

Al Khanjari, S., and Vanderbauwhede, W. (2016) Evaluation of the Memory

Communication Traffic in a Hierarchical Cache Model for Massively-Manycore

Processors. In: 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP), Heraklion Crete, Greece, 17-19 Feb 2016, pp. 726-

733. ISBN 9781467387767.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/137276/

Deposited on: 20 February 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296192218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.gla.ac.uk/137276/
http://eprints.gla.ac.uk/137276/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Evaluation of the Memory Communication Traffic
in a Hierarchical Cache Model for

Massively-Manycore Processors
Sharifa Al Khanjari

School of Computing Science
University of Glasgow

Glasgow, UK
Email: s.al-khanjari.1@research.gla.ac.uk

Wim Vanderbauwhede
School of Computing Science

University of Glasgow
Glasgow, UK

Email: wim.vanderbauwhede@glasgow.ac.uk

Abstract—The scaling of semiconductor technologies is leading
to processors with increasing numbers of cores. A key enabler
in manycore systems is the use of Networks-on-Chip (NoC) as
a global communication mechanism. The adoption of NoCs in
manycore systems requires a shift in focus from computation to
communication, as communication is fast becoming the dominant
factor in processor performance. Many researchers have focused
on direct communication between cores in the NoC; however in a
manycore processor the communication is actually between the
cores and the memory hierarchy. In this work, we investigate
the memory communication traffic of shared threads in a
hierarchical cache architecture.

We argue that the performance scalability for shared-memory
applications in a hierarchical cache architecture for systems with
thousands of processor cores depends on the distance between
threads sharing memory in terms of the cache hierarchy (the
“memory distance”). We present latency and throughput results
comparing fat quadtree, concentrated mesh and mesh topologies
as a function of the “memory distance” between the threads. Our
results using the ITRS physical data for 2023 show that the model
of thread placement and the distance of placing them significantly
affects the NoC performance, and that scale-invariant topologies
perform better than flat topologies.

Index Terms—Manycore, Shared-Memory Architecture, Net-
work on Chip, Quadtree.

I. INTRODUCTION

If the semiconductor industry can maintain scaling accord-
ing to Moore’s law, then in the next decade, multiprocessor
systems on chip will contain hundreds to thousands of cores.
Such a massively-manycore system requires high performance
interconnections to transfer data between the cores on the chip.
Already, for manycore processors with close to 100 cores such
as the Tilera Tile64 [1] or the Intel MIC [2], Networks-on-
chip (NoC) have become the preferred on-chip communication
infrastructure, and for processors with larger numbers of cores,
NoCs constitute the only option. Performance of NoC-based
manycore systems is highly dependent on the traffic patterns
and the NoC topologies: in manycore systems communication,
not computation, is the performance-limiting factor. In a NoC-
based manycore system with global shared memory, the com-
munication is between the cores and the memory. Many NoC
researchers have focused on point-to-point traffic, implicitly

assuming the system does not provide global shared memory.
These are two different traffic patterns and the resulting NoC
performance is very different, as is shown by comparing the
results in [3] to the results in this work.

To make effective use of the resources provided by ma-
nycore processors, parallel programming is essential. As a
result, applications have increasing numbers of threads, and
thread placement and inter-thread communication have be-
come important topics of research. Besides, as the number of
cores increases, memory locality will become even more im-
portant. The main focus of our research is the effect of memory
locality on the placement of threads sharing memory, and the
network performance resulting from different topologies and
locality models.

In the presence of caches, the traffic is determined by both
the location of the cache with respect to the thread and by
the distribution of data over the cache hierarchy. For example,
in a distributed cache system with hashing such as used by
the Tilera TilePro, the average distance from each core to the
cache is constant; in the MIC architecture, the L3 cache is the
union of the L2 caches for each core, and the ring topology
of the NoC means the memory distance between two threads
that are located on physically adjacent cores can be up to half
the total number of cores. Neither of these architectures can
scale to thousands of cores.

