntington et al., 2009; etc.). The “clumping” refers to ions or molecules with more than one 409 

rare isotope (e.g., a clumped carbonate ion: 13C18O16O2
2-).  The formation of carbonate minerals 410 

in internal isotopic equilibrium results in greater clumping at lower temperatures.  The clumped 411 

isotope composition of carbonates is measured on CO2 released by phosphoric acid digestion of 412 

carbonate minerals.  The composition is reported as a Δ47 value expressed in units of ‰, where 413 

Δ47 is defined as the enrichment in clumped CO2 with molecular mass 47 (dominated by 414 

13C18O16O) relative to the amount of clumping expected based on a stochastic distribution of C 415 

and O isotopes as measured in the bulk isotopic composition: ∆47= (R47/R47*-1) × 1,000 ‰, 416 

where R47 = mass 47 / mass 44, and R47* denotes analogy to R47, but reflects the abundance 417 

predicted with a random distribution of isotopes.  ẟ47 is defined similarly to ẟ13C and ẟ18O, using 418 

the abundance ratios of CO2 isotopologues (rare mass 47 isotopologues compared to the common 419 

mass 44 isotopologue) referenced to a working gas that defines “zero”. 420 

Carbonates were digested overnight in 5-7 ml of ~103% anhydrous phosphoric acid at 421 

26°C with acid densities of 1.92-1.94 g/cm3, verified gravimetrically prior to each use. Following 422 

acid digestion, the resultant CO2 was purified on a glass vacuum line to remove trace water 423 

vapor and isobaric contaminants.  Gas was transferred through a cryogenic water trap (glass 424 



tubing immersed in LN2-ethanol slurry at -80°C) with the CO2 frozen out (LN2) downstream and 425 

with non-condensable gases then pumped away.  These non-condensable gases typically gave a 426 

pressure of 0.1-0.2 Torr in a 250 ml volume segment of the vacuum line and reaction vessel as 427 

compared with a CO2 partial pressure of 80 Torr in 15 mL.  The frozen CO2 sample was isolated 428 

from the rest of the system and warmed, with pressure reading serving as a monitor of CO2 yield 429 

from the sample digestion (902 piezo vacuum transducer, MKS Instruments, Andover, 430 

MA).  Then the CO2 was passed through a Haysep Q (60/80 mesh, Supelco, Bellefonte, PA, 431 

USA) filled U-trap (6 mm i.d., 24 cm packed length) with an approximately 2 cm thick layer of 432 

powdered Ag3PO4 (Strem Chemicals, Newburyport, MA, USA) mixed with quartz chips at the 433 

inlet end.  Small quartz wool plugs capped with silver wool plugs were used on both ends of the 434 

column to retain fine mesh and powder packing material.  The U-trap thus packed served as a 435 

chromatography column. We optimized the temperature of CO2 chromatography by varying 436 

temperature of the column ~0 to 25°C, and passing gases equilibrated at 25°C and 1000°C 437 

through the column. No fractionation of the equilibrated gases occurred during the room 438 

temperature trials. The transfer of CO2 through the column at room temperature was monitored 439 

barometrically, and freezing over of CO2 was continued for approximately 10 minutes beyond 440 

the time required for the upstream pressure to reach baseline (40-45 minutes total). The collected 441 

CO2 was cryogenically transferred through a second water trap to a cold finger, then isolated and 442 

warmed for pressure reading to confirm quantitative transfer.  The purified CO2 was stored in 443 

borosilcate tubes with CTFE valve body and o-ring seal (Kimble-Chase, Vineland, NJ) until 444 

loaded into the mass spectrometer sample bellows. 445 

Clumped isotope measurements and traditional carbon and oxygen stable isotope 446 

measurements were made on a Finnigan MAT253 set to measure m/z 44-49 ion beams. We 447 



employed the run structure and pressure baseline correction detailed in He et al. (2012). Oztech 448 

(Safford, AZ, USA) isotopic standard CO2 tank gas (UOC 1766, ẟ13C=-3.61‰ VPDB, 449 

ẟ18O=24.99‰ VSMOW) was used as the working reference gas during clumped isotope 450 

analyses, and ẟ47 values were determined with the working gas defining zero. 451 

Following Dennis et al. (2011), raw Δ47 values are standardized to gases heated to 452 

1000°C to approximate near random distribution of isotopes, as well as gases equilibrated with 453 

waters of known composition at 4, 26, and 60°C. Standardized Δ47 values are reported on an 454 

“absolute reference frame”, henceforth referred to as the Carbon Dioxide Equilibrium Scale 455 

(CDES) following Dennis et al. (2011) and allowing for interlaboratory comparison. We 456 

routinely measured standard calcite materials (Carrera Marble [CM] and four CaCO3 materials 457 

from ETH-Zurich [ETH1 through 4]), which are analyzed at regular intervals in many clumped 458 

isotope facilities for the purpose of inter-laboratory calibrations and measurement comparisons. 459 

We also use frequent analyses of these standard materials as a check on internal consistency of 460 

repeated measurements within and between analytical periods (Table A1 and A2). Further 461 

discussion of quality control checks and corrections applied to measurements made on the 462 

MAT253 can be found in the Appendix. 463 

Temperatures were calculated using the Zaarur et al. (2013) paleothermometer. There is 464 

presently a consensus in the clumped isotope research community that the conversion of Δ47 465 

values to equilibrium temperatures should employ a paleothermometer that was determined on 466 

similar sample types and with similar acid digestion temperatures (Huntington et al., 2015; 467 

Defliese et al., 2015; Gallagher and Sheldon, 2016; Burgener et al., 2016; Ringham et al., 468 

2016).  Our 26°C acid digestion temperatures is essentially the same as the 25°C temperature 469 

used for the Zaarur et al. (2013) calibration.  Use of this paleothermometer also maintains inter-470 



laboratory consistency with other paleoaltimetry studies on the Tibetan Plateau (Huntington et 471 

al., 2015). Errors are reported for each sample using the standard error of the mean for replicate 472 

sample digestions (in this study, ∆47 s.e.m. of 0.011 to 0.040), that converts to temperature 473 

uncertainties of 2.3 to 8.2°C on the Zaarur et al. (2013) paleothermometer. 474 

 475 
40Ar/39Ar geochronology 476 

Standard K-feldspar 40Ar/39Ar total fusion analyses were conducted for sample W0628-4 477 

in the Lehigh University Noble Gas Laboratory (Table 4). Approximately 2.4 mg of K-feldspar 478 

was loaded into an aluminum foil packet and stacked vertically with other unknowns along with 479 

GA1550 biotite flux monitor (age = 98.79 Ma) and K2SO4 and CaF2 salts to correct for 480 

nucleogenic interferences. Following a cumulative 25-hour irradiation at the USGS Triga 481 

reactor, K-feldspars were split into three aliquots, loaded into a sample planchet and brought to 482 

vacuum by a turbomolecular pump coupled with a rotary backing pump. Samples were fused 483 

using a Merchantek dual UV/CO2 laser system. Extracted gas was purified with an SAES getter 484 

for 10 minutes. The gas was then measured by an Argus VI magnetic sector mass spectrometer 485 

equipped with five faraday cups. Masses 40, 39, 38, 37, and 36 were measured concurrently to 486 

enable calculation of the radiogenic 40Ar component and correct for nucleogenic interferences 487 

(40Ca, 42Ca, 37Cl, 40K) on Ar isotopes. Raw data was reduced using ArArCalc software (Koppers, 488 

2002) to regress to time-zero beams and to correct for blank, mass discrimination, nucleogenic 489 

interferences, and decay following irradiation. Data for the three aliquots in the inverse isochron 490 

plot show a well-fit linear correlation with a 40Ar/36Ar intercept indicative of a trapped excess Ar 491 

component (Fig. A1). 492 

 493 



Apatite (U-Th)/He thermochronometry  494 

Measurements for apatite (U-Th)/He thermochronometry were made in the Noble Gas 495 

Thermochronometry Laboratory at the Berkeley Geochronology Center. A brief description of 496 

the methodology is provided here; for a full description of the measurement procedures, see 497 

Tremblay et al. (2015). 498 

Individual, euhedral apatite crystals with no visible fluid or mineral inclusions and 499 

equivalent spherical radii of 50 μm or greater were selected, photographed, and measured using a 500 

Leica MZ16 stereomicroscope. Individual crystals were loaded into PtIr packets and heated 501 

under vacuum to 1050 ± 50 °C for 6 minutes with an 810 nm wavelength diode laser. The 502 

extracted gas was spiked with an aliquot of 3He, purified, and analyzed using a Pfeiffer Prisma 503 

quadrupole mass spectrometer QMS 200 under static vacuum. Helium blanks, determined by 504 

heating empty PtIr packets, were typically less than 5 × 10-17 moles. To achieve complete helium 505 

extraction, each sample was reheated until the 4He yield was less than 0.5% of the 4He yield in 506 

the first heating step. Molar 4He abundances were calculated by dividing the measured 4He/3He 507 

ratio by the 4He/3He ratio of a manometrically-calibrated 4He standard gas aliquot spiked with 508 

the same molar abundance of 3He as was the unknown, and multiplying this value by the 509 

standard gas’s known 4He molar abundance. 510 

After degassing, each sample was dissolved in 50μL of 7N HNO3 spike solution 511 

containing 9.20 × 10-10 mol/L 233U, 9.03 × 10-10 mol/L 229Th, and 6.7% enriched 147Sm spike. 512 

Solutions were diluted by a factor of 20 and analyzed on a Thermo Scientific Neptune Plus 513 

multicollector ICP-MS with an Aridus2 desolvating nebulizer sample introduction system. To 514 

standardize the analyses, we also analyzed a spiked normal solution with known U, Th, and Sm 515 

concentrations. Spiked normal solution isotope ratio measurements were reproducible to much 516 



better than 0.5% for each element. (U-Th)/He ages were calculated using blank corrected 517 
4He,147Sm, 232Th, and 238U abundances. Raw ages were corrected for alpha ejection effects after 518 

Farley et al. (1996). 519 

 520 

DISCUSSION OF RESULTS 521 

Geochronology and thermochronometry 522 

A rhyolite immediately above the Rigongla-Nianbo unconformity provides an 40Ar/39Ar 523 

K-feldspar age of 28.90±1.52 Ma (Fig. A1), providing a minimum age of the underlying Nianbo 524 

Formation. A three-point regression in the inverse isochron is not ideal for these data and 525 

xenocrystic contamination cannot be ruled out in the Rigongla rhyolite. However, if this were the 526 

case, producing a well-defined regression line with reasonable trapped 36Ar/40Ar intercept would 527 

require fortuitous trade-offs between each aliquot's age, trapped 36Ar/40Ar, and trapped to 528 

radiogenic Ar ratio, and therefore is not likely. The inverse isochron age of 28.9±1.52 Ma that 529 

we report is consistent with a K/Ar age of ~31 Ma from the lower Rigongla formation elsewhere 530 

in the basin (Zhu et al., 2006) which lends additional confidence to our interpretation. 531 

Apatite grains from two samples of Qianggeren granite (L0706-2 and L0706-3) from a 532 

quarry ~4 km north of the Pana Formation in Penbo Basin yielded (U-Th)/He ages of 14.86±1.83 533 

Ma and 12.74±1.47 Ma (1σ; Table 4), respectively. The Qianggeren granite sits in the hanging 534 

wall of the Gulu thrust. L0706-2 and L0706-3 are located <1-2 km from a reported zircon U/Pb 535 

age of 51.9±2.5 Ma within the Qianggeren granite (He et al., 2007).  536 

 537 

δ13C, δ18O and clumped isotope-derived temperatures  538 

Penbo Basin 539 



The oxygen isotopic compositions of all 68 calcites sampled from the Pana and Nianbo 540 

Formations in the Penbo basin range from G18O of -22.8 to -9.4±0.1‰, with mean values of -541 

14.0±1.2‰ and -15.1±2.1‰ (1σ), respectively (Table 1). The carbon isotopic compositions 542 

range from δ13C of -10.4 to -0.1‰. The mean δ13Ccc for all calcites of the Pana and Nianbo 543 

Formations vary by 1.5‰, with values of -6.0±1.5‰ and -4.5±2.3‰ (1σ), respectively. 544 

Pedogenic and lacustrine carbonate typically derive their carbon from different sources and 545 

precipitate under different environmental conditions, thus providing additional information for 546 

environmental reconstructions. As such, it is worth noting isotopic variability between modes of 547 

carbonate genesis. The mean δ13Ccc values for paleosol carbonate in the Paleocene-Eocene Pana 548 

and Nianbo Formations are -6.9±0.8‰ and -5.4±2.2‰, respectively. The mean δ13Ccc values for 549 

lacustrine carbonate are -5.7±1.8‰ and -3.2±1.7‰. 550 

In the subset of samples with clumped isotope measurements and petrographic 551 

characterization, both the “primary” carbonates and those with more extensive signs of 552 

recrystallization span -12 to -18‰ in δ18Oc space. The three primary carbonates from the Nianbo 553 

Formation record Δ47,CDES values of 0.700-0.730±0.020 (Table 3). These carbonates yield T(Δ47) 554 

of 6 to 12 °C (Fig. 5A). As described in the Methods section (Sample Preparation), we interpret 555 

these as “primary” carbonate reflecting original depositional temperature. Four pedogenic and 556 

lacustrine carbonates exhibit more extensive recrystallization in thin section. These altered 557 

carbonates have Δ47,CDES values of 0.540-0.590±0.010 with corresponding paleo-temperatures 558 

from 41 to 55°C. The upper end of this temperature range is similar to those determined from 559 

visual Thermal Alteration Index values for organics sampled from the base of the Penbo section. 560 

These values correspond to vitrinite reflectance values (R0) of 0.4% to 0.5%, indicating burial 561 

temperatures ranging from 53° to 75°C (Barker, 1988).  562 



The observed variability in both δ18Oc and Δ47 does not display any stratigraphic trend 563 

that can be attributed to progressive burial diagenesis with depth (Fig. 6). The samples that show 564 

petrographic and Δ47 signs of alteration are not appreciably shifted in δ18Oc, implying that the 565 

alteration in these samples was rock-buffered, i.e. carbonate buffered the oxygen isotopic 566 

composition relative to the small amount of water present in the system. We emphasize paleo-567 

elevations derived from samples with Δ47 analyses (Table 3), but include data from all samples 568 

(measured δ18Oc only) under the assumption that any alteration took place in a rock-buffered 569 

system. The remainder of the discussion of the Penbo basin samples will focus on the 570 

implications of the isotopic compositions of the minimally altered, micritic carbonates. 571 

Oiyug Basin 572 

Traditional oxygen and carbon isotopic variations were assessed for trends with location 573 

in section (relative age) and sediment type (Table 2). Oxygen analyses of siderites and dolomites 574 

from the Oiyug basin yield different values from the dominant calcite mineralogy. For example, 575 

calcites from the Oiyug Formation (~8.1 to 2.5 Ma; Chen et al., 2008) yield δ18Oc and δ13C 576 

values of -28.0 to -27.4±0.1‰ and -0.1 to 1.3‰ (VPDB), and the siderite nodule, -10.8‰ and 577 

12.9‰. As such, siderites and dolomites are considered separately.  578 

Calcites from the Gazhacun Group (>15.03 Ma; Spicer et al., 2003) yield mean δ18Occ 579 

and δ13Ccc values of -18.8±2.6‰ (ranging -21.1 to -11.6‰) and -6.3±1.6‰ (ranging -8.0 to -580 

2.5‰). Dolomites from the Gazhacun Group yield mean δ18OMgCO3 and δ13CMgCO3 values of -581 

6.9±2.3‰ (ranging -11.3 to -5.5‰) and -6.8±2.4‰ (ranging -11.3 to -5.1‰). One lacustrine 582 

siderite from the top of the Gazhacun Group yields δ18OFeCO3 and δ13CFeCO3 values of -17.1‰ and 583 

4.2‰, respectively. The mean δ18Oc and δ13Ccc values of calcite in the Rigongla Formation (31.4-584 

15.1 Ma (Zhu et al., 2006)) are -16.4±4.0‰ (ranging -20.4 to -11.9‰) and -3.9±1.4‰ (ranging -585 



6.2 to -2.6‰). Calcites from the Nianbo Formation (63.8 to 50.2 Ma; Wang et al., 2014) yield 586 

slightly lower δ18Oc of -24.9 to -18.6±0.1‰. The mean δ13Ccc value of the Nianbo Formation is -587 

3.0±1.4‰, which agrees within error with the carbon isotope values of the Nianbo Formation in 588 

the Penbo basin. 589 

Eight of the pedogenic, groundwater, and lacustrine calcites yield Δ47,CDES measurements 590 

ranging from 0.625 to 0.755 (Table 3). These values correlate to temperatures that range from 591 

~30°C to 1°C (Fig. 5B), which are in the realm of plausible low-latitude, high-elevation surface 592 

temperatures (Lawrimore et al., 2011). 593 

A vein calcite (543Av) from the Lower Gazhacun Formation yields a low Δ47 value of 594 

