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Proving Unprovability

Bruno Whittle

July 19, 2016

1 Introduction
Suppose that we have accepted somemathematical theory T (i.e. some axioms and
rules of inference). Is there some natural, generally applicable way of extending T
to a theory S that can prove a wide range of things about what it itself (i.e. S) can
prove, including a wide range of things about what it cannot prove, such as claims
to the e�ect that it cannot prove certain particular sentences (e.g. 0 = 1), or the
claim that it can never prove both a sentence and its negation (i.e. it is consistent)?
Prima facie, one would have thought that the answer would be ‘yes’. For if we accept
a given theory, then one would have thought that we also accept that it is consistent
(as well as other such claims about what it can prove). For example, if we accept
a given theory of sets, then one would have thought that we also accept that it
is consistent. But then a theory representing everything that we believe about a
certain subject (e.g. sets) must be one that can prove such claims about itself; that
is, must be along the lines of S as described.
However, typical characterizations of Gödel’s second incompleteness theorem,

and its signi�cance, would lead us to believe that the answermust in fact be ‘no’. For
characterizations of this theorem tend to be along the lines of: no consistent for-
mal system meeting certain relatively undemanding conditions can prove its own
consistency.�us, the following, from the �rst lines of Panu Raatikainen’s Stanford
Encyclopedia of Philosophy entry on the incompleteness theorems, is representative:

�e �rst incompleteness theorem states that in any consistent formal system
F within which a certain amount of arithmetic can be carried out, there are
statements of the language of F which can neither be proved nor disproved
in F. According to the second incompleteness theorem, such a formal sys-
tem cannot prove that the system itself is consistent (assuming it is indeed
consistent). [2015]
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According to this statement of the second theorem, no consistent formal system
‘within which a certain amount of arithmetic can be carried out’ can prove its own
consistency. If that is correct, then it would seem that the answer to our question
must indeed be ‘no’.�at question, recall, is: given some theory T that we accept, is
there some natural, generally applicable way of extending it to a theory S that can
prove a range of things about what it itself can prove, including a range of things
about what it cannot prove (such as its consistency)? For it is plausible that any
theory that we are capable of accepting will at least correspond to a formal system
(i.e. when formalized). �us, if the answer is to be ‘yes’, then both the theories
that we start with and the extensions are going to be (or correspond to) formal
systems. But then as long as the initial theory T contains a reasonable amount of
arithmetic, the extension S will have to be (or correspond to) a consistent formal
system that itself contains a reasonable amount of arithmetic and that proves its
own consistency—which is impossible, according to this statement of the theorem.
Further, typical characterizations of the signi�cance of this result are apt to re-

inforce the impression that the answermust be ‘no’. For example, in his paper ‘What
Gödel’s Incompleteness Result Does and Does Not Show’, Haim Gaifman charac-
terizes what the result does show as follows.

Any deductive system, T, that formalizes mathematical reasoning must leave
something outside: its own consistency, expressed as Con(T), cannot be de-
rived in it. As we remarked above, a computer that proves theorems generates
proofs in some formal system. . . If the computer can “know” only what it can
prove, then it cannot know that it is consistent (that is, never produces a con-
tradiction). . . A mathematician realizes by self-re�ecting on his own reason-
ing that his inferences can be formalized by such-and-such deductive system.
From which the mathematician can go on to infer that the system in ques-
tion is consistent. . . Gödel’s result shows however that self-re�ection cannot
encompass the whole of our reasoning; that is, it cannot comprehend itself
within its horizon. [2000b: 466–69]