In order to investigate the effect of memory locality on
performance, we propose abstract models of placing threads
in shared-memory applications with different distance metrics.
These models let us control the distance between the threads as
well as the shape of the local area, and thus provide general
insights into the suitability of a given topology for a given
shared-memory thread placement model.

Our assumption is that the future manycore architecture
will have a distributed memory architecture, with memory
embedded in the processor tiles or stacked on top of them
(if not physically then at least logically). This assumption
is supported by the advent of embedded DRAM and 3D
memories [4],[5] and the deployment of 3D memory in e.g.
Intel’s ‘Knights Landing’ Xeon Phi. Thus we propose a

hierarchical cache architecture model and the allocation of the
hierarchical cache in three topologies.

A crucial claim in our work is that in order to optimise
performance, the communication patterns in multi-threaded
shared-memory programs will need to exhibit locality with
respect to the memory hierarchy, because the thread scheduler
will consider both the load of the cores and the amount of
data sharing when placing the threads, see e.g. [6, 7, 8]. Our
paper shows that enforcing locality of access will improve the
latency.

The remainder of this paper is organized as follows. In
Section II we present our thread placement locality models.
In Section III we show that cache coherency traffic will not
affect the over all performance of the network. Moreover,
the tracking sharers will have a small overhead on the cache
size. In Section IV we describe our proposed hierarchical
cache model and the topologies used. In Section V we detail
the cost model of the topologies, the links and buffers per
virtual channel used for each topology, the technology node
assumptions used in this work, and the overheads for a 1024
core chip. In Section VI we describe evaluation methodologies
and present results and analysis. We conclude in Section VII.

II. THREAD PLACEMENT LOCALITY MODELS

We propose a simple level-based model for locality of
placement of threads sharing a memory address. To model
locality, we group the cores of the chip and create hierarchical
groups to encompass the whole system. Using 0 < l ≤ n for
the levels of the hierarchy, we can express the probability for
communication across level-l as:

p(l) = (1−α)α l−1,1≤ l < n (1)

p(n) = α
n+1

The parameter α relates to the locality of placing strongly
coupled threads. It expresses the probability that a memory
request has to travel a certain distance in the hierarchy. Lower
α means higher locality: if α = 0.2, then according to equation
(1) 20% of the memory requests will have a shared memory
address with a thread in the first level cache, and 20% of that
portion in the second level cache, etc. When α = 1, it means
that most of the memory requests will have a shared memory
address in the last level cache.

In this paper, we use two different instances of locality-
based shared-memory thread placement models to evaluate the
performance of the NoC topologies. These are abstract models
representing different types of thread placement for different
applications.
• In the first model (Group Clustering), we place the

threads in cores of the chip in fours, and create hierarch-
ical groups to encompass the whole system, in a scale-
invariant fashion. In this case n = log4(N) with N the
number of cores, and each level contains 4l cores. The
group clustering locality captures the physical hierarch-
ical caches architecture. Figure 1.a shows an example of
group clustering of threads where the requesting thread is

on core 0. This is a generalisation of the memory access
pattern resulting from e.g. tree-based reduction of values
from all threads.

• In the second model (Ring Clustering), we place the
threads in cores of the chip in concentric rings around
the sender core. In this case the number of cores per
level is 8l as long as the rings don’t meet the edge. This
is a generalisation of nearest-neighbour (stencil) traffic.
Figure 1.b shows an example of ring clustering of threads
where the requested thread is on core 15. This model
is a generalisation of nearest-neighbour stencils typical
for many finite-difference based applications such as
encountered in e.g. weather prediction or computational
fluid dynamics.

The core will generate a memory request to a cache that is
shared with a thread, which is selected based on the clustering
model. The memory request will result in a cache miss until
it reaches the shared cache between the threads. The shared
cache will then return a cache line back to the requested thread.
All the memory requests generated by the cores are to a shared
memory address with other threads, which is the worst case
scenario.