0.467±0.014 and corresponding higher temperature of 83.3±6.0 °C (±s.e.m., n=2). This vein was 595 

sub-sampled from pedogenic calcite 543A, which yielded a Δ47 value of 0.625±0.010 and paleo-596 

temperature of 30.1±2.6°C (±s.e.m., n=4). Even if this pedogenic calcite precipitated at the 597 

warmest part of the day during the warmest month of the year, 30°C is likely warm for >4 km 598 

elevation. There are at least two plausible scenarios that would result in a soil carbonate T(∆47) 599 

greater than mean air temperature: 600 

(1) Pedogenic T(∆47), on average, exceeds mean summer air temperature by 3-5°C (Hough et 601 

al., 2014), and mean annual air temperature by 10-15°C due to summertime bias in soil carbonate 602 

formation (Quade et al., 2013) and increased solar heating of the soil surface (Passey et al., 603 

2010). Applying the latter offset, the air temperature above the location of soil carbonate 604 

formation would be 15-20°C. While seasonality may have the dominant effect on soil carbonate 605 

∆47 (Passey et al., 2010; Suarez et al., 2011; Peters et al., 2013; Quade et al., 2013; Hough et al., 606 

2014), ∆47 also varies with soil depth and duration of shade cover (Quade et al., 2013), soil 607 

moisture as it relates to the timing of carbonate formation (Burgener et al., 2016), and local soil 608 



hydrology (Ringham et al., 2016). This is to say, at the same elevation and atmospheric 609 

temperature, but under variable environmental conditions, two pedogenic calcites could record 610 

significantly different ∆47 values. For example, the two pedogenic calcites most proximal to 611 

543A, within the Gazhacun Formation and 40m below in the Rigongla Formation, yield T(∆47) 612 

values of 7.6±3.3°C and 9.8±4.3°C, respectively. Therefore, it is reasonable to believe that the 613 

air temperature above soil carbonate 543A was much cooler than 30°C.  614 

(2) The bulk rock could have experienced low-grade alteration and partial recrystallization 615 

under higher temperature associated with the calcite vein (543Av). Even so, there are significant 616 

differences between δ18Oc and Δ47 of 543A and 543Av, suggesting that the alteration was not 617 

pervasive enough to cause extensive bond reordering or bulk isotopic resetting of the whole rock. 618 

Marl calcite W0628-2 of the Nianbo Formation is also interpreted as diagenetically 619 

altered based on a Δ47 value of 0.572±0.027 (±s.e.m., n=3) and corresponding paleo-temperature 620 

of 45.7±8.3 °C. However, the other two samples from the Nianbo Formation yield paleo- 621 

temperatures of 0.7±2.3 °C (n=6) and 5.3±8.2 °C (n=3)  (Table 3; Fig. 5B). Further, W0628-2 622 

and W0628-3 are identical in ẟ18Ow within uncertainty regardless of the high apparent T(Δ47) 623 

retained by W0628-2. This suggests that the isotopic composition of the Nianbo Formation in the 624 

Oiyug Basin also reflects a rock-buffered system. As such, samples collected from this section 625 

likely maintain oxygen isotopic fidelity even under higher diagenetic temperatures. 626 

 627 

Multi-proxy assessment of diagenesis and maximum carbonate temperatures 628 

At sufficiently high temperature, solid-state bond reordering can occur in the carbonate 629 

lattice without the aid of water. Carbonate that experiences temperatures >100°C for 106-108 630 

years is subject to reordering of 13C-18O bonds to a more stochastic distribution, or a lower Δ47 631 



(Henkes et al., 2014). A high degree of 13C-18O clumping preserved in the carbonate lattice is 632 

thought to be diagnostic of primary carbonate because no known mechanisms are currently 633 

described to alter a carbonate to a higher Δ47 value. However, recent measurements of latest 634 

Paleocene marine carbonates (Jialazi Fm) buried to at least 150-180°C (Orme, 2015) strongly 635 

suggest that 13C-18O bonds in the carbonate lattice can increase in relative abundance (increasing 636 

Δ47) during burial-exhumation-related alteration (Ingalls, 2017). The mechanism by which bond 637 

ordering can increase during alteration has yet to be adequately modeled and attributed to a 638 

geological process during burial and exhumation. Therefore, it is exceedingly important to 639 

provide multiple assessments of alteration and isotopic resetting/reordering when interpreting 640 

clumped isotope and traditional stable isotope data, and heed caution in interpreting high ∆47 641 

measurements. 642 

The detection of diagenetic alteration and isotopic resetting requires careful 643 

characterization of carbonate mineralogy, inspection for recrystallization and alteration textures 644 

using petrography and microscopy, and sub-sampling of δ18Oc of clasts, veins and matrix 645 

material (DeCelles et al., 2007; Saylor et al., 2009) to detect possible diagenesis and isotopic 646 

resetting. Unfortunately, micron-scale recrystallization in the matrix and on mineral edges may 647 

go unnoticed using only these techniques (Garzione et al., 2004; Leier et al., 2009). We therefore 648 

complement petrographic observations with further geochemical analyses to constrain thermal 649 

history and therefore the potential for solid-state alteration. 650 

The Oiyug and Penbo basins are structurally complex, with major thrust faults (i.e. Gulu, 651 

Puxiabaga, and Lega thrusts; He et al., 2007) that place Mesozoic strata structurally above our 652 

Paleocene-Eocene sections. Here, we carefully consider the thermal conditions experienced by 653 

Linzizong carbonates in order to assess the significance of our stable isotope paleoaltimetry and 654 



carbonate clumped-isotope results in the Oiyug and Penbo basins. Constraints on the timing of 655 

Gulu thrust activation and consequent burial of the Paleocene-Eocene Linzizong strata in the 656 

Penbo basin are limited to K-feldspar 40Ar/39Ar (He et al., 2007) and apatite (U-Th)/He 657 

thermochronometry (AHe) of the Qianggeren granite ~3 km north of Penbo basin (Fig. 1). These 658 

data suggest activation of the Gulu thrust occurred after the youngest Pana Formation 659 

sedimentation (~47 Ma), and prior to the exhumation of the Qianggeren granite to ~70°C (<3 km 660 

depth) ~12-15 Ma (AHe). The AHe ages closely match others to the east (Tremblay et al., 2015) 661 

and in the greater Lhasa region (Rohrmann et al., 2012), which are thought to reflect a period of 662 

regional exhumation of the southeastern Lhasa terrane. It is likely that the Paleocene-Eocene 663 

Linzizong strata exhumed to <3 km depth (cooler than threshold temperature for solid-state 664 

reordering) as well during this regional exhumation event. Regional exhumation at ~12-15 Ma 665 

places a critical bound on Linzizong burial duration.  666 

 It is possible that the AHe ages presented here represent rock uplift associated with 667 

thrust exhumation, but multi-diffusion domain modeling of K-feldspar from the Qianggeren 668 

granite yields a thermal history indicating rapid cooling from ~325°C to <150°C between ~42 669 

and 39 Ma (He et al., 2007). We suggest that the rapid exhumation of the Qianggeren granite in 670 

the hanging wall of the Gulu thrust records the initiation of thrusting, and thus places a 671 

maximum bound on the timing of burial of the Linzizong strata.  672 

To determine the maximum burial temperature experienced by the Linzizong sediments, 673 

we must consider contributions to the thickness of rock overburden. The absence of strata 674 

younger than the Pana Fm in the Penbo basin and the absence of the Pana Fm at the Nianbo-675 

Rigongla unconformity in the Oiyug basin could both be tied to regional upper crustal shortening 676 

(Rohrmann et al., 2012) and possibly Gulu thrust activation. It is possible that the Oligocene to 677 



Miocene strata overlying the Linzizong Group never existed in the Penbo basin. If so, the 678 

Paleocene-Eocene Linzizong strata would have experienced thrust burial with a total overburden 679 

thickness equal to the structural thickness of the already deformed Jurassic-Triassic units. The 680 

Jurassic-Triassic units have an outcrop width of about 3 km north of Penbo basin. The hanging 681 

wall of the next north structural panel contains the Qianggeren pluton intrusive into Linzizong 682 

strata that unconformably overlie mapped Carboniferous units (NGAC map “H45C002003,” 683 

2002). Interestingly, a Paleocene-Eocene E1 granitoid intrudes across the Gulu thrust about 22.5 684 

km farther east (29.9634°N, 91.4221°E; NGAC map “H46C003001,” 2012), implying most 685 

Gulu-associated deformation might be related to widespread pre-Linzizong deformation of the 686 

Shexing and older units below the Maqu unconformity. Reactivation of at least a segment of the 687 

Gulu Thrust post-Pana is clear, but may not be associated with significant overthrusting of the 688 

Penbo Basin. The multiple episodes of shortening, both pre-Linzizong and post preclude detailed 689 

structural reconstruction of the tectonic burial history of this region.   690 

Organic geochemical proxies, however, support a cooler thermal history for the 691 

Linzizong strata. Vitrinite reflectance from a Nianbo Formation shale (645A) in the Penbo basin 692 

suggests these strata reached temperatures in excess of 110°C. Preliminary methylphenanthrenes 693 

(biomarkers) derived from this shale yield equivalent vitrinite reflectance values of 1.4±0.4%, 694 

suggesting that these strata reached temperatures in excess of 135°C at some point in their burial 695 

history, but not significantly greater based on the lack of typical petroleum biomarkers (i.e. 696 

sterane and hopane) and long-chain n-alkanes indicative of deep burial.  Assuming a very 697 

conservative 25°C/km geothermal gradient for this arc-region these temperatures suggest no 698 

more than 6 km of total post-Nianbo burial by Pana and structurally emplaced overburden.  699 



Using the kinetic parameters of Henkes et al. (2014), we can model the amount of solid-700 

state reordering of C-O bonds within the calcite lattice that would occur under hypothetical time-701 

temperature histories. Burial of the Nianbo strata by Pana plus thrust emplacement of Mesozoic 702 

rocks could contribute up to 6km of overburden. Given the loose constraints on thrust activation 703 

and duration of burial, we model the Paleocene-Eocene strata burial to <150°C (~6 km burial 704 

upon Gulu thrust activation) at ~42 to 39 Ma based on K-feldspar multi-diffusion domain 705 

modeling (He et al., 2007), followed by rapid regional exhumation to below 70°C at ~12 Ma 706 

(AHe, this study). Although rapid exhumation is not required by the AHe data, this scenario 707 

represents the longest possible burial duration consistent with the thermochronometric 708 

constraints. Under this scenario, we expect a ∆47 value of ~0.590, or T(∆47) of 65°C. None of the 709 

carbonates from the Penbo basin yield ∆47 values as low as this scenario, or temperatures as high.  710 

Thus, the T(∆47) measurements of Nianbo Formation within the Penbo basin do not 711 

appear to reflect solid-state reordering and are interpreted to record primary isotopic 712 

compositions or early recrystallization temperatures during water-rock alteration at shallow 713 

depths. There could be minimal reordering at the lower bound temperatures from the organic 714 

thermal maturation estimates, perhaps boosting T(∆47) estimates on the order of 10°C (Stolper 715 

and Eiler, 2015).  If primary temperatures were cooler than those we estimate directly, then this 716 

would result in higher paleoaltimetry estimates.  We do not make any correction for this potential 717 

slight reordering, thus our altimetric estimates remain conservative.  More importantly, the C-O 718 

bonds of Nianbo Fm carbonate yielding “low” T(∆47) measurements appear to be robust to 719 

elevated burial temperature no matter the precise time-temperature history of the Gulu thrust, and 720 

are interpreted to record primary mineral formation temperatures from the Paleocene to Eocene.  721 



These samples provide apparent evidence for the survival of primary clumped isotope values 722 

even in the face of substantial burial and heating. 723 

 724 

Testing the predictive capability of petrographic observations in assessing carbonate 725 

diagenesis 726 

A subset of nodular, groundwater, lacustrine marl, pedogenic, and vein calcite samples 727 

from Penbo and Oiyug were selected for Δ47 analyses based on sedimentary and petrographic 728 

textures seen in thin section (Tables 5 and 6) in order to (1) sufficiently sample primary isotopic 729 

compositions to derive paleo-temperatures of each time slice throughout the Cenozoic, and (2) 730 

provide a comparison between microscopic assessment of primary carbonate textures and direct 731 

measurements of T(Δ47). This enabled a check on our ability to correctly assess diagenetic 732 

alteration in thin section. Based on visual observations in petrographic section, each sample was 733 

binned as “primary” (lacking evidence of recrystallization), “minor alteration” (heterogeneous, 734 

macroscopic and could be potentially avoided by careful sample drilling), or “diagenetic” 735 

(extensive recrystallization present). 736 

Temperatures derived from clumped isotope measurements generally corresponded with 737 

the petrographic interpretations for six of the seven Oiyug basin samples. One sample, W0628-3 738 

from the Nianbo Formation, was predicted to be diagenetic and yield a high T(Δ47) (low Δ47) 739 

because of extensive cross-cutting of secondary calcite veins. Contrary to this assessment, 740 

triplicate measurements of micrite from this sample yielded a T(Δ47) of 5.3±8.2°C (s.e.m.). This 741 

combination of petrographic observation and isotopic measurement suggests two possible 742 

interactions: (1) alteration occurred very early in the rock’s history while the rock was at high 743 

elevation prior to burial, so the altered carbonate still yields a cool signal, or (2) most of the 744 



sample mass is unaltered micrite. In the second scenario, even if the calcitic veins experienced 745 

warm temperatures, they do not significantly shift the bulk Δ47 values. Thermochronometric data, 746 

petrography, and the Δ47-derived temperatures (T(Δ47)) are in agreement that sediments and 747 

paleosols from the Oiyug and Penbo basins have not reached high enough burial temperatures 748 

that would likely alter the original Δ47 composition of carbonates via solid-state alteration.  749 

Therefore, we consider our low T(Δ47) carbonates from both sedimentary basins to represent 750 

primary depositional conditions throughout the Cenozoic. 751 

 752 

Paleocene to Pliocene stable isotope paleoaltimetry of the Lhasa Terrane 753 

Penbo Basin 754 

All clumped isotope samples from the Penbo Basin are derived from the Nianbo 755 

Formation. As such, we use the average of the three Δ47-derived “primary” paleo-temperatures 756 

(8.9 ± 5.0 °C) coupled with measured δ18Oc to calculate the isotopic composition of the water 757 

with which calcite equilibrated (Kim and O’Neil, 1997).  Paleo-water δ18Ow values of the Nianbo 758 

Formation (ranging -11.8‰ to -22.6‰ VSMOW) are used to estimate elevation (Δ(δ18Op)). We 759 

report both individual elevation estimates and the mean elevation of each dominant lithology 760 

within a geologic formation (Table 1; Fig. 6).  761 

The best estimate of the paleo-elevation of the Nianbo Formation preserved in the Penbo 762 

basin is 4.4 +1.3/-1.7 km, comparable to modern elevation of this basin (Table 1; Fig. 6). We view 763 

this estimate to be conservative because we employ the modern isotopic lapse rate, which is 764 

likely significantly steeper than the true lapse rate in the Early Eocene (Rowley, 2007; Rowley 765 

and Garzione, 2007). Further, the Siwalik value for low-latitude (~19.6±3.9°N) (Quade et al., 766 

1989), low elevation precipitation likely has lower G18O than actual precipitation in the source 767 



region for moisture advecting to higher altitudes during the considerably warmer Early Eocene. 768 

The use of an isotopically more negative low elevation precipitation source contributes to 769 

making our paleo-elevation calculations conservative, i.e., underestimates the true elevation.  770 

We apply the mean T(Δ47) derived from the underlying Nianbo Formation to calculate 771 

δ18Ow of the overlying upper Pana Formation sediments. This succession yields paleo-surface 772 

water isotopic compositions of -16.9‰ to -13.4‰VSMOW. These paleo-precipitation values 773 

correspond with an estimated paleo-elevation of the Pana Formation of 4.1 +1.2/-1.6 km, identical 774 

to the underlying Nianbo Formation within error.   775 

 776 

Oiyug Basin 777 

The Nianbo, Rigongla, and Lower Gazhacun Formations are dominated by a common 778 

lithology (pedogenic calcite), which allows for a straightforward characterization of the 779 

Paleocene to Miocene elevation history (Table 2). For samples with clumped isotope 780 

measurements, the sample-specific T(Δ47) was applied to calculate carbonate-water isotopic 781 

fractionation. An average T(Δ47) for each geologic formation was applied for samples on which 782 

only δ18Oc was measured. Employing T(Δ47) values of 3.0±8.2°C for the Nianbo Formation, 783 

9.8±4.3°C for the Rigongla Formation, and 18.9±8.2°C for the Lower Gazhacun member, we 784 

calculate Δ(δ18Op) of -18.5±3.1‰, -10.7±3.5‰, and -13.8±1.9‰ VSMOW (1σ), respectively. 785 

Taking the average (±2V model and analytical error) of all carbonates within, these formations 786 

yield mean elevation estimates of 5.6+1.5/-2.1 km, 4.1+1.3/-1.6 km, and 4.5+1.5/-1.7 km, respectively. 787 

The elevation estimate for the Paleocene-Eocene Nianbo Fm suggests that the Oiyug region was 788 

0.5-1.5 km higher at the onset of India-Asia collision than it is today. 789 



Early and Middle Miocene Gazhacun carbonate oxygen compositions span a broad range 790 