What Gödel showed was that if T is a formal system containing a certain amount
of arithmetic, then T can prove ‘coded’ versions of claims about what it itself can
prove (i.e. using gödel numbering). He showed further that if T is consistent, then
it will not in this way be able to prove its own consistency.�at is, it will not be able
to prove its coded consistency statement, Con(T). However, although Gaifman
starts here with claims about coded consistency statements, the claims that he goes
on to make seem clearly to be about consistency statements quite generally. And
these seem to require that the answer to our question must be ‘no’: they are pre-
sumably implicitly restricted to theories meeting some minimal constraints (e.g.
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concerning how much arithmetic is contained); but if there is some natural, gen-
erally applicable way of extending any given theory to one that can prove its own
consistency, then it would be hard to see these claims about what computers can-
not prove, and about the limits of mathematical self-re�ection, as anything other
than false. What is supposed to justify these more general claims? �e thought is
of course that the argument of the second theorem will apply not only to the proof
of coded consistency claims, but also to any reasonable alternative way of proving
things about what is provable in a given theory.

�e aim of the present paper, however, is to explore a positive answer to our
question. It is to develop natural ways of extending any given theory that we might
accept to one that can prove a range of things about what it itself can prove, includ-
ing its consistency. If this can be done, then it would show that the thought behind
typical characterizations of the signi�cance of Gödel’s result—that the argument of
the result will apply to any reasonable way of proving things about provability—is
mistaken.

1.1 Proof and Truth
�e general approach that I will pursue is one that would seem to be very natural,
but which, surprisingly, does not seem to have been explored.�is is to follow the
lead of recent (and not so recent) approaches to truth and the Liar paradox. In
particular, approaches that develop accounts of languages that contain their own
truth predicates.�is approach to the question we are concerned with would seem
to be natural because in each case—i.e. the problem of how languages can contain
their own truth predicates, on the one hand, and the problem of how theories can
prove things about their own provability, on the other—the obstacles that stand
in the way of a straightforward solution would seem to be very similar. �us, in
the case of truth, the principle obstacle is the Liar paradox, i.e. the paradox that
results from sentences that say of themselves that they are not true, together with
other paradoxes of the same family. �ese show that languages containing their
own truth predicates cannot have all of the properties one would have expected.
Similarly, in the case of provability, themain obstacle arises from sentences that say
of themselves that they are unprovable in the theory in question, as well as other
sentences belonging to the same family (see below). Just as in the truth case, the
existence of such sentences shows that theories about their own provability cannot
have all of the properties one would have expected.
To illustrate, suppose that S is a theory about, among other things, provability

in S, and suppose that Pr(x) is a predicate of S intended to mean provable in S.
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Suppose also that c is an individual constant of the language of S such that S proves
c = ‘¬Pr(c)’.1 �e existence of such a constant shows that S cannot have all of
the properties that one would have expected of a theory concerned with its own
provability. �ere are a number of ways of seeing this point. But the simplest is
perhaps as follows. Prima facie, one would have expected a theory about its own
provability to prove every instance of the following schema (for sentences A: by an
instance of this schema I mean the result of replacing both occurrences of the �rst
letter of the alphabet with a given sentence).

(1) Pr(‘A’)→ A

A�er all, if S is an acceptable theory, then anything it proves will be true. And
this fact about provability in S—i.e. that it is factive—is a basic and important
one. So one would expect schema (1)—which constitutes the most straightfor-
ward expression of this fact—to be provable in S. However, an instance of (1) is
Pr(‘¬Pr(c)’) → ¬Pr(c), and so given c = ‘¬Pr(c)’ and classical logic we will have
¬Pr(c).�at is, if S proves (1) and is closed under classical consequence, then it is
unsound (i.e. proves falsehoods): for it will prove ¬Pr(c), which says that it itself is
unprovable in S. Even worse, one would expect S to be closed under the following
rule.