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

a) Group clustering b) Ring clustering

Figure 1. Example of thread placement models in 8x8 mesh

III. CACHE COHERENCY AND TRACKING SHARERS

In their seminal paper “Why on-chip cache coherency is
here to stay”, Martin et al. [9] discuss how on-chip coherence
can scale as the number of cores increases. The conven-
tional wisdom has been that cache coherence could not scale
because of exploding storage and interconnection network
traffic requirements and concerns over latency and energy
consumption. Before investigating the issues involved in future
for coherence, state-of-the-art cache coherence mechanisms
were examined, and found to be more scalable than expected.
Five potential concerns were examined when scaling on-
chip coherence. First, regarding the traffic on the on-chip
interconnection network, they showed that it scales when
precisely tracking sharers. Secondly, regarding storage costs
for tracking sharers, they showed that a hierarchy combined
with inclusion enables efficient scaling of the storage cost for
exact encoding of sharers. Thirdly, for inefficiencies caused by
maintaining inclusion, they found that using chip architects to
design a system with an inclusive shared cache with negligible
recall rate can efficiently embed the tracking state in the
shared cache. Fourthly, latency of cache misses was shown
to be tolerable, as misses to actively shared blocks have

greater latency than other misses. Finally, the energy overhead
analysis shows that based on the traffic and storage scalability
analyses, the energy overhead of coherence will not increase
with the number of cores.

In our paper, building on these arguments, we have assumed
a shared-memory model of computation. In order to maintain
a global shared memory caches are essential. Based on the
findings of Martin et al. [9] we can assume that the traffic
overhead of the cache coherency traffic will be negligible.
Furthermore, [10] showed that the amount of application data
in the NoC is much larger than the amount of cache coherence
data for almost all cache sizes. Our proposed architecture
provides a good baseline for a hierarchical cache architecture
with cache coherency. Using the directory based protocol and
the tracking protocol on our hierarchical cache architecture
would only require a 1.5% storage overhead on the cache size.

IV. HIERARCHICAL CACHE MODEL

3D memory stacking has received great attention in recent
years [4, 11], since it resolves the memory bandwidth chal-
lenges of 2D integration. The latest Xeon Phi (Knights Land-
ing) already uses a hybrid form of stacked memory, Micron’s
Hybrid Memory Cube. 3D memory allows each processor
core to have fast and high bandwidth access to the cache
banks directly stacked on top of it using very dense vertical
interconnects. The processor core can also access cache banks
stacked on the other processors [12],[13]. The advantages of
3D stacking are lower latency and higher bandwidth. We
propose a 3D stacked cache memory hierarchy that has a
similar concept to the memory hierarchies of the traditional
multiprocessors. The stacked cache can be either private or
shared [14]. Some research focuses on the techniques for
DRAM caches architecture [15], however, our focus is on the
network communications between the cores and the memory.

We present a hierarchical cache architecture for three dif-
ferent network topologies namely mesh, concentrated mesh
and fat quadtree, introduced in the next sections. The caches
are stacked on top of one another. Because of their inherent
scalability, hierarchical cache architectures are becoming an
interesting alternative for manycore systems. Grouping cores
and their caches in clusters reduces network congestion by
localizing traffic among several hierarchical levels, potentially
enabling much higher scalability. In our proposed architecture,
every four cores are clustered and share a level L2 cache,
each 4× 4 cores are clustered and share a level L3 cache
and so on. Using 0 < l ≤ n for the levels of the cache, and
assuming n = log4(N) with N the number of cores, figure 2
shows the proposed hierarchical cache architecture. L1 caches
are embedded in the cores. C1, C2 etc. are the individual cores.

A. Mesh

The mesh topology has been the most popular NoC topology
so far and it has been used in most of the recent manycore
chips such as the Intel SCC (48 cores) [16], TFlops (80 cores)
[17], Tilera (64 cores) [1]. It organises the routers in a grid,
one router per core. The mesh has a radix (number of ports)

RAM

L4

L3

 L2

C3

 L2

C1

C2

C3

C4

C1
C2

C3
C4

C1
C2

C4
C1

C2
C3

C4

L2 L2

Figure 2. The proposed 3D stacked memory (N = 256)

of 5. Deadlock is avoided by using a deadlock free routing
algorithm, e.g. XY routing.