-5.5 to -21.1‰VPDB.  All marl and lacustrine calcite, mudstones, and dolomite deposited in the 791 

middle member of the Gazhacun Group are 18O-enriched relative to other units. The higher δ18Oc 792 

values in the middle Gazhacun member are interpreted as the result of evaporative enrichment 793 

because pedogenic calcites from stratigraphically proximal horizons yield low T(Δ47) values of 794 

3.9 to 19.7°C with low δ18O values.  795 

Evaporative enrichment is not clearly evident in lacustrine calcite and siderite in the older 796 

Nianbo Formation or the younger Oiyug Formation. The mean elevation derived from the two 797 

calcite clumped isotope samples in the Oiyug Formation is 6.5 +1.8/-2.3 km using an average 798 

Δδ18Op of -24.2±1.5‰ (Table 2). As a comparison, the elevation estimate of siderite nodule 799 

618A from the upper Gazhacun is 4.4+1.3/-1.8 km (Δ(δ18Op) of -11.7‰). We accept the elevations 800 

provided by the calcites in the Gazhacun and Oiyug Fms because of the preservation of primary 801 

Δ47 values (Fig. 5B) and the evaporative trend demonstrated by plotting δ18O of the two siderite 802 

samples relative to δDleaf wax and δ18Ocalcite from the same sedimentary horizon (see discussion 803 

and Fig. A2). 804 

 805 

Comparing Isotopic and Temperature Lapse Rates 806 

There can be a correlation between degree of depletion of oxygen in meteoric water and 807 

formation temperature as both are controlled by atmospheric lapse rates. Estimates of tropical sea 808 

surface temperature for times bracketing the age of the Nianbo Formation imply T>30°C 809 

(Pearson et al., 2001) and thus a temperature gradient from sea level to the Penbo Basin of ≳ 810 

20±5°C. Using a typical 6°C/km atmospheric lapse rate implies elevations in excess of 3 km. 811 

Ground surface temperatures are typically warmer than the atmosphere at the same height, and 812 



pedogenic and lake carbonates appear to record this with a summer seasonal bias (Huntington et 813 

al., 2010). Thus our paleo-temperatures are also consistent with an elevation of ~4 km.   814 

 815 

HIGH ELEVATION SOUTHERN MARGIN OF EURASIA 816 

Using T(Δ47) and δ18O of pedogenic and lacustrine carbonates from the Paleocene-817 

Eocene Nianbo Formation, we are able to advance the elevation record of the southern Lhasa 818 

block an additional ~20 My compared with the oldest prior records (Currie et al., 2016). Our 819 

oldest paleo-elevations support a pre-existing ‘high’ topography on the southern margin of 820 

Eurasia prior to the onset of India-Asia collision (Ding et al., 2014), with elevations potentially 821 

~1 km higher than today in some areas. However, the sediments of the Nianbo Formation could 822 

have been deposited at an even higher altitude. The Paleocene-Eocene elevation estimate 823 

presented here is conservative because the isotopic lapse rate model is constructed using global 824 

mean T and RH data for the modern low-latitude ocean surface. The warmer temperatures of the 825 

Eocene would shift the Δ(δ18O)-elevation relationship to higher elevation changes for a given 826 

offset in precipitation isotopic compositions. We accept the modern calibration as a conservative 827 

representation of past environmental conditions because we are data-limited in our knowledge of 828 

the frequency distribution of low-latitude ocean surface T and RH in the Paleocene-Eocene. 829 

The Paleocene-Eocene Nianbo Fm sits unconformably below the Rigongla in the Oiyug 830 

Basin, so the elevation history between the two units is unconstrained. However, the similarity of 831 

estimated T(Δ47) and δ18O of the Nianbo and Rigongla imply little variability during this interval. 832 

The Rigongla and lower Gazhacun Fms yield elevation estimates close to the modern mean 833 

elevation of the Oiyug Basin. 834 



A face value assessment of model elevations from the middle and upper Gazhacun 835 

Formations, when interpreted based on Δ(δ18Op) alone, would suggest that the southern Lhasa 836 

block experienced an interval of topographic deflation to 2.5 km in the early-mid Miocene. 837 

However, it is unlikely that the hypsometric mean elevation of the Oiyug Basin experienced 838 

subsidence from 4.5 km to 2.5 km in the Miocene, followed by an uplift to >6 km in the 839 

Pliocene, and subsidence to ~4.6 km by present day. It is more likely that the enriched oxygen 840 

values of the Gazhacun Formation are an evaporative overprint of the original precipitation 841 

signal. 842 

However, the potential low in Miocene elevation temporally corresponds with the 843 

formation of the Kailas Basin (26 to 18 Ma; DeCelles et al., 2011) and Liuqu conglomerate (~21-844 

17 Ma; Leary et al., 2017), both interpreted to have formed during an elevation low within the 845 

suture zone.  The Kailas Formation, named after its type locality at Mt. Kailas, extends ~1400 846 

km along strike and is <1 to 4 km thick where exposed. The Kailas basin is interpreted as a 847 

continental rift basin resulting from <5 to 10 km horizontal extension, attributed to rollback of 848 

the subducting Indian slab beneath Tibet (DeCelles et al., 2011).  The shearing and subsequent 849 

breakoff of the Indian slab would have caused a southward and downward pull on the overlying 850 

Indian continent, resulting in enough extension to drive the subsidence necessary to form the 851 

Kailas basin in southern Tibet (DeCelles et al., 2011). G13C values from carbonate nodules within 852 

the Liuqu conglomerate are used in a paleo-environmental assessment suggesting that the IYS 853 

was wet and well-vegetated during deposition (Leary et al., 2017). These conditions are 854 

suggestive of low elevation.  855 

Additionally, Ding et al. (2017) present paleoenthalpy-based paleoaltimetry that agrees 856 

with a low elevation IYS during Liuqu deposition, although they date the deposition of Liuqu 857 



floras to the latest Paleocene (~56 Ma). Ding et al. (2017) also present paleoflora-based 858 

paleoaltimetry results from the Qiuwu Formation in Qiabulin (~26-19 Ma), which more closely 859 

correlates with the elevation estimates of Leary et al. (2017). Based on the Qiuwu Formation 860 

paleoenthalpy estimates, the IYS was already well above sea level (~2.3±0.9 km) by this interval 861 

of the Miocene. Due to the temporal overlap of the extension associated with the formation of 862 

the Kailas basin and Liuqu conglomerate, assuming Miocene deposition, and the deposition of 863 

the 18O-enriched sediments of the middle Gazhacun member in the Oiyug Basin, it is 864 

conceivable but unlikely that the marl calcites and dolomites in this study preserve a primary 865 

isotopic signature representative of mid-Miocene precipitation at low elevation. 866 

Further work to the west along the southern Lhasa Block could determine whether the 867 

apparent lower elevations are actually a local evaporative overprint as interpreted here or are 868 

seen in the coeval carbonate record in the southern Lhasa block, and whether there is evidence 869 

elsewhere of ~6 km elevations at this time in the Miocene. 870 

 871 

Past models of the regional tectonic history of the Lhasa Block 872 

The tectonic development of Earth’s quintessential active continent-continent collision 873 

zone has been extensively studied for the past three decades, with particular attention paid to the 874 

development and persistence of extreme high elevations. However, the majority of previous 875 

work on the uplift history invoke models of en masse (England and Houseman, 1986; Harrison et 876 

al., 1992; Molnar et al., 1993; Harrison et al., 1995) or local (Wang et al., 2006) plateau uplift in 877 

the Neogene. The paleoaltimetry work presented in this paper provides geochemical evidence 878 

that counters models involving late Cenozoic uplift. 879 

 880 



Late Cretaceous to Early Cenozoic 881 

 Contrary to earlier models of Neogene uplift, (Kapp et al., 2007) presented tectonic 882 

evidence that the Lhasa Block must have undergone extensive crustal thickening by the early 883 

Paleogene, if not in the Cretaceous. Kapp et al. (2007) used kinematic models to demonstrate 884 

that a pre-collisional northward-vergent retroarc thrust belt could have accommodated >250 km 885 

of N-S shortening. They attribute an additional >160 km of shortening to the emplacement of the 886 

Lhasa-Damxung thrust sheet, which is associated with a magmatic flare-up ~69 Ma due to 887 

removal of thickened mantle lithosphere.  Kapp et al. (2007) coin their tectonic evolution model 888 

for the Lhasa terrane the “Lhasaplano”—a Cretaceous-early Tertiary Cordilleran-style 889 

(contractional) orogen associated with the Gangdese magmatic arc. Our >4 km Paleocene-890 

Eocene elevation reconstruction largely agrees with the Lhasaplano model. 891 

Late Cenozoic 892 

Harrison et al. (1992) and Molnar et al. (1993) assert that the southern Tibetan Plateau 893 

reached its maximum elevation by 8±1 Ma. Harrison et al. (1992, 1995) suggest that the 894 

initiation of slip on the Nyainqentanghla detachment fault is result of the Tibetan Plateau 895 

attaining its maximum potential crustal thickness for the lithospheric temperature distribution 896 

and convergence rate. They reason that slip on the NE-SW striking Yangbajian graben northwest 897 

of Lhasa and other N-S striking rifts are indicative of extensional orogenic collapse due to over-898 

thickening of the continental crust during shortening. Potassium feldspar and biotite 40Ar/39Ar 899 

thermochronological data from the uplifted footwall of the graben-defining Nyainqentanghla 900 

detachment fault are indicative of fault and shear zone initiation at 8±1 Ma. They use the 901 

numerically modeled temperature history and slip rate (3 mm/yr) to predict that the southern 902 



Tibetan Plateau reached its elevation and crustal thickness threshold at this time, and collapsed 903 

under its over-thickened crustal mass by way of graben formation. 904 

However, as has been argued previously by Currie et al. (2005, 2016), and fully 905 

consistent with the new data presented here from the Oiyug Basin, existing paleoaltimetry data 906 

from various regions of the Lhasa block, including the Nima Basin (DeCelles et al., 2007; 907 

Huntington et al., 2015), and Lunpola Basin (Polissar et al., 2009; Rowley and Currie, 2006), 908 

Himalayas (Garzione et al., 2000; Rowley and Garzione, 2007; Gébelin et al., 2013; Rowley et 909 

al., 2003), as well as eastern Tibet (Hoke et al., 2014; Li et al., 2015) are all consistent with little 910 

or no change in elevation in the past 20 or more million years and thus these data incompatible 911 

with significant late Neogene uplift compatible with the models of Harrison et al. (1992) and 912 

Molnar et al. (1993). 913 

 914 

THE IMPACT OF EVAPORATIVE ENRICHMENT OF SURFACE WATERS ON 915 

PALEOELEVATION ESTIMATES 916 

Elevations derived from two siderite samples (621F and 618A of the Oiyug Basin) are 917 

apparently offset by up to 2 km from the bulk of the data in their sampled sections. Here we 918 

present an assessment of evaporative overprinting of primary water signatures in these siderites. 919 

We interpret the siderites as evaporatively enriched, and report the mean elevation estimates of 920 

each formation focusing on preserved primary oxygen values.  921 

Evaporative re-enrichment of δ18Ow, as recorded by δ18Oc, is particularly prevalent in 922 

carbonates formed in closed lakes and some groundwater systems (Steinman et al., 2013). The 923 

covariance of oxygen and hydrogen isotopes of meteoric water usually follow the established 924 

Global Meteoric Water Line (GMWL; Friedman, 1953; Rozanski et al., 1993). However, fast 925 



evaporation causes a kinetic isotope effect that disturbs this trend with a greater effect on the 926 

oxygen isotopes (Craig, 1961). The “evaporative slope”, or trajectory off the GMWL, is 927 

determined by local relative humidity and temperature (Clark and Fritz, 1997). Polissar et al. 928 

(2009), using combined δ18O and δD of samples from the Lunpola Basin, were able to 929 

corroborate the interpretation of Rowley and Currie (2006) that variable evaporative enrichment 930 

was the primary control on the isotopic composition of their samples. Polissar et al. (2009) 931 

thereby provides independent support for the use of the more negative oxygen isotopic 932 

compositions for the purposes of paleoaltimetry. 933 

Oiyug Basin localities 618 (Upper Gazhacun Fm) and 621 (Oiyug Fm) provide both δ18O 934 

and δD (from carbonates and organics, respectively), allowing us to plot these samples relative to 935 

the long-term precipitation amount-weighted mean GMWL (δD=8.20×δ18O+11.27; Rozanski et 936 

al., 1993). We correlate δ18Ow and δDw using the GMWL in order to compare relative isotopic 937 

enrichment of different materials within the same sedimentary horizons (618 or 621; Fig. A2). 938 

Calcite-derived surface water oxygen isotope compositions from the 621 horizon are isotopically 939 

lighter than their corresponding δD values, calculated from coeval leaf waxes. Very low δ18Ow 940 

could indicate diagenesis, but because both calcites retain primary Δ47-derived temperatures, we 941 

can rule out the possibility of excessive alteration. However, the two siderites from the 618 and 942 

621 localities yield δ18Ow estimates that are ~4 to 10‰ higher than expected from δD of coeval 943 

leaf waxes. Based on the observation that the calcites from these localities appear to preserve 944 

primary δ18Ow values, we interpret the 18O-enriched siderites to be the product of groundwater 945 

evaporation. This suggests that any estimated water δ18O compositions from this section with 946 

values >-20‰ are likely evaporatively 18O-enriched. We follow this approach by stressing 947 

elevation estimates based on the more 18O-depleted compositions under the assumption that more 948 



enriched values reflect more extensive evaporative re-enrichment relative to precipitation (Clark 949 

& Fritz, 1997). 950 

 951 

CENOZOIC CLIMATE 952 

Reported T(Δ47) values (Table 3) are likely warmer than mean annual air temperature 953 

(MAAT) due to the nature of increased carbonate precipitation in the warm months in both soils 954 

and lake settings (Quade et al., 2013; Huntington et al., 2010). T(Δ47) therefore likely describes a 955 

warm month, June-July-August (JJA), temperature for lake-derived sediments and a peak 956 

summer temperature for paleosols (Quade et al., 2013). Soil carbonate formation (due to CO2 957 

outgassing during groundwater evaporation) is most prevalent in the summer due to incident 958 

sunlight warming the uppermost 25 cm of soil. Lacustrine carbonate formation occurs in warm, 959 

unmixed near-surface waters. Here, abundant sunlight supports photosynthetic carbon fixation, 960 

which in turn can drive calcite and aragonite supersaturation by increasing pH and providing 961 

carbonate nucleation sites (Stumm and Morgan, 1981). For the purpose of both isotopic and 962 

temperature lapse rates in calculating paleo-elevations, reporting warmer temperatures than 963 

MAAT assures a conservative estimate of paleo-elevation. 964 

The increased evaporative signal seen in the middle Gazhacun lake sediments could 965 

indicate a paleo-environmental change, such as shallower, potentially closed playa lakes in this 966 

region in the mid-Miocene, or a paleo-climatic change, such as warmer temperatures, decreased 967 

humidity, or changes in atmospheric circulation injecting drier air masses. The lacustrine 968 

dolomites from the Badamaqen section are stratigraphically closest to clumped isotope sample 969 

555 with a T(Δ47) value of 19.7±4.2°C (±s.e.m.). However, the lacustrine calcites, 551 and 553, 970 

are temporally bracketed by clumped isotope samples 554B and 548 with T(Δ47) values of 3.9 ± 971 



3.4°C and 7.6 ± 3.3°C, respectively. Khan et al. (2014) used the Climate Leaf Analysis 972 

Multivariate Program (CLAMP) on an ~15 Ma fossil flora from this region to estimate a WMMT 973 

of 8.8°C and cold month mean temperature (CMMT) of -6±4°C for the Oiyug Basin. Sample 555 974 

does not provide enough evidence to suggest that the mean temperature of the Oiyug Basin was 975 

significantly warmer during the mid-Miocene.  The evaporative enrichment signal, preserved as 976 

a shift to higher δ18O values in lake sediments can likely be attributed to shallow playa lake 977 

morphology. However, shifts in regional climate and atmospheric circulation should also be 978 

considered. 979 

 980 

Tectonic-Weathering-Climate Feedbacks 981 

Himalayan paleoaltimetry, or more specifically, the timing of the rise of the Himalaya, 982 

has figured prominently in attempts to connect global cooling during the Cenozoic with 983 

continental weathering rates and pCO2 (Ruddiman and Kutzbach, 1989; Raymo and Ruddiman, 984 

1992; Harrison et al., 1992; Kutzbach et al., 1989; Molnar et al., 1993).  Cenozoic cooling is 985 

documented most thoroughly in the G18O records of benthic forams (e.g., Zachos et al., 2001).  986 

The potential for a connection between global climate and weathering is forged through the 987 

central role of CO2 as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 988 

2000).  The chemical weathering of silicate and aluminosilicate rocks consumes CO2 as carbonic 989 

acid, exporting cations and carbonate alkalinity to the oceans where both are removed as 990 

carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holland, 991 

1978; Berner and Maasch, 1996): 992 

(Ca,Mg)SiO3 + CO2 Æ (Ca,Mg)CO3+ SiO2    993 



This type of chemical weathering serves as a net sink for atmospheric CO2.  Raymo et al. (1988) 994 

and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced 995 

chemical weathering rates by increasing the surface area of aluminosilicates available to weather.  996 