(2) A / Pr(‘A’)

But then, if S proves ¬Pr(c) and is closed under classical consequence, we will have
an outright contradiction, i.e. Pr(c) ∧ ¬Pr(c).
It is not simply that ¬Pr(c) is similar to a Liar sentence in that it says of itself

that it does not have a certain property. It is also that the schema and rule that lead
to the problem are similar to the schema that leads to the problem in the truth case:
i.e. the truth schema: ‘A’ is true i� A. For (1) and (2) are of course weakenings of
the truth schema, but with provability in place of truth.2

1One could make versions of the points below without assuming that the language of S contains
quote-names: e.g. one could instead just suppose that the intended interpretation of c is ¬Pr(c).
However, I will assume that the language does contain such names, since this simpli�es things.
Similarly, in place of ¬Pr(c) one could consider a sentence that says of itself that it is unprovable
using general syntactic resources such as a diagonal function. One would expect a theory about its
own provability to have the means to express such a function, even if its language does not contain
an individual constant along the lines of c. However, I will assume that the language of S contains
such an individual constant, since that allows a more straightforward presentation.

2An alternative argument showing that the existence of sentences such as ¬Pr(c) means that
S cannot have all of the properties one would expect is, essentially, the argument of Gödel’s sec-
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I am not claiming that sentences such as ¬Pr(c), which say of themselves that
they are unprovable in a given theory, give rise to paradoxes in anything like the
way in which Liar sentences do—or indeed that they give rise to paradoxes at all.
�ey do however give rise to limits on what theories can prove about themselves
that are inmany ways similar to the limits on what languages can truthfully express
about themselves that Liar sentences give rise to.
And the parallel goes much wider. For there are of course many variants of the

Liar sentence that give rise to paradoxes in a similar way: e.g. ‘Liar-cycles’, Curry
sentences, Yablo sentences etc. And so it is with provability: that is, there are many
variants on our sentence ¬Pr(c) that give rise to limits on what theories can prove
about themselves in a similar way to that in which ¬Pr(c) does, and these are o�en
similar to the sentences that give rise to variants of the Liar paradox. Here is just one
example (but there are many more). A simple variant of the Liar paradox results
from the following Liar-cycle (using T for truth): a denotes ¬T(b), and b denotes
T(a). For a parallel example with provability, suppose S proves d = ‘¬Pr(e)’ and
e = ‘Pr(d)’. Using (1), (2) and classical logic one can get a contradiction from these
sentences similarly to as in the ¬Pr(c) case.3
It is thus natural to look to accounts of languages containing their own truth

predicates as a guide in our attempt to �nd theories that can prove a range of things
about their own provability. Speci�cally, in §2 I will consider classical approaches
(i.e. theories that are closed under classical consequence), while in §3 I will explore
non-classical ones. Concerning the latter I should forestall a worry: for it might
seem extremely radical—not to say downright wrong-headed—to consider non-
classical approaches to provability. A�er all, we are concerned here with which
sentences can be derived in certain formal systems (or with theories that corre-
spond to such), and surely it is as clear that classical logic is correct in this domain
as it is that it is correct in arithmetic (for example). However, the suggestion is cer-
tainly not that classical logic fails to preserve truth in this context. It is simply that
relaxing the requirement that our theories be closed under classical consequence

ond theorem (which I will discuss in §2.4 below). �is shows that if S is closed under classical
consequence and consistent, then it cannot prove ¬Pr(‘c ≠ c’), for example, and also satisfy the
Hilbert-Bernays-Löb derivability conditions. Again, however, the principles involved are similar
to ones that one would naively expect to hold for truth: the derivability conditions correspond to
weakenings of the truth schema together with a schema to the e�ect that modus ponens is truth
preserving (which follows from the truth schema in classical logic).

3An instance of (1) is Pr(‘Pr(d)’) → Pr(d), giving Pr(e) → Pr(d). But another instance is
Pr(‘¬Pr(e)’) → ¬Pr(e), giving Pr(d) → ¬Pr(e), and thus ¬Pr(e). (2) then gives Pr(d) and so
Pr(e).