The allocation of the memory controllers for the hierarchical
caches were placed as near as possible to the centre of the
cores that share the cache. A router can only represent a single
cache level. Figure 3 shows an example of the hierarchical
cache allocation for 8× 8 mesh. The core can calculate the
location of all its hierarchical caches using the following
equation, where \ represents integer division.

4l−1(coreID\4l−1)+4l−2−1, 1≤ l < n (2)

Our novel Mesh Memory Routing (MMR) is a routing
mechanism where the routing decision is made at the routers.
When a memory request arrives at a cache router, the cache
router will check if this cache is shared between the requester
core and the other thread which was obtained using group
or ring clustering. If the cache router is shared (cache hit),
then a cache line will be sent to requesting core. If the cache
router is not shared (cache miss), the request will be sent
to the cache level above. The requests are routed through
the network between the caches following XY routing. If
the request reaches the highest level router (DRAM), then a
memory line will be returned to the requesting core passing
through all the caches that the request came from.

Figure 3 shows an example for a ring clustering case (core
27 sending a memory request to a shared memory with cores
18 or 19 or 52 and back). It illustrates the path that a request
from core 27 has to pass through if it shares memory with

cores 18, 19 and 52. The requester has to go to L2 (router
21) then L3 (router 19) then L4 (router 15), then pass back
through all the caches to the requester core 27.

B. Concentrated Mesh

The concentrated mesh (Cmesh) has been introduced by
[18] to preserve the advantages of a mesh with decreased
diameter. The number of cores sharing a router is called the
concentration degree of the network (4 in this work). The
Cmesh topology requires fewer routers resulting in reduced
hop count and consequently improved latency. It has a radix
of 8.

The cache placement of the Cmesh is similar to the mesh but
the Cmesh has one less level of cache. In a Cmesh each router
represents L2 and might represent another level of cache. The
memory traffic routing is similar to the mesh.

C. Fat Quadtree

The fat tree connects routers in a tree with the cores at the
leaves. To avoid congestion towards the root of the tree, a fat
tree uses an increasing number of links as described in [19].
A fat quadtree of size N is a structure that can be regarded as
a rooted 4-ary tree of height log4(N). In a way this exactly
reflects the group clustering model.

The quadtree topology reflects our hierarchical cache ar-
chitecture perfectly, as the leaves represent the cores and the
nodes represent the caches. Similarly, four cores share a L2
cache, four L2 caches share a L3 cache ... etc.

Fat Quadtree Memory Routing (FQMR) is a routing mech-
anism. When a memory request arrives at a cache router, the
cache router will check if this cache is shared between the
requester and the other thread which was obtained using group
of ring clustering. If the cache router is shared (cache hit), then
a cache line will be sent to the requesting core. If the cache
router is not shared (cache miss), the request will be sent to the
parent which is the cache level above. The requests are routed
through the network between the caches following nearest-
common ancestor routing. If the request reaches the highest
level router (DRAM), then a memory line will be returned
to the requesting core passing through all the caches that the
request came from.

V. NOC TOPOLOGIES OVERHEAD

The overhead imposed by the NoC is potentially an im-
portant factor to take into account when selecting a topology,
because the cost of the die is proportional to its area. Therefore
we have created analytical models for the overhead for the
three topologies as a function of the number of cores in the
chip, the number of buffers and the number of virtual channels.

A. Cost Model

We present the cost model of mesh, Cmesh and fat quadtree
in terms of link complexity, number of routers and buffers.
Table I shows the notations used for the cost model.