This surface area generation resulted from physical erosion processes that are accelerated by 997 

relief and glacial activity.  998 

Evidence for the temporal link between the rise of the Himalaya and shifts in global 999 

weathering fluxes has relied heavily on the marine Sr isotope record.  Sr has a long residence 1000 

time in the oceans and is well mixed in terms of concentration and isotopic composition.  Marine 1001 

carbonates record the 87Sr/86Sr ratio of ambient seawater.  The marine Sr isotope record is 1002 

strongly influenced by the weathering flux of Sr to the oceans, and therefore is used as a 1003 

weathering proxy (e.g., Richter et al., 1992; Edmonds, 1992).  Shifts in the marine 87Sr/86Sr 1004 

record over the Cenozoic appeared to coincide with earlier estimates for the timing of the uplift 1005 

of the Himalaya (e.g. Raymo and Ruddiman, 1992; Richter et al., 1992).  Furthermore, modern 1006 

day weathering of highly radiogenic terrains in the Himalaya provides a large flux of radiogenic 1007 

Sr to the ocean, contributing to the continuing rise in the 87Sr/86Sr ratio of sea water and 1008 

consistent with overall Neogene trends (Palmer and Edmond, 1989, 1992; Galy et al., 1999).  1009 

Large changes in the Sr isotopic composition of the oceans from the late Eocene through 1010 

present are invoked to signify the onset and importance of weathering of the Himalaya and Tibet.  1011 

By extension, this curve is often cited as an indication that significant topography first developed 1012 

during the India-Eurasia collision at roughly 38 Ma (e.g. Raymo and Ruddiman, 1992; Misra and 1013 

Froelich, 2012). Misra and Froelich (2012) and others argue that other proxies for chemical 1014 

weathering rates and intensity of weathering, such as lithium isotopes, fit within this paradigm of 1015 

the onset of Tibetan weathering in the late Eocene. 1016 



Our results provide strong evidence for high topography at the Tibetan margin dating to 1017 

at least 56 Ma.  This is well before the marine 87Sr/86Sr record begins its nearly monotonic climb 1018 

towards more radiogenic values.  Paleoaltitudes in the Linzizong arc had reached modern 1019 

Tibetan elevations prior to the Paleocene – Eocene Thermal Maximum and overlapped with 1020 

Early Eocene equable climate states for the Earth (Fig. 8).  These high elevations were achieved 1021 

at low latitudes (arc position roughly 19 ± 4° N; van Hinsbergen et al., 2012) in warm and wet 1022 

conditions favorable for intensive chemical weathering.  All told, our paleoaltimetric findings 1023 

suggest that enhanced chemical weathering of the high Linzizong arc was insufficient to provide 1024 

significant climatic forcing, at least during the early and middle Eocene. 1025 

This does not rule out the possibility for enhanced weathering related to high topography 1026 

along the southern Tibetan margin.  The Linzizong arc was a source of highly reactive volcanic 1027 

glasses and lithologies, i.e., andesite, dacite, and rhyolite with some trachy-andesite and basaltic 1028 

trachy-andesite (Mo et al., 2008).  Weathering of the Linzizong arc would have delivered rather 1029 

nonradiogenic Sr to the oceans.  The 87Sr/86Sr of relict volcanic arc dating to that interval is 1030 

generally between 0.7045 and 0.7075 (Mo et al., 2008).  If the Linzizong Arc became globally 1031 

significant in terms of supplying weathered Sr to the oceans, the resultant Sr flux would not have 1032 

shifted marine 87Sr/86Sr appreciably from its value of 0.7078 in the early Eocene.   1033 

Even if there were enhanced chemical weathering associated with the early development 1034 

of high elevation in the Linzizong, the overall carbon cycle dynamics associated with tectonism 1035 

are complicated.  Uplift and arc volcanism can be associated with enhanced outgassing of 1036 

metamorphic and volcanic CO2 (e.g., Kerrick and Caldeira, 1993), which could counteract or 1037 

even reverse the carbon balance in such a setting.  If organic-rich marine sediments were also 1038 

exposed, then oxidative weathering of the organics would have served as an additional CO2 1039 



source to the atmosphere (e.g., Beck et al., 1995).  On the other hand, carbon sinks linked to 1040 

tectonism include the potential for enhanced organic carbon burial efficiency through rapid 1041 

burial rates in submarine fans and the high flux of fine grained sediments to the oceans with 1042 

subsequent mineral surface area control on organic matter burial (e.g., Hedges and Keil, 1995; 1043 

France-Lanord and Derry, 1997; Galy et al., 2007).  Organic carbon burial rates could also be 1044 

influenced by changes in nutrient fluxes to the ocean as the rates and relative importance of 1045 

different weathering domains and marine depositional environments change (Compton and 1046 

Mallinson, 1996; Colman and Holland, 2000).  Finally, the overall carbon mass balance for the 1047 

atmosphere-ocean system likewise links to carbon release from mid-ocean ridge (MOR) 1048 

spreading centers, and thus to global tectonism, which may or may not be coupled to regional 1049 

processes (Richter et al., 1992).   1050 

 Our results provide strong evidence that the marine Sr isotope record is not a sensitive 1051 

indicator for the early rise of the Tibetan margin nor for the impact that the development of this 1052 

topography had on global chemical weathering rates.  The fact that this topography developed 1053 

during a time of globally warm climates suggests that any enhancement in chemical weathering 1054 

rates, which would have tended to lower atmospheric CO2, was offset by other features and 1055 

feedbacks in the global carbon cycle.  1056 

 1057 

CONCLUSIONS 1058 

        We reconstruct an elevation history from the Tibetan Plateau spanning nearly the entire 1059 

Cenozoic, the onset of India-Asia collision to the present. This study provides multiple lines of 1060 

geochemical evidence that the southern margin of the Lhasa Block was at modern elevation or 1061 

higher (4 to >5km) around the onset of collision at about 55 Ma. In particular, carbonate clumped 1062 



isotopes provide a new dimension to previous paleo-elevation reconstructions of the southern 1063 

Lhasa terrane. Additionally, the Paleocene-Eocene carbonates of the Penbo basin provide 1064 

apparent evidence that clumped isotope values can survive substantial burial and heating. This 1065 

result underscores the importance of detail and persistence in using isotopic proxies in studies of 1066 

past climate and tectonics. 1067 

We find that both temperature lapse rates, informed by our clumped isotope 1068 

measurements, and traditional stable isotopic lapse rates of paleo-precipitation, informed by 1069 

oxygen isotopic compositions of lacustrine and pedogenic carbonates, agree that the sediments 1070 

associated with the Linzizong volcanic arc are in reasonable accord with the “Lhasaplano” model 1071 

of tectonic evolution. Further work on the central and northern plateau is necessary in order to 1072 

differentiate between a pre-existing Andean-type volcanic arc or more extensive high terrain 1073 

such as a proto-plateau in the early Cenozoic. Additionally, our data indicate high topography at 1074 

low latitude dating to before the Eocene Climatic Optimum, suggesting a more complicated 1075 

linkage between the Himalayan orogeny, proxies for chemical weathering, and the linkage 1076 

between tectonics, weathering, and climate. 1077 

 1078 

APPENDIX 1079 

Figure A1. Inverse isochron plot of potassium feldspar 40Ar/39Ar age. 1080 

Figure A2. Effects of evaporation on siderites (dark red square), calcites (dark red circles) 1081 

and leaf wax (blue-green diamonds) from the same sedimentary horizon. Inferred paleo-lake 1082 

and soil water hydrogen and oxygen isotope compositions are plotted for sedimentary horizons 1083 

621 (Oiyug Fm) and 618 (Gazhacun Gp). The G18Ow values are calculated from G18Oc 1084 

measurements on carbonate minerals, and GDw values are calculated from leaf waxes, as 1085 



described in the main text.  The δDw and δ18Ow axes are aligned using the Rozanski et al (1993) 1086 

Global Meteoric Water Line equation (δD=8.20×δ18O+11.27).  This alignment means that if the 1087 

paleo-water isotopic composition lay on the modern Global Meteoric Water line, the 1088 

corresponding carbonate and leaf wax samples would yield inferred G18Ow and δDw values in the 1089 

same vertical position.  Lacustrine siderite 621F has experienced much greater evaporative 1090 

enrichment than pedogenic calcites 621H and 621I from the same strata. This could be indicative 1091 

of a period of greater aridity or deposition in a closed playa lake rather than an open system, or a 1092 

change in atmospheric circulation over the Lhasa Block in the late Cenozoic. The difference 1093 

between the isotopic compositions of leaf waxes and siderite in the Miocene Gazhacun 1094 

Formation is negligible within uncertainty. 1095 

Table A1. Summary of Δ47 measurements on standard calcite materials run during the same 1096 

analytical periods as the samples reported in this paper (2014-2016). 1097 

Table A2. Isotopic measurements (δ13C, δ18O, Δ47,SG-WG, δ47, Δ48) of all standard calcite 1098 

materials run during the same analytical periods as the samples reported in this paper (2014-1099 

2016). 1100 

 1101 

ACKNOWLEDGMENTS 1102 

We thank R. Plotnick and K. Ritterbush for assistance with petrographic analyses, B. He for 1103 

assistance with clumped isotope measurements, and D. Schrag and S. Bernasconi for providing 1104 

carbonate isotopic standards. M.I. would like to thank Madison Ball and Xu Qiang for assistance 1105 

in the field. The science and structure of this work were greatly improved by thoughtful reviews 1106 

by D. Orme and J. Quade, and comments from Editor B. Singer. This work is supported by 1107 

National Science Foundation EAR#0609756 awarded to B.C and #1111274 to D.B.R. and D.S., 1108 



and Geological Society of America Graduate Student Research Grant to M.I. Geochemical 1109 

analyses were enabled by NSF EAR#0923831 awarded to A.S.C. and D.B.R. 1110 

 1111 

REFERENCES CITED 1112 

Barker, C.E., 1988, Geothermics of petroleum systems: Implications of the stabilization of 1113 
kerogen thermal maturation after a geologically brief heating duration at peak temperature: 1114 
Petroleum systems of the United States: US Geological Survey Bulletin, v. 1870, p. 26–29. 1115 

Beck, R.A., Burbank, D.W., Sercombe, W.J., Riley, G.W., Barndt, J.K., Berry, J.R., Afzal, J., 1116 
Khan, A.M., Jurgen, H., Metje, J., Cheema, A., Shafique, N.A., Lawrence, R.D., and Khan, 1117 
M.A., 1995, Stratigraphic evidence for an early collision between northwest India and Asia: 1118 
Nature, v. 373, p. 55–58, doi: 10.1038/373055a0. 1119 

Berner, R., and Maasch, K., 1996, Chemical weathering and controls on atmospheric O2 and 1120 
CO2: Fundamental principles were enunciated by J.J. Ebelman in 1845: Geochimica et 1121 
Cosmochimica Acta, v. 60, p. 1633–1637. 1122 

Burg, J.-P., Proust, F., Tapponnier, P., and Chen, G.M., 1983, Deformation phases and tectonic 1123 
evolution of the Lhasa block (southern Tibet, China): Eclogae Geologicae Helvetiae, v. 76, 1124 
p. 643–665. 1125 

Burgener, L., Huntington, K.W., Hoke, G.D., Schauer, A., Ringham, M.C., Latorre, C., and 1126 
Díaz, F.P., 2016, Variations in soil carbonate formation and seasonal bias over &gt;4 km of 1127 
relief in the western Andes (30°S) revealed by clumped isotope thermometry: Earth and 1128 
Planetary Science Letters, v. 441, p. 188–199, doi: 1129 
http://dx.doi.org/10.1016/j.epsl.2016.02.033. 1130 

Chen, H., Han, J., Ding, Z., Sun, H., and Guo, Z., 2008, Chronological dating and tectonic 1131 
implications of late Cenozoic volcanic rocks and lacustrine sequence in Oiyug Basin of 1132 
southern Tibet: Science in China Series D, v. 51, p. 275–283. 1133 

Clark, I., and Fritz, P., 1997, Environmental Isotopes in Hydrogeology: Boca Raton, Lewis 1134 
Publishers. 1135 

Colman, A.S., and Holland, H., 2000, The global diagenetic flux of phosphorus from marine 1136 
sediments to oceans: Redox sensitivity and the control of atmospheric oxygen levels: 1137 

Compton, J., and Mallinson, D., 1996, Geochemical consequences of increased Late Cenozoic 1138 
weathering rates and the global CO2 balance since 100 Ma: Paleoceanography, v. 11, p. 1139 
431–446. 1140 

Coplen, T., Brand, W., Gehre, M., Groning, M., Meijer, H., Toman, B., and Verkouteren, R., 1141 
2006, New guidelines for d13C measurements: Analytical Chemistry, v. 78, p. 3439–2441. 1142 

Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, p. 1702–1703. 1143 
Currie, B.S., Polissar, P.J., Rowley, D.B., Ingalls, M., Li, S., and Freeman, K.H., 2016, 1144 

Multiproxy paleoaltimetry of the late Oligocene-Pliocene Oiyug Basin, southern Tibet: 1145 
American Journal of Science, v. 316, p. 401–436, doi: 10.2475/05.2016.01. 1146 

Currie, B.S., Rowley, D.B., and Tabor, N.J., 2005, Middle Miocene paleoaltimetry of southern 1147 
Tibet: Implications for the role of mantle thickening and delamination in the Himalayan 1148 
orogen: Geology, v. 33, p. 181, doi: 10.1130/G21170.1. 1149 

Dansgaard, W., 1954, The O18 abundance in fresh water: Geochimica et Cosmochimica Acta, v. 1150 



6, p. 241–260. 1151 
DeCelles, P., Kapp, P., Gehrels, G., and Ding, L., 2014, Paleocene‐ Eocene foreland basin 1152 

evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial 1153 
India‐ Asia collision: Tectonics, v. 33, doi: 10.1002/2014TC003522. 1154 

DeCelles, P.G., Kapp, P., Quade, J., and Gehrels, G.E., 2011, Oligocene-Miocene Kailas basin, 1155 
southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung 1156 
suture zone: Bulletin of the Geological Society of America, v. 123, p. 1337–1362, doi: 1157 
10.1130/B30329.1. 1158 

DeCelles, P.G., Quade, J., Kapp, P., Fan, M., Dettman, D.L., and Ding, L., 2007, High and dry in 1159 
central Tibet during the Late Oligocene: Earth and Planetary Science Letters, v. 253, p. 1160 
389–401, doi: 10.1016/j.epsl.2006.11.001. 1161 

Defliese, W.F., Hren, M.T., and Lohmann, K.C., 2015, Compositional and temperature effects of 1162 
phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations: 1163 
Chemical Geology, v. 396, p. 51–60, doi: 10.1016/j.chemgeo.2014.12.018. 1164 

Dennis, K., Affek, H., Passey, B., Schrag, D., and Eiler, J., 2011, Defining an absolute reference 1165 
frame for “clumped” isotope studies of CO2: Geochimica et Cosmochimica Acta, v. 75, p. 1166 
7117–7131, doi: 10.1016/j.gca.2011.09.025. 1167 

Ding, L., and Lai, Q., 2003, New geological evidence of crustal thickening in the Gangdese 1168 
block prior to the Indo-Asian collision: Chinese Science Bulletin, v. 48, p. 1604–1610. 1169 

Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, Q., Li, S., Lai, Q., Wang, H., Spicer, T.E.V., Yue, 1170 
Y., Shukla, A., Srivastava, G., Ali Khan, M., Bera, S., et al., 2017, Quantifying the rise of 1171 
the Himalaya orogen and implications for the South Asian monsoon: Geology, p. G38583.1, 1172 
doi: 10.1130/G38583.1. 1173 

Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., and Li, S., 2014, The Andean-type Gangdese 1174 
Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin: Earth and 1175 
Planetary Science Letters, v. 392, p. 250–264, doi: 10.1016/j.epsl.2014.01.045. 1176 

Ebelmen, J., 1845, Sur les produits de la decomposition des especes minerales de la familie des 1177 
silcates: Ann. des Mines, v. 7, p. 3–66. 1178 

Edmonds, J.M., 1992, Himalayan tectonics, weathering processes, and the strontium isotope 1179 
record in marine limestones: Science, v. 258, p. 1594–1597. 1180 

Eiler, J.M., 2007, “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-1181 
substituted isotopologues: Earth and Planetary Science Letters, v. 262, p. 309–327, doi: 1182 
10.1016/j.epsl.2007.08.020. 1183 

England, P., and Houseman, G., 1986, Finite strain calculations of continental deformation: 2. 1184 
Comparison with the India‐ Asia collision zone: Journal of Geophysical Research: …, v. 1185 
91, p. 3664–3676. 1186 

Farley, K.A., Wolf, R.A., and Silver, L.T., 1996, The effects of long alpha-stopping distances on 1187 
(U-Th)/He ages: Geochimica et Cosmochimica Acta, v. 60, p. 4223–4229. 1188 

France-Lanord, C., and Derry, L., 1997, Organic carbon burial forcing of the carbon cycle from 1189 
Himalayan erosion: Nature, v. 390, p. 65–67. 1190 