5



allows for the satisfaction of desiderata that would otherwise be unsatis�able. In
particular, we will be able to give theories that prove that ‘provability-liars’ such as
¬Pr(c) (where c denotes this sentence) are unprovable in the theory in question—
without thereby committing ourselves to these sentences themselves being provable
(whichwould violate soundness and presumably also consistency).�e approaches
to provability I will explore are inspired by approaches to truth of Kripke [1975]
(§§2.1–2.4), Gupta [1982] (§2.5) and Gaifman [2000a] (§3).
By way of preview, I should say something about the way in which I will think

about provability predicates in this paper; speci�cally, when I will count something
as being a provability predicate for a given theory, and thus when I will count a the-
ory as being (at least in part) about its own provability.�e basic stance is straight-
forward: I will take a predicate letter P to be a provability predicate for a theory
S just in case it is introduced with that intention, i.e. the intention of being used
to mean provable in S.4 �ere is of course nothing special about provability here:
similarly, a predicate letter Q is a natural number predicate, for example, just in
case it is introduced with the intention of being used to mean natural number.�is
is certainly not to say that the project of the paper is easy, however. It follows from
this stance that it is easy to produce some theories that are about their own prov-
ability. But the aim of the paper is to produce theories that can prove a whole range
of things about their own provability, including a whole range of things about what
they cannot prove—and to simply produce some theories concernedwith their own
provability is of course very far from doing this.

�is basic view about provability predicates seems very natural, although I will
consider objections to it in §§2.2 and 2.4. One of these concerns an alternative view
that is sometimes implicitly assumed, but which doesn’t seem to have been argued
for in any serious way. �is is that a theory contains its own provability predicate
only if it satis�es the Hilbert-Bernays-Löb derivability conditions (see §2.4). As we
will see in §2.4, although there is a lot to be said for the claim that, other things
being equal, it is desirable for a theory concerned with its own provability to satisfy
these conditions, there is very little to be said for that to the e�ect that any theory
concerned with its provability must satisfy these, or indeed the weaker claim that
any ‘reasonable’ theory so concerned must. �e comparison with truth will once
again be instructive in relation to these claims.
One upshot of the paper will be that characterizations of the signi�cance of

Gödel’s second theorem must be nuanced in a way that we now realize that char-
4For simplicity I focus on the case of predicate letters, but similar remarks apply to compound

predicates.
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acterizations of the signi�cance of Tarski’s theorem on the unde�nability of truth
must be.�us, onemight initially be tempted to claim that Tarski’s theorem (or the
argument of the theorem) shows that no reasonable language contains its own truth
predicate. We now know, however, that such claims are false. Characterizations of
what the theorem shows must be more restricted: it shows that no language meet-
ing a range of—by no means non-negotiable—conditions contains its own truth
predicate. Similarly, one might initially be tempted to claim that Gödel’s result (or
the argument of that result) shows that no reasonable theory concerned with its
own provability can prove its own consistency (cf. the quote fromGaifman above).
We will see, however, that just as in the case of Tarski’s theorem this claim is false.
What the result shows is rather that no theory meeting a range of—again, far from
non-negotiable—conditions can prove its own consistency.�is is still, to be sure,
an important fact, but it is signi�cantly weaker than is commonly claimed.
I should, however, mention a concern that one might have about the analogy

that I am drawing between proof and truth. Speci�cally, one might worry that
in at least one respect this is misleading. For one might think than an important
di�erence between the two notions is that truth is ‘up for grabs’, while provability
is not; or, at least, formal provability is not, which is what is relevant here. A�er
all, the literature on truth contains a wide variety of non-standard languages that
are each proposed as the best way of extending a language to one that contains
its own truth predicate. In apparent contrast, if we are given some theory T , it is
surely completely �xed what it means for something to be provable in that theory.
�ese two facts are compatible, however. For despite the range of proposals in
the literature on truth, once we focus on one of the speci�c languages from this
literature, e.g. the strong Kleene, least �xed point proposal of Kripke [1975], it is
then completely �xed what it means for a sentence to be true in this language—just
as in the provability case. Conversely, although once we are given a speci�c theory,
it is determined what it means to be provable in this, there is nothing to stop us
from producing a wide range of di�erent theories—e.g. with very di�erent axioms
and rules—as ways of handling di�erent subject matters. �is concern about the
analogy would thus seem misplaced.