Link Complexity is the total number of links in the topology.
In section V-C, we will compute the wire overhead for mesh,

Table I
TABLE OF NOTATIONS

Symbol Description Symbol Description
N Number cores NL Number of links
nB Number of buffers NR Number of routers
nVC Number of virtual channels NB Number of buffers

Cmesh and fat quadtree. The total number of buffers in mesh
and Cmesh are straightforward as in each router there are 5
and 8 ports, respectively. The total number of buffers in fat
quadtree is more complex since the buffer size doubles at every
level because the wire lengths are doubling at every level.
Table II shows the cost model for 1024 cores.

Table II
COST MODEL FOR 1024 CORES

Mesh
NL 2

√
N(
√

N−1).nVC
NR N
NB 5nBnVCN

Fat Quadtree
NL N.log4(N)
NR

N−1
3

NB nB(N−4)(
√

N−2)+2nB
√

N
Concentrated Mesh

NL
√

N(
√

N
2 −1).nVC

NR
N
4

NB 2nBnVCN

To calculate the wire link overhead, we get the links width
Linkwidth as in equation 3, where (W) is the wire pitch, (Nbits)
is the number of bits in parallel for one packet and Nlayersis
the number of layers.

Linkwidth =
W ×Nbits

Nlayers
(3)

The number of vertical wires in a fat quadtree can be
obtained Verticalwire = 2(log4N−1)log4N, and for the mesh
Verticalwire =

√
N where N is the number of cores. Starting

from Eq. 3 and the number of vertical wires, we can compute
the area overheads as follows:

AreaWire = 2×WidthVerticalLink×WidthChip (4)
AreaChip = AreaCore×N +AreaWire (5)

AreaOverhead =
AreaWire

AreaChip
(6)

B. Links and Buffers per Virtual Channel

In the memory traffic model, the flits are required to travel
between the caches. The fat quadtree reflects the hierarchical
cache architecture perfectly, hence all the links will be utilised.
However, in a mesh and Cmesh some of the links won’t be
used at all. Figure 4 shows an example in an 8×8 mesh, where
12.5% of the total links are not used. With mesh and Cmesh
more resources (VC and number of buffers) were, however,
assigned to them to compensate for unused resources. Mesh
and Cmesh will congest faster compared to the fat quadtree

1

2

3

3

1

2

Figure 3. Hierarchical cache allocation for 8×8 mesh

if the resources are not equally distributed because the cache
router and the links between the caches will congest faster.

The fat quadtree has 5120 links while the mesh has 1984
links in a 32× 32 network and 22% of those links are not
used. Hence, 4 VC were assigned to the mesh to compensate
for the unused links, to give 6188 utilised links. The Cmesh
has 480 links with 16% not used links. Therefore, 14 VC were
assigned to the Cmesh to give 5600 links. Now the mesh and
the Cmesh have more links than the fat quadtree. Similarly the
number of buffers in a virtual channel in a mesh and Cmesh
are now 48 flit/VC and 24 flit/VC, respectively.

Figure 4. 12.5%of the links in an 8×8 mesh are not used

C. Technology Node Assumptions

To ensure realistic simulations of the next decade’s ma-
nycore systems, we assume the 10nm process in 2023 as
projected by the International Technology Roadmap for Semi-
conductors. Table III lists the physical parameters for this
technology node from the 2011 ITRS data. We used the die
size of the 64-core Tile64 from [20] (433.5mm2) to estimate
the core size and scaled it to the 2023 node. From ITRS [21]
the chip size at production in 2013 was 140mm2 so it is less
than the estimated core size by a factor of 3.1(434/48 = 140).
In 2023, the chip will contain 20× more cores than today’s
chip. Consequently, the chip size in 2023 with nearly 1280
(20×64) cores will be approximately 3.1×111 = 344.1mm2.
Hence, the area of one core is 344.1/1280 = 0.3mm2. This
area corresponds to dimensions of about 0.5mm×0.5mm. The

width of one core is thus 0.5mm and the wire delay can be
estimated at 0.5×33827/1000 = 17.5ns.