Friedman, I., 1953, Deuterium content of natural waters and other substances: Geochimica et 1191 
Cosmochimica Acta, v. 4, p. 89–103. 1192 

Gaetani, M., and Garzanti, E., 1991, Multicyclic History of the Northern India Continental 1193 
Margin (Northwestern Himalaya) (1): AAPG Bulletin, v. 75, p. 1427–1446. 1194 

Gallagher, T.M., and Sheldon, N.D., 2016, Combining soil water balance and clumped isotopes 1195 



to understand the nature and timing of pedogenic carbonate formation: Chemical Geology, 1196 
v. 435, p. 79–91, doi: http://dx.doi.org/10.1016/j.chemgeo.2016.04.023. 1197 

Galy, A., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol, F., 2007, Efficient 1198 
organic carbon burial in the Bengal fan sustained by the Himalayan erosional system: 1199 
Nature, v. 450, p. 407–410. 1200 

Galy, A., France-Lanord, C., and Derry, L., 1999, The strontium isotopic budget of Himalayan 1201 
rivers in Nepal and Bangladesh: Geochimica et Cosmochimica Acta, v. 63, p. 1905–1925. 1202 

Garzione, C.N., Dettman, D.L., and Horton, B.K., 2004, Carbonate oxygen isotope 1203 
paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the 1204 
Tibetan plateau: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 212, p. 119–140, 1205 
doi: 10.1016/j.palaeo.2004.05.020. 1206 

Garzione, C.N., Dettman, D.L., Quade, J., DeCelles, P.G., and Butler, R.F., 2000, High times on 1207 
the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal: Geology, v. 28, p. 1208 
339–342. 1209 

Gébelin, A., Mulch, A., Teyssier, C., Jessup, M.J., Law, R.D., and Brunel, M., 2013, The 1210 
Miocene elevation of Mount Everest: Geology, v. 41, p. 799–802, doi: 10.1130/G34331.1. 1211 

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W.W., Schauble, E.E. a., Schrag, D., Eller, J., 1212 
and Eiler, J.M., 2006, 13C–18O bonds in carbonate minerals: A new kind of 1213 
paleothermometer: Geochimica et Cosmochimica Acta, v. 70, p. 1439–1456, doi: 1214 
10.1016/j.gca.2005.11.014. 1215 

Ghosh, P., Garzione, C.N., and Eiler, J.M., 2006, Rapid uplift of the Altiplano revealed through 1216 
13C-18O bonds in paleosol carbonates.: Science (New York, N.Y.), v. 311, p. 511–5, doi: 1217 
10.1126/science.1119365. 1218 

Gonfiantini, R., 1983, Advisory group meeting on stable isotope reference samples for 1219 
geochemical and hydrological investigations, in Report to the Director General, Vienna, p. 1220 
77. 1221 

Green, O.R., Searle, M.P., Corfield, R.I., and Corfield, R.M., 2008, Cretaceous-Tertiary 1222 
Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh 1223 
Himalaya (Northwest India): The Journal of Geology, v. 116, p. 331–353, doi: 1224 
10.1086/588831. 1225 

H45C002003, 2002, Digital Library of NGAC,. 1226 
H46C003001, 2012, Digital Library of NGAC,. 1227 
Harrison, T.M., Copeland, P., Kidd, W.S.F., and Lovera, O.M., 1995, Activation of the 1228 

Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau: 1229 
Tectonics, v. 14, p. 658–676. 1230 

Harrison, T.M., Copeland, P., Kidd, W.S., and Yin, A., 1992, Raising tibet.: Science (New York, 1231 
N.Y.), v. 255, p. 1663–70, doi: 10.1126/science.255.5052.1663. 1232 

He, S., Kapp, P., DeCelles, P.G., Gehrels, G.E., and Heizler, M., 2007, Cretaceous-Tertiary 1233 
geology of the Gangdese Arc in the Linzhou area, southern Tibet: Tectonophysics, v. 433, 1234 
p. 15–37, doi: 10.1016/j.tecto.2007.01.005. 1235 

He, B., Olack, G., and Colman, A., 2012, Pressure baseline correction and high-precision CO2 1236 
clumped-isotope (∆47) measurements in bellows and micro-volume modes.: Rapid 1237 
communications in mass spectrometry, v. 26, p. 2837–53, doi: 10.1002/rcm.6436. 1238 

Hedges, J., and Keil, R., 1995, Sedimentary organic matter preservation: an assessment and 1239 
speculative synthesis: Marine Chemistry, v. 49, p. 81–115. 1240 

Henkes, G.A., Passey, B.H., Grossman, E.L., Shenton, B.J., Perez-Huerta, A., and Yancey, T.E., 1241 



2014, Temperature limits for preservation of primary calcite clumped isotope 1242 
paleotemperatures: Geochimica et Cosmochimica Acta, v. 139, p. 362–382. 1243 

van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., McQuarrie, N., Doubrovine, P. V, 1244 
Spakman, W., and Torsvik, T.H., 2012, Greater India Basin hypothesis and a two-stage 1245 
Cenozoic collision between India and Asia.: Proceedings of the National Academy of 1246 
Sciences of the United States of America, v. 109, p. 7659–64, doi: 1247 
10.1073/pnas.1117262109. 1248 

Hoke, G.D., Liu-Zeng, J., Hren, M.T., Wissink, G.K., and Garzione, C.N., 2014, Stable isotopes 1249 
reveal high southeast Tibetan Plateau margin since the Paleogene: Earth and Planetary 1250 
Science Letters, v. 394, p. 270–278, doi: 10.1016/j.epsl.2014.03.007. 1251 

Holland, H., 1978, The Chemistry of the Atmosphere and Oceans: New York, Wiley, 351 p. 1252 
Hough, B., Fan, M., and Passey, B., 2014, Calibration of the clumped isotope geothermometer in 1253 

soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and 1254 
paleoclimate reconstruction: Earth and Planetary Science Letters, v. 391, p. 110–120. 1255 

Hren, M.T., Bookhagen, B., Blisniuk, P.M., Booth, A.L., and Chamberlain, C.P., 2009, d18O 1256 
and dD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisure 1257 
sources and paleoelevation reconstructions: Earth and Planetary Science Letters, v. 288, p. 1258 
20–32. 1259 

Hu, X., Garzanti, E., Moore, T., and Raffi, I., 2015, Direct stratigraphic dating of India-Asia 1260 
collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma): Geology, v. 43, p. 859–862, 1261 
doi: 10.1130/g36872.1. 1262 

Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan, 1263 
N., Passey, B., Tripati,  a, Daëron, M., and Came, R., 2009, Methods and limitations of 1264 
“clumped” CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry.: 1265 
Journal of mass spectrometry : JMS, v. 44, p. 1318–29, doi: 10.1002/jms.1614. 1266 

Huntington, K.W., Saylor, J., Quade, J., and Hudson, A.M., 2015, High late Miocene-Pliocene 1267 
elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped 1268 
isotope thermometry: Geological Society of America Bulletin, v. 127, p. 181–199, doi: 1269 
10.1130/B31000.1. 1270 

Huntington, K.W., Wernicke, B.P., and Eiler, J.M., 2010, Influence of climate change and uplift 1271 
on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: 1272 
Tectonics, v. 29, doi: 10.1029/2009TC002449. 1273 

Ingalls, M., 2017, Subduction and uplift of continental crust in the India-Asia collision zone: 1274 
Clumped-isotope paleothermometry and paleoaltimetry of the Lhasa block, southern Tibet: 1275 
PhD dissertation, University of Chicago, 250 p. 1276 

Ingalls, M., Rowley, D.B., Currie, B., and Colman, A.S., 2016, Large-scale subduction of 1277 
continental crust implied by India–Asia mass-balance calculation: Nature Geoscience, v. 9, 1278 
p. 848–853, doi: 10.1038/ngeo2806. 1279 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, 1280 
S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., et al., 1996, 1281 
The NCEP/NCAR 40-Year Reanalysis Project: Bulletin of the American Meteorological 1282 
Society, v. 77, p. 437–471. 1283 

Kapp, P., DeCelles, P.G., Leier, A.L., Fabijanic, J.M., He, S., Pullen, A., Gehrels, G.E., and 1284 
Ding, L., 2007, The Gangdese retroarc thrust belt revealed: GSA Today, v. 17, p. 4–9, doi: 1285 
10.1130/GSAT01707A.1. 1286 

Kapp, P., Yin, A., Harrison, T.M., and Ding, L., 2005, Cretaceous-Tertiary shortening, basin 1287 



development, and volcanism in central Tibet: Bulletin of the Geological Society of 1288 
America, v. 117, p. 865–878, doi: 10.1130/B25595.1. 1289 

Kerrick, D., and Caldeira, K., 1993, Paleoatmospheric consequences of CO2 released during 1290 
early Cenozoic regional metamorphism in the Tethyan orogen: Chemical Geology, v. 108, 1291 
p. 201–230. 1292 

Khan, M.A., Spicer, R.A., Bera, S., Ghosh, R., Yang, J., Spicer, T.E.V., Guo, S., Su, T., Jacques, 1293 
F., and Grote, P.J., 2014, Miocene to Pleistocene floras and climate of the Eastern 1294 
Himalayan Siwaliks, and new palaeoelevation estimates for the Namling–Oiyug Basin, 1295 
Tibet: Global and Planetary Change, v. 113, p. 1–10, doi: 10.1016/j.gloplacha.2013.12.003. 1296 

Koppers, A.A.P., 2002, ArArCALC - software for Ar-40/Ar-39 age calculations: Computers and 1297 
Geosciences, v. 28, p. 605–619. 1298 

Kump, L., Brantley, S., and Arthur, M., 2000, Chemical weathering, atmospheric CO2, and 1299 
climate: Annual Review of Earth and Planetary Sciences, v. 28, p. 611–667. 1300 

Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F., and Prell, W.L., 1989, Sensitivity of climate to 1301 
late Cenozoic uplift in southern Asia and the American west: Numerical experiments: 1302 
Journal of Geophysical Research, v. 94, p. 18393, doi: 10.1029/JD094iD15p18393. 1303 

Lawrimore, J.H., Menne, M.J., Gleason, B.E., Williams, C.N., Wuertz, D.B., Vose, R.S., and 1304 
Rennie, J., 2011, An overview of the Global Historical Climatology Network monthly mean 1305 
temperature data set, version 3: Journal of Geophysical Research, v. 116, doi: 1306 
10.1029/2011JD016187. 1307 

Leary, R.J., Quade, J., DeCelles, P.G., and Reynolds, A., 2017, Evidence from paleosols for low 1308 
to moderate elevation of the India-Asia suture zone during mid-Cenozoic time: Geology, v. 1309 
45, p. G38830.1, doi: 10.1130/G38830.1. 1310 

Leier, A.L., DeCelles, P.G., Kapp, P., and Ding, L., 2007, The Takena Formation of the Lhasa 1311 
terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin: Geological 1312 
Society of America Bulletin , v. 119, p. 31–48, doi: 10.1130/B25974.1. 1313 

Leier, A., Quade, J., DeCelles, P., and Kapp, P., 2009, Stable isotopic results from paleosol 1314 
carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration: Earth 1315 
and Planetary Science Letters, v. 279, p. 242–254, doi: 10.1016/j.epsl.2008.12.044. 1316 

Li, S., Currie, B.S., Rowley, D.B., and Ingalls, M., 2015, Cenozoic paleoaltimetry of the SE 1317 
margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region: Earth and 1318 
Planetary Science Letters, v. 432, p. 415–424, doi: 10.1016/j.epsl.2015.09.044. 1319 

Machette, M.N., 1985, Calcic soils of the southwestern United States: Geological Society of 1320 
America Special Paper, v. 203, p. 1–21, doi: 10.1130/SPE203-p1. 1321 

Mack, G., and Rasmussen, K., 1984, Alluvial-fan sedimentation of the Cutler Formation (Permo-1322 
Pennsylvanian) near Gateway, Colorado: Geological Society of America Bulletin, v. 95, p. 1323 
109 LP-116. 1324 

Misra, S., and Froelich, P.N., 2012, Lithium isotope history of Cenozoic seawater: changes in 1325 
silicate weathering and reverse weathering: Science, v. 335, p. 818–823. 1326 

Mo, X.X., Niu, Y.L., Dong, G.C., Zhao, Z.D., Hou, Z.Q., Zhou, S., and Ke, S., 2008, 1327 
Contribution of syncollisional felsic magmatism to continental crustal growth: A case study 1328 
of the Paleogene Linzizong volcanic succession in southern Tibet: Chemical Geology, v. 1329 
250, p. 49–67. 1330 

Molnar, P., England, P., and Martinod, J., 1993, Mantle dynamics, uplift of the Tibetan Plateau, 1331 
and the Indian Monsoon: Reviews of Geophysics, v. 31, p. 357, doi: 10.1029/93RG02030. 1332 

Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Z, C., Ryerson, F.J., Kidd, W.S.F., X, W., X, 1333 



Z., Durr, S.B., Z, C., Ryerson, F.J., Kidd, W.S.F., X, W., et al., 1997, Did the Indo-Asian 1334 
collision alone create the Tibetan plateau? Geology, v. 25, p. 719, doi: 10.1130/0091-1335 
7613(1997)025<0719:DTIACA>2.3.CO;2. 1336 

Orme, D.A., 2015, Basin evolution and exhumation of the Xigaze forearc and Indus-Yarlung 1337 
suture zone, Tibet: University of Arizona, 305 p. 1338 

Palmer, M.R., and Edmond, J.M., 1992, Controls over the strontium isotope composition of river 1339 
water: Geochimica et Cosmochimica Acta, v. 56, p. 2099–2111. 1340 

Palmer, M.R., and Edmond, J.M., 1989, The strontium isotope budget of the modern ocean: 1341 
Earth and Planetary Science Letters, v. 92, p. 11–26. 1342 

Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H., and Eiler, J.M., 2010, High-temperature 1343 
environments of human evolution in East Africa based on bond ordering in paleosol 1344 
carbonates.: Proceedings of the National Academy of Sciences of the United States of 1345 
America, v. 107, p. 11245–9, doi: 10.1073/pnas.1001824107. 1346 

Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., 1347 
Shackleton, N.J., and Hall, M.A., 2001, Warm tropical sea surface temperatures in the Late 1348 
Cretaceous and Eocene epochs.: Nature, v. 413, p. 481–7, doi: 10.1038/35097000. 1349 

Peters, N. a., Huntington, K.W., and Hoke, G.D., 2013, Hot or not? Impact of seasonally variable 1350 
soil carbonate formation on paleotemperature and O-isotope records from clumped isotope 1351 
thermometry: Earth and Planetary Science Letters, v. 361, p. 208–218, doi: 1352 
10.1016/j.epsl.2012.10.024. 1353 

Le Pichon, X., Fournier, M., and Jolivet, L., 1992, Kinematics, topography, shortening, and 1354 
extrusion in the India‐ Eurasia collision: Tectonics, v. 11, p. 1085–1098. 1355 

Polissar, P.J., Freeman, K.H., Rowley, D.B., McInerney, F. a., and Currie, B.S., 2009, 1356 
Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers: Earth and 1357 
Planetary Science Letters, v. 287, p. 64–76, doi: 10.1016/j.epsl.2009.07.037. 1358 

Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J., and Mark Harrison, T., 1995, Late Miocene 1359 
environmental change in Nepal and the northern Indian subcontinent: Stable isotopic 1360 
evidence from paleosols: Geological Society of America Bulletin, v. 107, p. 1381–1397, 1361 
doi: 10.1130/0016-7606(1995)107. 1362 

Quade, J., and Cerling, T.E., 1995, Expansion of C4 grasses in the late Miocene of northern 1363 
Pakistan: Evidence from stable isotopes in paleosols: Palaeogeography, Palaeoclimatology, 1364 
Palaeoecology, v. 115, p. 91–116. 1365 

Quade, J., Cerling, T.E., and Bowman, J.R., 1989, Development of Asian monsoon revealed by 1366 
marked ecological shift during hte latest Miocene in northern Pakistan: Nature, v. 342, p. 1367 
163–165, doi: 10.1038/340301a0. 1368 

Quade, J., Eiler, J., Daëron, M., and Achyuthan, H., 2013, The clumped isotope geothermometer 1369 
in soil and paleosol carbonate: Geochimica et Cosmochimica Acta, v. 105, p. 92–107, doi: 1370 
10.1016/j.gca.2012.11.031. 1371 

Quade, J., Garzione, C., and Eiler, J., 2007, Paleoelevation reconstruction using pedogenic 1372 
carbonates: Reviews in Mineralogy and Geochemistry, v. 66, p. 53–87. 1373 

Raymo, M., and Ruddiman, W., 1992, Tectonic forcing of late Cenozoic climate: Nature, v. 359, 1374 
p. 117–122. 1375 

Raymo, M., Ruddiman, W., and Froelich, P.N., 1988, Influence of late Cenozoic mountain 1376 
building on ocean geochemical cycles: Geology, v. 16, p. 649–653. 1377 

Richter, F., Rowley, D., and DePaolo, D., 1992, Sr isotope evolution of seawater: the role of 1378 
tectonics: Earth and Planetary Science Letters, v. 109, p. 11–23. 1379 