1.2 Di�erent Approaches
�ere are three sorts of approaches to modal notions, such as necessity, knowabil-
ity and provability, that one �nds in the literature. Firstly, one can use a predicate
that belongs to the language that one starts with to express the notion in the ques-
tion. For example, one can use a predicate of the language of arithmetic to express
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provability in a given theory.�is is of course the method that Gödel used in prov-
ing the incompleteness theorems. Secondly, one can add to one’s initial language a
predicate or operator intended to express the relevant notion.�is is the sort of ap-
proach that one �nds in standard textbooks such as Hughes and Cresswell [1996].5
�irdly, one can base a modal logic on a predicate in one’s initial language, e.g.
on a provability predicate of the language of arithmetic. �at is, one can consider
translations of modal formulas in terms of this predicate (i.e. where ◻ is translated
as the predicate in question), and ask which modal formulas are such that their
translations are always provable in a given theory, or such that these are always
true.6

�e approaches pursued below are of the second sort: we will add a new pred-
icate to the language of the theory that we start with. What is distinctive about the
approaches below is simply that the intended interpretation of this new predicate
is provability in the theory that is being constructed (i.e. that we are extending our
initial theory to).
I should, however, discuss some examples of the �rst sort of approach that—like

those below—are aimed at giving theories that can prove a range of things about
their own provability, including their consistency.7
One family of approaches use theories with consistency ‘built-in’.�us, rather

than a standard theory S, one would use a variant S* that has consistency built-
in. For example, S* might be such that something counts as a proof in S* if (i) it
is a proof in S of some sentence A, and (ii) there is no shorter (or equally short)
proof in S of a sentence B with A = ¬B or B = ¬A. Alternatively, S* might be
such that something counts as a proof in S* if it is a proof in S such that the set
of axioms of S that are shorter than (or equal to) the longest axiom used in this
proof is consistent. As long as S is consistent, S* (understood in either way) will
prove the same theorems as S. Further, if PA* is such a variant of Peano arithmetic
(PA), for example, then it will be able to prove its own consistency (using gödel
numbering). However, such approaches yield theories that can prove their own
consistency only by apparently trivializing the question. For in the context of PA*,
for example, the question of consistency no longer has the signi�cance that it does
in that of PA.A�er all, ifU is the theory of Frege’sGrundgesetze (including basic law
V), thenU*will be consistent, despite being clearly inadequate.�us, in the context
of theories with consistency built-in, the analogue of the question of consistency

5See also, e.g., Kaplan and Montague [1960], des Rivières and Levesque [1988] and Halbach,
Leitgeb and Welch [2003].

6See, e.g., Japaridze and de Jongh [1998] and Artemov and Beklemishev [2005].
7For discussion of these approaches, see Detlefsen [1986], Visser [1989] and Feferman [1990].
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would seem to be that of whether the theory would be consistent even if it did
not have consistency built-in—which is of course just the question of whether the
original theory is consistent. And PA* can of course no more answer that question
than PA can. For this reason, these approaches do not seem to give a very satisfying
solution to the problem of how to give theories that can prove a range of things
about their own provability. In contrast, however, the approaches of this paper will
not trivialize the question of consistency in any such way.
A distinct but closely related family of approaches would instead simply use