Table III
TECHNOLOGY PARAMETERS

Year 2013 2023
Chip size at production [21] 140 mm2 111 mm2

Global wire delay [21] 999 ps 33827 ps
Estimated core size 6.8mm2 0.3mm2

Estimated wire delay 2.6ns 17.5 ns

D. Overheads for a 1024-core chip, 10nm (2023) ITRS node

In terms of buffer space overhead, the mesh will require
5.1KB of storage per core, the Cmesh 2KB and the fat
quadtree 15.3KB. Although the total number of buffers is
a lot more in fat quadtree than mesh, it is only a very
small fraction of the total size of the chip: e.g. the per-core
L2 cache on the 60-core Xeon Phi is already 512KB. With
the above assumptions, the area of a 15.3KB SRAM buffer
would be 0.14% of the estimated core size (memory density
37.6MB/mm2). In terms of wire overhead, our cost model
shows that the wire area overhead for the fat quadtree would
be 0.3% of the estimated chip size for a 1024-core chip (wire
pitch 17nm).

These results are very important as they indicate that for this
type of manycore architecture, the NoC overhead is negligible,
which means that the choice of the NoC can be based solely
on performance.

VI. SIMULATION RESULTS AND DISCUSSION

The simulation was implemented using the HNOCS (Het-
erogeneous Network-on-Chip Simulator) package, which is an
open source NoC simulator [22] based on OMNeT++ [23].
OMNeT++ is an extensible, modular, open source component
based C++ simulation library and framework, primarily aimed
at building network simulators. The original HNOCS uses a
mesh topology with wormhole switching with virtual channels
and XY routing. We extended HNOCS with the Cmesh and
fat quadtree topologies and their memory routing algorithms,
as well as our locality-based traffic distributions.

We model the process-to-cache communication using
Poisson-distributed traffic because it typically offers a good

estimate on the average performance of networks and it has
been widely used in both the evaluation of interconnection
networks and in cache modelling, see e.g. [24].

The different topologies were simulated on 1024-core chip
(cores placed in a regular 32×32 grid). Four virtual channels
are used for the mesh and fourteen for Cmesh as explained
in section V-B while for fat quadtree one physical channel
is used for the lowest-level links and it quadruples at each
level to simulate a fat quadtree. Hence, the fat quadtree has no
virtual channels. The wire delay is proportional to the distance
between the routers so in a fat quadtree it doubles at each
level. The destination was selected using different degrees of
localisation. Table IV summarises the simulation parameters
used in our simulations.

In the simulation, all cores generate a memory request at
the same time. A core will generate the next request only if
the source queue is not full; hence there will be no dropped
requests.

Table IV
SIMULATION PARAMETERS

Topology Mesh Cmesh Fat quadtree
Number of virtual channels 4 14 0

Wire delay (ns) 17.5 35 35×2l−1, 1≤ l < n
Flit size (bytes) 64

Buffer size (flits/VC) 48 24 16
Channel datarate (Gb/s) 128

We evaluated the performance of the three topologies as a
function of the transmission rate and the miss rate α , where
α = 1 means that the threads are replaced the furthest and
the main memory will be hit, and α = 0 means the first level
cache will be 100% hit. Figures 5 and 6 show the results of our
experiments in terms of latency and throughput. Here, latency
is the latency of the network, not taking into account the wait
time of a packet at the transmitting core when the link is busy.

For group clustering, the fat quadtree performs best, as
Figure 5 shows: the Cmesh and the fat quadtree have lower
latencies when (0 ≤ α ≤ 0.1), then the latencies start to
increase as α becomes higher. The Cmesh congests faster than
the fat quadtree because it has fewer routers. The mesh has
high latencies although it has more routers than both the fat
quadtree and the Cmesh. This is because in memory traffic,
where the requests travel between the caches, the path of the
requests is deterministic hence some routers have more traffic
while others might not receive any traffic. Moreover, most of
the links that connect between the caches are nearly 100%
utilized. Some of the cores do not receive any flits due to the
congestion so we set the latency penalty for those cores to the
simulation time 1ms.