Ringham, M.C., Hoke, G.D., Huntington, K.W., and Aranibar, J.N., 2016, Influence of 1380 
vegetation type and site-to-site variability on soil carbonate clumped isotope records, 1381 
Andean piedmont of Central Argentina (32-34°S): Earth and Planetary Science Letters, v. 1382 
440, p. 1–11. 1383 

Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P.W., Guynn, J., Ding, L., and Heizler, M., 2012, 1384 
Thermochronologic evidence for plateau formation in central Tibet: By 45 Ma: Geology, v. 1385 
40, p. 187–190, doi: 10.1130/G32530.1. 1386 

Rowley, D.B., 2007, Stable Isotope-Based Paleoaltimetry: Theory and Validation: Reviews in 1387 
Mineralogy and Geochemistry, v. 66, p. 23–52, doi: 10.2138/rmg.2007.66.2. 1388 

Rowley, D.B., and Currie, B.S., 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola 1389 
basin, central Tibet.: Nature, v. 439, p. 677–81, doi: 10.1038/nature04506. 1390 

Rowley, D.B., Currie, B.S., and Pierrehumbert, R.T., 2003, Modern precipitation stable isotope 1391 
vs. elevation gradients in the High Himalaya, reply: Earth and Planetary Science Letters, v. 1392 
209, p. 401–403. 1393 

Rowley, D.B., and Garzione, C.N., 2007, Stable Isotope-Based Paleoaltimetry: Annual Review 1394 
of Earth and Planetary Sciences, v. 35, p. 463–508, doi: 1395 
10.1146/annurev.earth.35.031306.140155. 1396 

Rowley, D.B., Pierrehumbert, R.T., and Currie, B.S., 2001, A new approach to stable isotope-1397 
based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High 1398 
Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 5836, p. 1–17, 1399 
doi: 10.1016/S0012-821X(01)00324-7. 1400 

Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global 1401 
precipitation, in Cliamte Change in Continental Isotopic Records, Washington, D. C., 1402 
American Geophysical Union, p. 1–36, doi: 10.1029/GM078p0001. 1403 

Ruddiman, W.F., and Kutzbach, J.E., 1989, Forcing of late Cenozoic northern hemisphere 1404 
climate by plateau uplift in southern Asia and the American west: Journal of Geophysical 1405 
Research, v. 94, p. 18409, doi: 10.1029/JD094iD15p18409. 1406 

Saylor, J.E., Quade, J., Dettman, D.L., DeCelles, P.G., Kapp, P. a., and Ding, L., 2009, The late 1407 
Miocene through present paleoelevation history of southwestern Tibet: American Journal of 1408 
Science, v. 309, p. 1–42, doi: 10.2475/01.2009.01. 1409 

Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A., 1410 
and Kelley, S.P., 2003, Constant elevation of southern Tibet over the past 15 million years.: 1411 
Nature, v. 421, p. 622–4, doi: 10.1038/nature01356. 1412 

Steinman, B.A., Abbott, M.B., Nelson, D.B., Stansell, N.D., Finney, B.P., Bain, D.J., and 1413 
Rosenmeier, M.F., 2013, Isotopic and hydrologic responses of small, closed lakes to climate 1414 
variability: Comparison of measured and modeled lake level and sediment core oxygen 1415 
isotope records: Geochimica et Cosmochimica Acta, v. 105, p. 455–471. 1416 

Stolper, D.A., and Eiler, J.M., 2015, The kinetics of solid-state isotope-exchange reactions for 1417 
clumped isotopes: A study of inorganic calcites and apatites from natural and experimental 1418 
samples: American Journal of Science, v. 315, p. 363–411, doi: 10.2475/05.2015.01. 1419 

Stumm, W., and Morgan, J.J., 1981, Aquatic chemistry: an introduction emphasizing chemical 1420 
equilibria in natural waters: New York, Wiley-Interscience, 583 p. 1421 

Suarez, M.B., Passey, B.H., and Kaakinen, A., 2011, Paleosol carbonate multiple isotopologue 1422 
signature of active East Asian summer monsoons during the late Miocene and Pliocene: 1423 
Geology , v. 39, p. 1151–1154, doi: 10.1130/G32350.1. 1424 

Tapponnier, P., Mercier, J.L., Proust, F., Andrieux, J., Armijo, R., Bassoullet, J.P., Brunel, M., 1425 



Burg, J.P., Colchen, M., Dupre, B., Girardeau, J., Marcoux, J., Mascle, G., Matte, P., et al., 1426 
1981, The Tibetan side of the India-Eurasia collision: Nature, v. 294, p. 405–410. 1427 

Tapponnier, P., Peltzer, G., and Armijo, R., 1986, On the mechanics of the collision between 1428 
India and Asia: Geological Society, London, Special Publications, v. 19, p. 113–157, doi: 1429 
10.1144/GSL.SP.1986.019.01.07. 1430 

Tremblay, M., Fox, M., Schmidt, J.L., Tripathy-Lang, A., Wielicki, W., Harrison, T.M., Zeitler, 1431 
P.K., and Shuster, D.L., 2015, Erosion in Southern Tibet shut down at ~10 Ma due to 1432 
enhanced rock uplift within the Himalaya: Proceedings of the National Academy of 1433 
Sciences, v. 112, p. 12030–12035. 1434 

Urey, H., 1952, The Planets: Their Origin and Development: New Haven, Yale University Press. 1435 
Vasconcelos, C., McKenzie, J.A., Warthmann, R., and Bernasconi, S.M., 2005, Calibration of 1436 

the d18O paleothermometer for dolomite precipitated in microbial cultures and natural 1437 
environments: Geology, v. 33, p. 317–320, doi: 10.1130/G20992.1. 1438 

Wang, J., and Chen, Y., 1999, Sedimentary formation characteristics of hydrocarbon generation 1439 
and oil exploration prospects of Wuyu basin in Tibet: Petroleum Exploration and 1440 
Development, v. 26, p. 14–17. 1441 

Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B., and Meng, J., 2014, Outward-1442 
growth of the Tibetan Plateau during the Cenozoic: A review: Tectonophysics, v. 621, p. 1–1443 
43, doi: 10.1016/j.tecto.2014.01.036. 1444 

Wang, Y., Deng, T., and Biasatti, D., 2006, Ancient diets indicate significant uplift of southern 1445 
Tibet after ca. 7 Ma: Geology, v. 34, p. 309–312, doi: 10.1130/G22254.1. 1446 

Yue, Y., and Ding, L., 2006, Ar-40/Ar-39 Geochronology, geochemical characteristics and 1447 
genesis of the Linzhou basic dikes, Tibet.: Acta Petrologica Sinica, v. 22, p. 855–866. 1448 

Zaarur, S., Affek, H.P., and Brandon, M.T., 2013, A revised calibration of the clumped isotope 1449 
thermometer: Earth and Planetary Science Letters, v. 382, p. 47–57, doi: 1450 
10.1016/j.epsl.2013.07.026. 1451 

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and 1452 
aberrations in global climate 65 Ma to Present: Science, v. 292, p. 686–693. 1453 

Zhang, K.J., 2000, Cretaceous palaeogeography of Tibet and adjacent areas (China): tectonic 1454 
implications: Cretaceous Research, v. 21, p. 23–33, doi: 10.1006/cres.2000.0199. 1455 

Zhang, C.L., Horita, J., Cole, D.R., Zhou, J., Lovley, D.R., and Phelps, T.J., 2001, Temperature-1456 
dependent oxygen and carbon isotope fractionations of biogenic siderite: Geochimica et 1457 
Cosmochimica Acta, v. 65, p. 2257–2271, doi: 10.1016/S0016-7037(01)00596-8. 1458 

Zhou, S., Mo, X.X., Zhao, Z.D., Qiu, R.Z., Niu, Y.L., Guo, T.Y., and Zhang, S.Q., 2010, 1459 
Biosynthetic origin of the saw-toothed profile in δ13C and δD of n-alkanes and systematic 1460 
isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants: 1461 
Journal of Asian Earth Sciences, v. 37, p. 246–258. 1462 

Zhu, Y., Fang, X., Gao, J., Yi, H., Wang, S., and Zhang, W., 2006, Oligo-Mioence depositional 1463 
facies of the Wuyu basin, southern Tibetan Plateau: Acta Sedimentologica Sinica, v. 24, p. 1464 
775–782. 1465 

 1466 
 1467 
FIGURE CAPTIONS  1468 

 1469 



Table 1. Stable isotope data for all carbonates and calculated paleo-elevations of the Penbo 1470 
Basin. Calcite-water fractionation factors are calculated using the average primary T(Δ47) ±5°C. 1471 
Samples are organized by carbonate type and approximate location in stratigraphic section by 1472 
correlating laterally extensive units between measured sections. 1473 
 1474 
Table 2. Stable isotope data for all carbonates and calculated paleo-elevations of the Oiyug 1475 
Basin. T(Δ47) values used for carbonate-water oxygen isotope fractionation in each geologic 1476 
formation is presented above each table with mineral-specific fractionation factors. The T(Δ47) 1477 
value for each formation is calculated using the Zaarur et al. (2013) thermometer and the average 1478 
of Δ47 measurements (±standard error of the mean [s.e.m.]) on primary calcite from the 1479 
formation. The error reported for δ18Ow is from the s.e.m. of the clumped isotope measurements 1480 
used to calculate temperature-dependent calcite-water fractionation factors. 1481 
 1482 
Table 3. Stable isotope data for the subset of samples with Δ47 measurements from both 1483 
basins. δ18O and δ13C values were measured both on the gas bench (CO2 in tube headspace from 1484 
CO3 dissolution in ~103% phosphoric acid) and MAT253 (CO2 released from CO3 by >105% 1485 
phosphoric acid dissolution and passed through a series of water traps and a Haysep-Q 1486 
chromatographic column to remove contaminants). The Zaarur et al. (2013) thermometer was 1487 
applied to ∆47 (CDES; Dennis et al., 2011) measurements. 1488 
 1489 
Table 4. Summary of Ar/Ar and (U-Th)/He analytical measurements. 1490 

Table 5. Petrographic thin sections of subset of samples from the Penbo Basin with 1491 
descriptions. An initial assessment was made based on presence or non-presence of alteration 1492 
textures. T(Δ47) values are included for the samples that were analyzed for Δ47. 1493 
 1494 
Table 6. Petrographic thin sections of subset of samples from the Oiyug Basin with 1495 
descriptions. An initial assessment was made based on presence or non-presence of alteration 1496 
textures. T(Δ47) values are included. 1497 
 1498 
Figure 1. Maps of the sampled regions. A. Regional Landsat image of the Tibetan Plateau 1499 
(adapted from Currie et al., 2016). B. Geologic map of the Linzhou/Penbo region including the 1500 
Nianbo type section. Map is based on and geochronology sourced from Ding et al. (2014) and He 1501 
et al. (2007). C. Geologic map of the Oiyug basin displaying measured section locations from 1502 
Currie et al. (2016 ; gray) and this study (blue). The fossil floral locality of Spicer et al. (2003) is 1503 
depicted as a leaf. 1504 
 1505 
Figure 2. Composite stratigraphic section of the Nianbo Formation in the Penbo Basin. The 1506 
geographic location for the base of this section is  29.999603°N, 91.209293°E. Coordinates for 1507 
other measured sections within the Nianbo Fm (blue rectangles, Fig. 1B) are 29.9689°N, 1508 
91.2147°E and 29.9715°N, 91.1951°E. The base of the Pana Fm measured section is located at 1509 
30.0105°N, 91.1470°E. 1510 
 1511 
Figure 3. Example of calcic paleosols from the lower Nianbo Formation. A.  Depth profile of 1512 
series of stacked paleosols developed in sandy alluvial mudstones at ~49 m in Nianbo Fm 1513 
measured section (Fig. 2).   Paleosols contain vertic features, root traces, insect burrows, 1514 



pedogenic nodules and rhizocretions.  Paleosols are interpreted as compound in nature with four 1515 
clay-rich horizons containing vertic features overlying related calcic horizons (stage III; 1516 
Machette, 1985).  Uppermost vertic horizon is ~1 m thick.  B.  Outcrop photo of paleosol 1517 
described in 3A.  C.  Close up of pedogenic nodules and mudstone near the top of the upper 1518 
calcic horizon described in 3A. 1519 
 1520 
Figure 4. Stratigraphic section of the Nianbo Formation in the Oiyug Basin. The geographic 1521 
location for the base of this section is 29.9594°N, 89.7414°E. 1522 
 1523 
Figure 5. Clumped isotope-derived paleotemperatures of A. samples from the Penbo Basin 1524 
with relative age, and B. samples from the Oiyug Basin. Ages are based on location in 1525 
stratigraphic section and interbedded ashes. Δ47 is reported in CDES (carbon dioxide equilibrium 1526 
scale) reference frame (Dennis et al., 2011). Error bars represent ±1σ of all replicate analyses of 1527 
each sample (n listed in Table 1). 1528 
 1529 
Figure 6. Paleocene-Eocene elevation reconstruction of the Penbo basin. We use a modified 1530 
version of Rowley’s (2007) paleoaltimetry model. The average of the "primary" Δ47-derived 1531 
temperatures for lacustrine and pedogenic was used for the δ18Oc to δ18Ow fractionation factors 1532 
for carbonates of like lithology. Symbols are indicative of lithology. Error bars represent 1533 
propagation of analytical (s.e.m.) and model error in quadrature. The mean elevation for each 1534 
formation is indicated by the black circle with vertical line. The vertical dashed line marks the 1535 
modern hypsometric mean elevation of the Penbo basin. 1536 
 1537 
Figure 7. Cenozoic elevation reconstruction of the Oiyug basin, southern Tibet. Calculated 1538 
paleo-elevations and oxygen isotopic compositions of pedogenic, lacustrine/marl, and 1539 
groundwater calcite, and nodular siderite and dolomite are plotted relative to sample location in 1540 
stratigraphic section and age. Symbols are indicative of lithology. Ages are taken from 1541 
paleomagnetic (Chen et al., 2008) and radiometric data (Zhou et al., 2010), as well as one 1542 
40Ar/39Ar age from this study. Error bars represent propagation of analytical (s.e.m.) and model 1543 
error in quadrature. The mean elevation for each formation is indicated by the black circle with 1544 
vertical line. The mean elevation derived from lacustrine and pedogenic calcites in the Gazhacun 1545 
Formation are plotted separately to visualize the isotopic enrichment of lacustrine dolomites and 1546 
calcites. The vertical dashed line marks the modern hypsometric mean elevation of the Oiyug 1547 
basin. 1548 
 1549 
Figure 8. The Cenozoic marine Sr isotope record in relation to source flux compositions.  1550 
The major feature of the Cenozoic record of seawater 87Sr/86Sr (plotted here using measured 1551 
values on planktonic forams; Misra and Froelich, 2012) is the steep climb in ratios from roughly 1552 
36-38 Ma to present.  This is conventionally interpreted as reflecting the onset of uplift in the 1553 
India-Eurasia collision system with chemical weathering of radiogenic terrains (e.g., Raymo and 1554 
Ruddiman, 1992; Richter et al., 1992).  The modern day isotopic composition of the Ganges-1555 
Brahmaputra dissolved Sr flux is sufficiently high (e.g., Palmer and Edmond, 1992; Galy et al., 1556 
1999; indicated on schematic) and sufficiently large that it shifts the modern global average river 1557 
input flux to high 87Sr/86Sr ratios (e.g., Edmonds, 1992).  This sustains the marine 87Sr/86Sr ratio 1558 
at elevated values relative to the Paleogene.  Our results indicate that the Linzizong Arc was 1559 
already at modern elevations in the late Paleocene and early Eocene.  If chemical weathering 1560 



rates were accelerated in these early stages of India-Eurasia collision, they likely would not have 1561 
exerted significant influence on the marine Sr isotope record, because the arc lithologies had 1562 
relatively nonradiogenic isotopic compositions (Mo et al., 2008). Major Cenozoic climate and 1563 
tectonic events are marked with arrows: Onset of India-Asia Collision (OIAC), Paleocene-1564 
Eocene Thermal Maximum (PETM), Mid-Eocene Climatic Optimum (MECO), Mid-Miocene 1565 
Climatic Optimum (MMCO). 1566 
 1567 
 1568 
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Lacustrine Carbonate T(Δ47)°C (± 5°C) : 10.2 °C 15.2 °C 5.2 °C
α (calcite-H2O) : 1.03170 1.03057 1.03288

Pedogenic Carbonate T(Δ47)°C (± 5°C) : 6.3 °C 8.1 °C 4.5 °C
α (calcite-H2O) : 1.03262 1.03219 1.03305

Sample Carbonate Type Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2.2‰
δ18Ow) (‰)