In terms of throughput, we observe that in nearly all the
cases the throughput increases rapidly as the request rate
increases. In case of (0.5 ≤ α ≤ 1) the throughput is lower
because the latencies were high and networks are congested.

For ring clustering, the mesh and the Cmesh have high
latencies as they congest faster and they perform worse than
the fat quadtree. The fat quadtree has low latencies. This

is because in the mesh and the Cmesh the memory request
traffic always travels on the same path between the caches
hence the network gets congested. In terms of throughput,
the fat quadtree has higher throughput compared to the mesh
and Cmesh. Overall the memory bandwidth of our system is
64T B/Sec compared to the 288GB/Sec and 352GB/Sec for
present systems e.g. NVIDIA’s Kepler K40 GPU and Intel’s
Xeon Phi 7120P respectively.

Figure 7 shows the latencies of the topologies when the
network is not congested and packets are generated every 80ns
for different α parameter. In both models, the fat quadtree
performs best even when the threads are placed further apart.
Overall, group clustering results in lower latencies than ring
clustering; this is an important result for the placement of
threads in group neighbours that match the cache architecture.

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Locality factor

Group Clustering

Mesh

Fat quadtree

Cmesh

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Locality factor

Ring Clustering

Mesh

Fat quadtree

Cmesh

Figure 7. Group and Ring clustering

VII. CONCLUSION

We have investigated the overhead and performance of flat
(mesh, Cmesh) and scale-invariant (fat quadtree) NoC topo-
logies for future manycore systems with thousands of cores
using two different models of locality for thread placement in
shared-memory systems, group clustering and ring clustering.
We show that the overhead of the NoC on a thousand-
core system is negligible for all three topologies, so that the
choice of topology depends solely on the performance. We
show that the distance between the threads and the clustering
model strongly affects the performance of the network. Scale-
invariant topologies such as the fat quadtree perform better

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

Mesh

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0 1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

CMesh

a=0.75

a=0.5

a=0.25

a=0.1

a=0.05

a=0

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

Mesh

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

Fat Quadtree

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

CMesh

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

Figure 5. Group clustering results

than flat ones because their structure matches the hierarchical
cache architecture. Our results clearly show the importance of
thread placement locality for very large manycore systems.

REFERENCES

[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown, et al.,
“Tile64-processor: A 64-core soc with mesh intercon-
nect,” in Solid-State Circuits Conference, 2008. ISSCC
2008. Digest of Technical Papers. IEEE International,
pp. 88–598, IEEE, 2008.

[2] A. Duran and M. Klemm, “The intel R© many integrated
core architecture,” in High Performance Computing and
Simulation (HPCS), 2012 International Conference on,
pp. 365–366, IEEE, 2012.

[3] S. Al Khanjari and W. Vanderbauwhede, “The impact of
traffic localisation on the performance of nocs for very
large manycore systems,” Procedia Computer Science,
vol. 56, pp. 403–408, 2015.

[4] G. H. Loh, “3d-stacked memory architectures for multi-
core processors,” in ACM SIGARCH Computer Architec-
ture News, vol. 36, pp. 453–464, IEEE Computer Society,
2008.

[5] S. K. Lim, “3d-maps: 3d massively parallel processor
with stacked memory,” in Design for High Perform-
ance, Low Power, and Reliable 3D Integrated Circuits,
pp. 537–560, Springer, 2013.

[6] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and
P.-A. Wacrenier, “Dynamic task and data placement over
numa architectures: an openmp runtime perspective,” in
Evolving OpenMP in an Age of Extreme Parallelism,
pp. 79–92, Springer, 2009.

[7] D. Tam, R. Azimi, and M. Stumm, “Thread cluster-
ing: sharing-aware scheduling on smp-cmp-smt multi-
processors,” in ACM SIGOPS Operating Systems Review,
vol. 41, pp. 47–58, ACM, 2007.