483C lacustrine limestone 300 -7.6 -13.9 -14.7 -13.6 -15.8  -14.7 ± 2.2 -10.1
484A lacustrine limestone 300 -7.2 -14.0 -14.9 -13.8 -16.0  -14.9 ± 2.2 -10.3
483D lacustrine limestone 300 -6.3 -14.3 -15.2 -14.1 -16.3  -15.2 ± 2.2 -10.6
483B lacustrine limestone 300 -7.5 -14.7 -15.5 -14.4 -16.6  -15.5 ± 2.2 -10.9
483A lacustrine limestone 300 -7.3 -14.8 -15.6 -14.5 -16.7  -15.6 ± 2.2 -11.0
491B groundwater calcite nodule 300 -6.6 -13.1 -14.8 -14.4 -15.2  -14.8 ± 0.8 -8.2
491C groundwater calcite nodule 300 -5.8 -11.7 -13.4 -13.0 -13.8  -13.4 ± 0.8 -6.8
490A paleosol carbonate nodule 300 -7.6 -14.1 -15.8 -15.4 -16.2  -15.8 ± 0.8 -9.2
490B paleosol carbonate nodule 300 -7.2 -13.6 -15.2 -14.8 -15.7  -15.2 ± 0.8 -8.6
491A paleosol carbonate nodule 300 -6.1 -11.7 -13.4 -13.0 -13.8  -13.4 ± 0.8 -6.8
475B lacustrine limestone 275 -3.2 -13.7 -14.5 -13.5 -15.7  -14.6 ± 2.2 -10.0
475C lacustrine limestone 275 -3.8 -14.4 -15.2 -14.2 -16.4  -15.3 ± 2.2 -10.7
475D lacustrine limestone 275 -4.5 -15.4 -16.2 -15.1 -17.3  -16.2 ± 2.2 -11.6
475A lacustrine limestone 275 -4.1 -16.1 -16.9 -15.8 -18.0  -16.9 ± 2.2 -12.3

446C lacustrine limestone 236 -2.7 -16.7 -17.5 -16.5 -18.7  -17.6 ± 2.2 -13.0
446H lacustrine limestone 235 -2.2 -17.9 -18.7 -17.7 -19.9  -18.7 ± 2.2 -14.1
446D paleosol carbonate nodule 234 -4.6 -17.3 -18.9 -18.5 -19.4  -18.9 ± 0.8 -12.3
446F lacustrine limestone 232 -3.5 -16.1 -16.9 -15.8 -18.0  -16.9 ± 2.2 -12.3
446E lacustrine limestone 232 -3.2 -17.3 -18.1 -17.0 -19.2  -18.1 ± 2.2 -13.5
447A paleosol carbonate nodule 222 -3.8 -19.0 -20.7 -20.3 -21.1  -20.7 ± 0.8 -14.1
448C lacustrine limestone 215 -3.8 -12.7 -13.5 -12.4 -14.6  -13.5 ± 2.2 -8.9
448A lacustrine limestone 215 -3.9 -12.0 -12.8 -11.7 -13.9  -12.8 ± 2.2 -8.2
448E lacustrine limestone 214 -4.8 -11.4 -12.2 -11.1 -13.3  -12.2 ± 2.2 -7.6
448D lacustrine limestone 214 -4.0 -12.0 -12.8 -11.7 -13.9  -12.8 ± 2.2 -8.2
448 lacustrine limestone 214 -3.5 -15.3 -16.2 -15.1 -17.3  -16.2 ± 2.2 -11.6

P0929-c lacustrine limestone 208 -3.3 -12.7 -13.1 -11.9 -14.4  -13.1 ± 2.5 -8.6
DL104-3b lacustrine limestone 200 -2.5 -12.4 -13.6 -12.5 -14.7  -13.6 ± 2.2 -9.0

451B paleosol carbonate nodule 188 -2.7 -15.3 -17.0 -16.6 -17.4  -17.0 ± 0.8 -10.4
452A lacustrine limestone 186 -4.0 -10.9 -11.7 -10.7 -12.9  -11.8 ± 2.2 -7.2
452B lacustrine limestone 183 -3.7 -12.3 -13.1 -12.0 -14.3  -13.1 ± 2.2 -8.6
452D lacustrine limestone 183 -3.5 -15.0 -15.8 -14.8 -17.0  -15.9 ± 2.2 -11.3
452C paleosol carbonate nodule 181 -3.2 -14.8 -16.4 -16.0 -16.8  -16.4 ± 0.8 -9.8

452G1 lacustrine limestone 180 -3.5 -11.8 -13.5 -13.1 -13.9  -13.5 ± 0.4 -6.9
452G3 groundwater calcite nodule 180 -4.2 -16.0 -17.7 -17.2 -18.1  -17.7 ± 0.4 -11.1
452E groundwater calcite nodule 179 -3.9 -13.8 -15.5 -15.0 -15.9  -15.5 ± 0.4 -8.9
514 lacustrine limestone 170 -2.1 -15.1 -15.9 -14.8 -17.0  -15.9 ± 2.2 -11.3

514A lacustrine limestone 170 -2.0 -15.2 -16.0 -14.9 -17.1   -16.0 ± 2.2 -11.4
511 lacustrine limestone 170 -0.1 -21.8 -22.6 -21.5 -23.7  -22.6 ± 2.2 -18.0

440D lacustrine limestone 164 -4.5 -16.3 -17.1 -16.0 -18.3  -17.1 ± 2.2 -12.5
440B paleosol carbonate nodule 162 -3.8 -17.2 -18.9 -18.5 -19.3  -18.9 ± 0.8 -12.3
505 lacustrine limestone 150 -0.2 -17.3 -18.1 -17.0 -19.2  -18.1 ± 2.2 -13.5
508 lacustrine limestone 140 -3.8 -12.3 -13.1 -12.0 -14.2  -13.1 ± 2.2 -8.5

439E paleosol carbonate nodule 129 -4.6 -15.8 -17.5 -17.1 -17.9  -17.5 ± 0.8 -10.9
439D groundwater calcite nodule 127 -4.3 -16.3 -18.0 -17.6 -18.4  -18.0 ± 0.8 -11.4
456 lacustrine limestone 122 -3.7 -15.5 -16.3 -15.2 -17.4  -16.3 ± 2.2 -11.7

504A lacustrine limestone 120 -0.7 -17.8 -18.6 -17.5 -19.7  -18.6 ± 2.2 -14.0
439 groundwater calcite nodule 120 -5.2 -15.6 -17.3 -16.9 -17.7  -17.3 ± 0.8 -10.7

439C paleosol carbonate nodule 120 -5.4 -15.5 -17.2 -16.8 -17.6  -17.2 ± 0.8 -10.6
523 paleosol carbonate nodule 105 -3.4 -16.3 -17.9 -17.5 -18.4  -18.0 ±0.8 -11.4
512 paleosol carbonate nodule 100 -3.5 -15.1 -16.8 -16.3 -17.2  -16.8 ± 0.8 -9.6

534A paleosol carbonate nodule 100 -5.8 -14.5 -16.1 -15.7 -16.6  -16.1 ± 0.8 -9.5
534C paleosol carbonate nodule 100 -5.3 -15.4 -17.1 -16.7 -17.5  -17.1 ± 0.8 -10.5
534D paleosol carbonate nodule 100 -6.7 -12.8 -14.5 -14.1 -14.9  -14.5 ± 0.8 -7.9
534F paleosol carbonate nodule 100 -3.3 -14.3 -16.0 -15.6 -16.4  -16.0 ± 0.8 -9.4
534G paleosol carbonate nodule 100 -2.8 -16.3 -17.9 -17.5 -18.3  -17.9 ± 0.8 -11.3
534I paleosol carbonate nodule 100 -4.5 -13.8 -15.5 -15.1 -15.9  -15.5 ± 0.8 -8.9
534J paleosol carbonate nodule 100 -6.1 -14.2 -15.9 -15.5 -16.3  -15.9 ± 0.8 -9.3
534K paleosol carbonate nodule 100 -5.5 -12.8 -14.5 -14.1 -14.9  -14.5 ± 0.8 -7.9
534L paleosol carbonate nodule 100 -3.5 -16.7 -18.3 -17.9 -18.7  -18.3 ± 0.8 -11.7
418B paleosol carbonate nodule 50 -7.0 -16.2 -17.9 -17.5 -18.3  -17.9 ± 0.8 -11.3
418A paleosol carbonate nodule 49 -7.1 -16.1 -17.8 -17.4 -18.2  -17.8 ± 0.8 -11.2

δ18Ow (VSMOW) (‰)

Nianbo Formation

Pana Formation

TABLE 1. STABLE ISOTOPE DATA FOR ALL CARBONATES AND CALCULATED PALEO-ELEVATIONS OF THE PENBO BASIN

Mean Elevation (km)*

Table 1



431L groundwater calcite nodule 48 -8.5 -15.6 -17.2 -16.8 -17.6  -17.2 ± 0.8 -10.6
417D paleosol carbonate nodule 47 -10.4 -14.9 -16.6 -16.1 -17.0  -16.6 ± 0.8 -10.0
431K groundwater calcite nodule 42 -8.9 -15.2 -16.9 -16.5 -17.3  -16.9 ± 0.8 -10.3
431I paleosol carbonate nodule 41 -8.7 -15.9 -17.6 -17.2 -18.0  -17.6 ± 0.8 -11.0
431H lacustrine limestone 40 -8.8 -16.0 -16.8 -15.8 -18.0  -16.9 ± 2.2 -12.3
431G paleosol carbonate nodule 40 -7.2 -15.7 -17.4 -17.0 -17.8  -17.4 ± 0.8 -10.8
417C paleosol carbonate nodule 39 -10.4 -12.6 -14.3 -13.9 -14.7  -14.3 ± 0.8 -7.7
431F paleosol carbonate nodule 29 -6.6 -16.0 -17.6 -17.2 -18.1  -17.7 ± 0.8 -11.1

* Error estimates for mean elevations are reported as the quadrature of the model error for each elevation estimate.

The unique T(∆47) values from clumped isotope samples (bold) were used to calculate the calcite-water fractionation for those samples. The average T(∆47) for pedogenic and lacustrine 
clumped isotope samples were used to calculate the appropriate calcite-water fractionation for the remaining samples, by sample type.

Mean Elevation (km)*



Model Elevation 
(km) ±2σ

3.9 +1.1/-1.3
4.0 +1.1/-1.3
4.0 +1.2/-1.3
4.5 +1.3/-1.6
4.5 +1.3/-1.7
3.9 +1.0/-1.5
3.4 +0.8/-1.3
4.1 +1.1/-1.6
4.0 +1.1/-1.5
3.4 +0.8/-1.3
4.3 +1.3/-1.5
4.5 +1.3/-1.6
4.7 +1.4/-1.7
4.8 +1.4/-1.8

4.1 +1.2/-1.6

4.9 +1.4/-1.8
5.1 +1.4/-1.9
4.8 +1.3/-1.9
4.8 +1.4/-1.8
5.0 +1.4/-1.9
5.1 +1.4/-2.0
4.0 +1.2/-1.4
3.9 +1.1/-1.3
3.7 +1.1/-1.2
3.9 +1.1/-1.3
4.7 +1.4/-1.7
4.0 +1.2/-1.3
4.1 +1.2/-1.4
4.4 +1.2/-1.7
3.5 +1.0/-1.1
4.0 +1.2/-1.3
4.6 +1.4/-1.7
4.3 +1.2/-1.7
3.5 +0.9/-1.3
4.6 +1.3/-1.8
4.0 +1.1/-1.6
4.6 +1.4/-1.7
4.6 +1.4/-1.7
5.7 +1.5/-2.1
4.9 +1.4/-1.8
4.8 +1.3/-1.9
5.0 +1.4/-1.9
3.9 +1.2/-1.3
4.5 +1.2/-1.8
4.6  +1.3/-1.8
4.7 +1.4/-1.7
5.1 +1.4/-1.9
4.5 +1.2/-1.8
4.5 +1.2/-1.8
4.6 +1.3/-1.8
4.2 +1.2/-1.4
4.2 +1.1/-1.7
4.4 +1.2/-1.7
3.8 +1.0/-1.5
4.2 +1.1/-1.6
4.6 +1.1/-1.6
4.1 +1.1/-1.6
4.1 +1.1/-1.6
3.8 +1.0/-1.5
4.7 + 1.3/-1.8
4.6 +1.3/-1.8
4.6 +1.3/-1.8

TABLE 1. STABLE ISOTOPE DATA FOR ALL CARBONATES AND CALCULATED PALEO-ELEVATIONS OF THE PENBO BASIN



4.5 +1.2/-1.8
4.3 +1.2/-1.7
4.4 +1.2/-1.7
4.5 +1.3/-1.8
4.8 +1.4/-1.8
4.5 +1.2/-1.8
3.7 +1.0/-1.4
4.6 +1.3/-1.8

4.4 +1.3/-1.7

* Error estimates for mean elevations are reported as the quadrature of the model error for each elevation estimate.

The unique T(∆47) values from clumped isotope samples (bold) were used to calculate the calcite-water fractionation for those samples. The average T(∆47) for pedogenic and lacustrine 
clumped isotope samples were used to calculate the appropriate calcite-water fractionation for the remaining samples, by sample type.



††T(Δ47)°C (± 3.6°C) : 14.0 °C 17.6 °C 10.4 °C
α (siderite-H2O) : 1.03328 1.03252 1.03413

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model Elevation 
(km) ±2σ

621I calcite marl 1580 1.3 -28.0 -30.1 -29.4 -30.8  -30.1 ± 1.5 -25.5 6.5 +1.8/-2.3
621H calcite marl 1584 -0.1 -27.4 -29.9 -29.1 -30.7   -29.9 ± 1.6 -25.3 6.5 +1.8/-2.3
621F siderite nodule 1575 12.9 -10.8 -13.1 -12.4 -14.0  -13.2 ± 1.5 -8.6 3.6 +1.1/-1.4

6.5 +1.8/-2.3
††T(Δ47)°C (± 3.6°C) : 14.0 °C 17.6 °C 10.4 °C

α (siderite-H2O) : 1.03328 1.03252 1.03413

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean  18Ow 

±1.7‰

‡∆( 18Ow) 
(‰)

Model Elevation 
(km) ±2σ

618A siderite nodule 690 4.2 -17.1 -18.2 -17.4 -19.1 -18.3 -11.7 4.4 +1.3/-1.8

††T(Δ47)°C (± 3.6°C) : 14.0 °C 17.6 °C 10.4 °C
 +α (dolomite-H2O) : 1.03393 1.03312 1.03484

α (calcite-H2O) : 1.03084 1.03007 1.03169

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model Elevation 
(km) ±2σ

555 pedogenic calcite 670 -5.8 -20.0 -21.6 -20.8 -22.6  -21.7 ± 1.8 -15.1 5.1 +1.5/-2.0
W8 dolomite nodule 680 -7.3 -7.6 -10.5 -9.8 -11.4  -10.6 ± 1.6 -4.0 2.1 +0.6/-0.6
553 calcareous shale 677 -3.8 -13.0 -11.8 -10.9 -12.7  -11.8 ± 1.6 -5.2 3.0 +0.9/-1.1
W7 dolomite nodule 670 -5.4 -5.5 -8.5 -7.7 -9.3  -8.5 ± 1.7 -1.9 1.1 +0.3/-0.1
W3 dolomite nodule 654 -6.3 -5.7 -8.7 -7.9 -9.5  -8.7 ± 1.6 -2.1 1.2 +0.4/-0.1
W2 dolomite nodule 649 -5.1 -5.5 -8.5 -7.7 -9.3  -8.5 ± 1.7 -1.9 1.1 +0.3/-0.1
551 calcareous mudstone 647 -2.5 -11.6 -11.6 -10.9 -12.4  -11.6 ± 1.6 -5.0 2.5 +0.7/-0.8
W1 dolomite nodule 645 -5.4 -5.8 -8.8 -8.0 -9.6  -8.8 ± 1.6 -2.2 1.3 +0.3/-0.2
550 dolomite nodule 615 -11.3 -11.3 -14.2 -13.5 -15.1  -14.3 ± 1.6 -7.7 3.4 +1.0/-1.3

554B pedogenic calcite 570 -7.8 -19.7 -25.0 -24.2 -25.9  -25.0 ± 1.7 -18.4 5.6 +1.5/-2.1
5.3 +1.5/-2.0
2.0 +0.6/-0.7

††T(Δ47)°C (± 8.2°C) : 18.9 °C 27.1 °C 10.7 °C
α (calcite-H2O) : 1.03279 1.03105 1.03477

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model Elevation 
(km) ±2σ

548 pedogenic calcite 559 -8.0 -20.1 -21.5 -20.8 -22.2  -21.5 ± 1.5 -14.9 5.0 +1.4/-2.0
165Ca pedogenic calcite 556 -6.9 -19.8 -18.7 -17.1 -20.5  -18.8 ± 3.4 -12.2 4.5 +1.4/-1.7
165D pedogenic calcite 556 -7.1 -20.0 -18.9 -17.3 -20.7  -19.0 ± 3.4 -12.4 4.5 +1.4/-1.7
165Fa pedogenic calcite 556 -6.9 -19.7 -18.6 -17.0 -20.4  -18.7 ± 3.4 -15.0 5.0 +1.5/-1.9
165Fb pedogenic calcite 556 -6.8 -19.7 -18.6 -17.0 -20.4  -18.7 ± 3.4 -15.0 5.0 +1.5/-1.9
165Fc pedogenic calcite 556 -5.9 -18.0 -16.9 -15.3 -18.7  -17.0 ± 3.4 -13.3 4.7 +1.5/-1.8
165G pedogenic calcite 556 -6.8 -19.6 -18.5 -16.9 -20.3  -18.6 ± 3.4 -14.9 5.0 +1.5/-1.9

R2 pedogenic calcite 555 -7.0 -20.2 -19.1 -17.5 -20.9  -19.2 ± 3.4 -15.5 5.1 +1.5/-1.9
547 pedogenic calcite 540 -6.0 -19.1 -18.0 -16.4 -19.8  -18.1 ± 3.4 -14.4 4.9 +1.5/-1.8
546 pedogenic calcite 532 -6.4 -21.1 -20.0 -18.4 -21.8  -20.0 ± 3.4 -16.4 5.3 +1.5/-2.0

543B   groundwater calcite 452 -3.3 -19.5 -18.5 -16.8 -20.3  -18.5 ± 3.4 -11.9 4.4 +1.4/-1.6
543A pedogenic calcite 450 -7.6 -19.4 -16.1 -15.7 -16.7  -16.2 ± 1.0 -9.6 3.9 +1.2/-1.6

4.5 +1.5/-1.7
††T(Δ47)°C (± 4.3°C) : 9.8 °C 14.1 °C 5.5 °C

α (calcite-H2O) : 1.03180 1.03081 1.03281

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model Elevation 
(km) ±2σ

579 pedogenic calcite 410 -6.2 -18.9 -19.8 -18.9 -20.8 -19.8 -13.2 4.7 +1.4/-1.9
576 groundwater calcite 290 -3.4 -20.4 -21.3 -20.4 -22.3 -21.3 -14.7 5.0 +1.4/-2.0

575E groundwater calcite 285 -3.7 -11.9 -12.8 -11.8 -13.7 -12.8 -6.2 2.9 +0.9/-1.0

δ18Ow (VSMOW) (‰)

TABLE 2. STABLE ISOTOPE DATA FOR ALL CARBONATES AND CALCULATED PALEO-ELEVATIONS OF THE OIYUG BASIN. 