[8] E. Z. Zhang, Y. Jiang, and X. Shen, “Does cache sharing
on modern cmp matter to the performance of contempor-
ary multithreaded programs?,” in ACM Sigplan Notices,
vol. 45, pp. 203–212, ACM, 2010.

[9] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip
cache coherence is here to stay,” Communications of the
ACM, vol. 55, no. 7, pp. 78–89, 2012.

[10] G. Girão, B. C. de Oliveira, R. Soares, and I. S. Silva,
“Cache coherency communication cost in a noc-based
mpsoc platform,” in Proceedings of the 20th annual
conference on Integrated circuits and systems design,
pp. 288–293, ACM, 2007.

[11] S. K. Lim, 3D-MAPS: 3D massively parallel processor
with stacked memory, pp. 537–560. Springer, 2013.

[12] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi,
R. Balasubramonian, R. Iyer, S. Makineni, and
D. Newell, “Optimizing communication and capacity in

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

Mesh

a=0.75 a=0.5
a=0.25 a=0.1
a=0.05 a=0

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

a=0.75 a=0.5

a=0.1 a=0.1

a=0.05 a=0
1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Memory Access Generation Rate (Gflit/s)

CMesh

a=0.75 a=0.5
a=0.25 a=0.1
a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

Mesh

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

Fat Quadtree

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.01 0.1 1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Memory Access Generation Rate (Gflits/s)

CMesh

a=0.75 a=0.5

a=0.25 a=0.1

a=0.05 a=0

Figure 6. Ring clustering results

a 3d stacked reconfigurable cache hierarchy,” in High
Performance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on, pp. 262–274,
IEEE.

[13] A. Zia, P. Jacob, J.-W. Kim, M. Chu, R. P. Kraft, and
J. F. McDonald, “A 3-d cache with ultra-wide data
bus for 3-d processor-memory integration,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 18, no. 6, pp. 967–977, 2010.

[14] J. Jung, K. Kang, G. De Micheli, and C.-M. Ky-
ung, “Runtime 3-d stacked cache management for chip-
multiprocessors,” 2013.

[15] S. Mittal and J. Vetter, “A survey of techniques for archi-
tecting dram caches,” Parallel and Distributed Systems,
IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[16] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar,
S. Jain, V. Erraguntla, M. Konow, M. Riepen, M. Gries,
et al., “A 48-core ia-32 processor in 45 nm cmos using
on-die message-passing and dvfs for performance and
power scaling,” Solid-State Circuits, IEEE Journal of,
vol. 46, no. 1, pp. 173–183, 2011.

[17] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, et al.,
“An 80-tile 1.28 tflops network-on-chip in 65nm cmos,”
in Solid-State Circuits Conference, 2007. ISSCC 2007.
Digest of Technical Papers. IEEE International, pp. 98–

589, IEEE, 2007.
[18] J. Balfour and W. J. Dally, “Design tradeoffs for tiled

cmp on-chip networks,” in Proceedings of the 20th
annual international conference on Supercomputing,
pp. 187–198, ACM, 2006.

[19] C. E. Leiserson, “Fat-trees: universal networks for
hardware-efficient supercomputing,” Computers, IEEE
Transactions on, vol. 100, no. 10, pp. 892–901, 1985.

[20] C. Killebrew et al., L2 Cache to Off-chip Memory Net-
works for Chip Multiprocessor. PhD thesis, Department
of Electrical Engineering and Computer Sciences, Uni-
versity of California, 2008.

[21] “International technology roadmap for semiconductors
(itrs),” 2011.

[22] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny,
“Hnocs: Modular open-source simulator for heterogen-
eous nocs,” in Embedded Computer Systems (SAMOS),
2012 International Conference on, pp. 51–57, IEEE,
2012.

[23] A. Varga et al., “The omnet++ discrete event simulation
system,” in Proceedings of the European Simulation
Multiconference (ESM2001), vol. 9, p. 185, sn, 2001.

[24] C. M. Krishna, Performance modeling for computer
architects, vol. 11. John Wiley & Sons, 1996.