Oiyug Formation (Fm.)

Upper Gazhacun Fm.

Middle Gazhacun Fm.

Lower Gazhacun Fm.

Rigongla Fm.

δ18Ow (VSMOW) (‰)

 18Ow (VSMOW) (‰)

δ18Ow (VSMOW) (‰)

Lacustrine-derived Mean Elevation (km)*

Mean Elevation (km)*

Pedogenic-derived Mean Elev. (km)*

Mean Elevation (km)*

δ18Ow (VSMOW) (‰)

Table 2



575C groundwater calcite 280 -2.6 -16.8 -17.7 -16.8 -18.7 -17.7 -11.1 4.3 +1.3/-1.7
575B groundwater calcite 278 -3.8 -13.9 -14.8 -13.9 -15.8 -14.8 -8.2 3.6 +1.1/-1.3

4.1 +1.3/-1.6
††T(Δ47)°C (± 8.2°C) : 3.0 °C 11.2 °C  -5.2 °C

Nianbo Fm. α (calcite-H2O) : 1.03342 1.03147 1.03548

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 

(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model Elevation 
(km) ±2σ

W0628-3 paleosol 44 -1.5 -24.9 -26.8 -25.0 -28.7  -26.8 ± 3.7 -20.2 5.9 +1.5/-2.1
W0628-2 lacustrine limestone 34 -4.1 -24.6 -27.0 -25.2 -29.0  -27.0 ± 3.8 -20.4 5.9 +1.5/-2.1
W0628-1 paleosol 0 -3.5 -18.6 -21.6 -21.0 -22.1  -21.6 ± 1.1 -15.0 5.0 +1.4/-2.0

5.6 +1.5/-2.1
Note: Samples with Δ47 measurements are in bold. For these samples, their unique T(Δ47) was used to calculate δ18Ow.

calcite/water  =  EXP(((18.03 *103/T)-32.42)/1000) (Kim & O'Neil, 1997)

siderite/water  =  EXP(((2.62 *10^6/T2)-2.17)/1000) (Zhang et al., 2001)

dolomite/water  =  EXP(((2.73 *10^6/T2)+0.26)/1000) (Vasconcelos et al. 2005)

Water-Carbonate Oxygen Fractionation Factors

 + Temperature used for dolomite-water and calcite-water fractionation factors of lacustrine samples is the average of lacustrine calcite clumped isotope temperatures, as these 
would have the most similar depositional conditions.

Mean Elevation (km) ± 

†† Temperature error is reported as the standard error of the mean of all clumped isotope measurements from that formation or sample type.
‡ low elevation 18Ow  values: -6.6‰ for Rigongla and Gazhacun Fms; -4.6‰ for Oiyug Fm, based on WMMTs derived from Khan et al. (2014) and Siwalik Fm paleosol 
carbonate data (Quade and Cerling, 1995; Quade et al., 2013)

* Error estimates for mean elevations are reported as the quadrature of the model error for each elevation estimate.

† 18Oc of all samples except the Nianbo Fm have been previously published in Currie et al. (2005) and Currie et al. (2016). All 18Ow values are calculated using new T(Δ47) 
measurements.

δ18Ow (VSMOW) (‰)

Mean Elevation (km)*



Oiyug Formation

Sample Carbonate Type  Location in 
Section (m)

δ13C 
(VPDB) 
(‰)

†δ18Oc 

(VPDB) 
(‰)

mean δ18Ow 

±2  (‰)

‡Δ(δ18Ow) 
(‰)

Model 
Elevation (km) 

±2σ
621I calcite marl 1580 1.3 -28.0  -30.1 ± 1.5 -25.5 6.5 +1.8/-2.3
621H calcite marl 1584 -0.1 -27.4   -29.9 ± 1.6 -25.3 6.5 +1.8/-2.3
621F siderite nodule 1575 12.9 -10.8  -13.2 ± 1.5 -8.6 3.6 +1.1/-1.4

6.5 +1.8/-2.3
Upper 
Gazhacun 
Fm.

618A siderite nodule 690 4.2 -17.1 -18.3 -11.7 4.4 +1.3/-1.8

Middle 
Gazhacun 

555 pedogenic calcite 670 -5.8 -20.0  -21.7 ± 1.8 -15.1 5.1 +1.5/-2.0
W8 dolomite nodule 680 -7.3 -7.6  -10.6 ± 1.6 -4.0 2.1 +0.6/-0.6
553 calcareous shale 677 -3.8 -13.0  -11.8 ± 1.6 -5.2 3.0 +0.9/-1.1
W7 dolomite nodule 670 -5.4 -5.5  -8.5 ± 1.7 -1.9 1.1 +0.3/-0.1
W3 dolomite nodule 654 -6.3 -5.7  -8.7 ± 1.6 -2.1 1.2 +0.4/-0.1
W2 dolomite nodule 649 -5.1 -5.5  -8.5 ± 1.7 -1.9 1.1 +0.3/-0.1
551 calcareous mudstone 647 -2.5 -11.6  -11.6 ± 1.6 -5.0 2.5 +0.7/-0.8
W1 dolomite nodule 645 -5.4 -5.8  -8.8 ± 1.6 -2.2 1.3 +0.3/-0.2
550 dolomite nodule 615 -11.3 -11.3  -14.3 ± 1.6 -7.7 3.4 +1.0/-1.3

554B pedogenic calcite 570 -7.8 -19.7  -25.0 ± 1.7 -18.4 5.6 +1.5/-2.1
5.3 +1.5/-2.0
2.0 +0.6/-0.7

Lower 
Gazhacun 
Fm.

548 pedogenic calcite 559 -8.0 -20.1  -21.5 ± 1.5 -14.9 5.0 +1.4/-2.0
165Ca pedogenic calcite 556 -6.9 -19.8  -18.8 ± 3.4 -12.2 4.5 +1.4/-1.7
165D pedogenic calcite 556 -7.1 -20.0  -19.0 ± 3.4 -12.4 4.5 +1.4/-1.7
165Fa pedogenic calcite 556 -6.9 -19.7  -18.7 ± 3.4 -15.0 5.0 +1.5/-1.9
165Fb pedogenic calcite 556 -6.8 -19.7  -18.7 ± 3.4 -15.0 5.0 +1.5/-1.9
165Fc pedogenic calcite 556 -5.9 -18.0  -17.0 ± 3.4 -13.3 4.7 +1.5/-1.8
165G pedogenic calcite 556 -6.8 -19.6  -18.6 ± 3.4 -14.9 5.0 +1.5/-1.9

R2 pedogenic calcite 555 -7.0 -20.2  -19.2 ± 3.4 -15.5 5.1 +1.5/-1.9
547 pedogenic calcite 540 -6.0 -19.1  -18.1 ± 3.4 -14.4 4.9 +1.5/-1.8
546 pedogenic calcite 532 -6.4 -21.1  -20.0 ± 3.4 -16.4 5.3 +1.5/-2.0

543B   groundwater calcite 452 -3.3 -19.5  -18.5 ± 3.4 -11.9 4.4 +1.4/-1.6
543A pedogenic calcite 450 -7.6 -19.4  -16.2 ± 1.0 -9.6 3.9 +1.2/-1.6

4.5 +1.5/-1.7
Rigongla Fm.

579 pedogenic calcite 410 -6.2 -18.9 -19.8 -13.2 4.7 +1.4/-1.9
576 groundwater calcite 290 -3.4 -20.4 -21.3 -14.7 5.0 +1.4/-2.0

575E groundwater calcite 285 -3.7 -11.9 -12.8 -6.2 2.9 +0.9/-1.0
575C groundwater calcite 280 -2.6 -16.8 -17.7 -11.1 4.3 +1.3/-1.7
575B groundwater calcite 278 -3.8 -13.9 -14.8 -8.2 3.6 +1.1/-1.3

4.1 +1.3/-1.6
Nianbo Fm.

W0628-3 paleosol 44 -1.5 -24.9  -26.8 ± 3.7 -20.2 5.9 +1.5/-2.1
W0628-2 lacustrine limestone 34 -4.1 -24.6  -27.0 ± 3.8 -20.4 5.9 +1.5/-2.1
W0628-1 paleosol 0 -3.5 -18.6  -21.6 ± 1.1 -15.0 5.0 +1.4/-2.0

Mean Elevation (km)*

Mean Elevation (km)*

Mean Elevation (km)*



5.6 +1.5/-2.1
Note: Samples with Δ47 measurements are in bold. For these samples, their unique T(Δ47) was used to calculate δ18Ow.

calcite/water  =  EXP(((18.03 *103/T)-32.42)/1000) (Kim & O'Neil, 1997)

siderite/water  =  EXP(((2.62 *10^6/T2)-2.17)/1000) (Zhang et al., 2001)

dolomite/water  =  EXP(((2.73 *10^6/T2)+0.26)/1000) (Vasconcelos et al. 2005)

Water-Carbonate Oxygen Fractionation Factors

Mean Elevation (km) ± 

† 18Oc of all samples except the Nianbo Fm have been previously published in Currie et al. (2005) and Currie et al. (2016). All 18Ow 
†† Temperature error is reported as the standard error of the mean of all clumped isotope measurements from that formation or sample 
type.
‡ low elevation 18Ow  values: -6.6‰ for Rigongla and Gazhacun Fms; -4.6‰ for Oiyug Fm, based on WMMTs derived from Khan et al. 
 + Temperature used for dolomite-water and calcite-water fractionation factors of lacustrine samples is the average of lacustrine calcite 
clumped isotope temperatures, as these would have the most similar depositional conditions.
* Error estimates for mean elevations are reported as the quadrature of the model error for each elevation estimate.
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-27.4
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)=√[(52600/(
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Sam
ple nam

e &
 

m
apped unit

Aliquot †
C

orrected age 
(M

a) ‡
F

T §
238U

 (nm
ol/g)

232Th (nm
ol/g)

147Sm
 (nm

ol/g)
4H

e (nm
ol/g)

M
ass 

(ug)

X
15.10 ± 0.10

0.703
100.968 ± 0.114

200.385 ± 0.888
113.781 ± 0.109

1.992 ± 0.010
3.31

Y
16.56 ± 0.11

0.807
48.015 ± 0.072

95.882 ± 0.540
63.609 ± 0.031

1.204 ± 0.004
11.66

Z
12.93 ± 0.08

0.727
75.998 ±0.175

345.718 ± 1.483
422.563 ± 0.201

1.875 ± 0.008
4.17

M
ean age (±1

)
14.86 ± 1.83 M

a

X
11.50 ± 0.06

0.793
89.580 ± 0.180

473.757 ± 2.001
738.337 ± 0.301

2.347 ± 0.007
9.44

Y
12.35 ± 0.07

0.742
179.654 ± 0.215

501.425 ± 2.131
399.745 ± 0.195

3.459 ± 0.011
4.88

Z
14.36 ± 0.09

0.717
91.660 ± 0.177

199.523 ± 0.854
150.095 ± 0.094

1.811 ± 0.008
3.78

M
ean age (±1

)
12.74 ± 1.47 M

a
† Single crystal conventional (U

-Th)/H
e analyses

‡ (U
-Th)/H

e ages are calculated from
 total m

easured abundances in all cases, not concentrations.
§ C

orrection factor for a-ejection; Farley et al., 1996
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e &
 

m
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Aliquot
36Ara (m

oles)
37ArC

a 

(m
oles)

38ArCl  (m
oles)

39ArK  (m
oles)

40Arr  (m
oles)

Apparent Age 
(M

a)
Error (M

a 
2σ)

1
6.27E

-17
3.54E

-15
6.52E

-18
8.73E

-15
7.09E

-14
33.81

0.50

2
1.17E

-16
4.33E

-15
2.61E

-18
7.16E

-15
6.92E

-14
40.19

0.63

3
8.62E

-17
6.36E

-15
3.56E

-18
9.47E

-15
8.02E

-14
35.27

0.44
Inverse isochron age (±2σ)

28.90 ± 1.52 M
a

N
otes: (1) Isotope abundances corrected for blank, m

ass discrim
ination, nucleogenic interferences and post-irradiation decay

(2) G
A

1550 flux m
onitor (age = 98.790 ± 0.543 M

a) used to calculate J = 0.00169000 ± 0.00001690

(3) Error reported at 2σ level and includes uncertainty in J
(4) Isotope abundances calculated w

ith instrum
ent sensitivity of 8.20 x 10

-17 m
oles/fA

L0706-2     granite 
intrusion        

P
enbo B

asin

L0706-3     granite 
intrusion        

P
enbo B

asin
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R
aw

 age (M
a)

U
 (ppm

)
Th (ppm

)
Sm

 (ppm
)

10.44
24.21

46.50
114.05

13.24
11.51

22.25
63.760

9.21
18.22

80.22
423.58

8.98
21.48

109.93
740.11

9.02
43.08

116.35
400.70

10.14
21.98

46.30
150.46

40Ar* (%
)

39Ark  (%
)

K
/C

a
Error (2σ)

79.28
34.44

1.06
4.92E

-03

66.66
28.22

0.71
3.25E

-03

75.89
37.34

0.64
2.79E

-03
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Sample Petrographic Image Textural Description Petrographic 
Interpretation

T(Δ47)   
(°C)

446D
Abundant sparry calcite 
filling voids and veins; 
silicification

Diagenetic/High T 49.9 ± 2.9

DL104-3b

Micro-spar and small 
amount of dense micrite; 
recrystallized ostracodes; 
minor vuggy calcite spar

Primary/Low T 8.5 ± 5.0

P0929-c
Micro-spar with patchy 
dense micrite; sparry vuggy 
calcite; some silicification

Primary/Low T 11.9 ± 5.6

448D
Dense micrite to micro-
spar; ostracodes; vein 
calcite and pyrite

Diagenetic/High T 40.9 ± 2.4

440D
Micro-spar/sparry calcite; 
silicificaiton; ostracode 
fossils

Minor Alteration 55.2 ± 1.5

440C Sparry calcite; calcite veins; 
silicification Diagenetic/High T  ---

446H Coarse micro-spar/sparry 
calcite; fibrous calcite Diagenetic/High T  ---

Table 5



Sample Petrographic Image Textural Description Petrographic 
Interpretation

T(Δ47)   
(°C)

554B
Matrix-supported limestone             
Very fine grain micritic matrix 
Numerous microfossils <1mm

Primary/Low T 3.9 ± 3.4

555

Red-brown matrix with gray, 
micritic, cm-sized regions (labeled)                                 
No visible recrystallization or iron 
rims between calcite and oxidized 
siliciclastics

Primary/Low T 19.7 ± 4.2

579

Fissures traverse the slide from left 
to right (likely micron-scale veins)                             
Abundant ~1mm rounded quartz 
crystals (sand clasts)                   
Mud matrix                             
Hematite rim on micritic region?

Minor alteration 9.8 ± 4.3

621I
Slightly recrystallized sparry calcite 
matrix mixed with micrite                                       
Finely laminated

Primary/Low T 15.0 ± 3.5

W0628-1
Clast-supported and loosely lithified                          
Birefringent vein with an iron-
stained rim of a different texture 

Primary/Low T 0.7 ± 2.3

W0628-2

Clast-supported                  
Extensive crosscutting of veins 
Pervasive infill of sparry calcite in 
fissures

Diagenetic/High T 45.7 ± 8.3

W0628-3
Matrix appears to have been 
micritic but has been extensively 
cross-cut by sparry veins

Diagenetic/High T  5.3 ± 8.2

TABLE 6. PETROGRAPHY OF OIYUG BASIN CARBONATES
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