non-standard provability predicates.�us, rather than changing one’s theory—i.e.
changing the condition that something must satisfy to count as a proof—one just
uses a di�erent predicate to talk about this theory. For example, rather than using
a predicate of the language of arithmetic that (under the intended interpretation)
corresponds to the property of being provable in PA (i.e. expresses an arithmetic
property that encodes this property), one would use a predicate of this language
that corresponds to a distinct but coextensive property, such as that which a sen-
tence Ahas if there is some proof of it in PA such that there is no shorter (or equally
short) proof of a sentence B with A = ¬B or B = ¬A. (�is latter property is of
course that of being a theorem of PA*, in the �rst sense mentioned above.) Using
such a predicate PA can in a sense prove claims about its own provability, including
the claim that it is consistent: i.e. PA can prove claims such as ¬Pr*(⌜0 = 1⌝) and
∀x∀y(Neg(x , y) → ¬Pr*(x) ∨ ¬Pr*(y)), where Pr*(x) is a non-standard prov-
ability predicate. (⌜0 = 1⌝ is an abbreviation of the gödel numeral of 0 = 1, and
Neg(x , y) corresponds to the is-the-negation-of-relation.)�ese approaches seem
to change the subject, however: what is being proved is not that 0 = 1 has the
property of being unprovable in PA (for example), it is rather that 0 = 1 has some
other property that happens to be coextensive with this one. A�er all, there is no
natural interpretation of the language of arithmetic under which predicates such
as Pr* express properties that correspond to the property of being provable in PA,
and the axioms and rules of PA would be unnatural given any such non-standard
interpretation of this language. In contrast, the approaches below will not change
the subject in any such way: the relevant predicates will express the property of
being provable in the theory under natural interpretations of the language, and the
axioms and rules will be natural given this interpretation.
Finally, there is the possibility of using such a non-standard provability predi-

cate as a means of introducing a new predicate, say Pr, into the language.�e basic
idea would be to de�ne a translation between sentences of the extended language
and those of the original one, where occurrences of Pr are translated by a non-
standard provability predicate. One would then extend one’s theory by adding an
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axiom to the e�ect that Pr applies to a sentence i� the non-standard predicate ap-
plies to its translation. Given the intended interpretation of the base language, Pr
would apply to exactly those sentences that are provable in the extended theory.
Further, as with the previous family of approaches (in terms of such non-standard
predicates), the extended theory could use Pr to prove a range of things about its
own provability, including its own consistency. Again, however, there seem to be
reasons for preferring the approaches pursued below. Firstly, insofar as the in-
tended interpretation of Pr is provability in the extended theory—rather than prov-
ability in some quite di�erent theory that happens to have the same theorems—to
de�ne Pr in terms of such a non-standard predicate would seem highly unnatural.
Secondly, at least some of these theories will lack an apparently desirable prop-
erty that many of those considered below (namely, those of §§2.1 and 2.3) possess.
Speci�cally, the property that for any sentence A, A is provable i� Pr(‘A’) is; and
A is refutable (i.e. ¬A is provable) i� Pr(‘A’) is refutable. In at least some cases,
if Pr is introduced by means of a non-standard predicate, then one will not have
the second half of this property (i.e. (III) of §2.1 below).8 It is possible that some
theories where Pr is introduced in this way will possess this property, but without
some argument to that e�ect, there does not seem to be any reason to expect this.

2 Classical Approaches
�e �rst approaches I will consider, then, are inspired by the approaches to truth of
Kripke [1975].�e basic idea behind these is that one can (at least to a great extent)
learn the meaning of ‘true’ by being told that one may assert (or deny) of a sen-
tence that it is true precisely when one may assert (deny) the sentence itself.�us,
one will see that one may assert ‘‘snow is white’ is true’, ‘some sentence containing
‘snow’ is true’, ‘‘‘snow is white’ is true’ is true’, and so on. Kripke gives a variety
of constructions of languages containing their own truth predicates based on this

8In particular, this is true if we use the second sort of non-standard predicate mentioned
above (i.e. in terms of consistent sets of axioms). (I am grateful to a referee for this journal for
suggesting the following argument.) Suppose that our initial theory is PA, Pr0 is the standard
provability predicate of the language of arithmetic, Pr* is a non-standard predicate of the sort
in question, and S is the extension of PA that results from introducing Pr via Pr*. S will prove
¬Pr(⌜¬Pr0(⌜0 = 1⌝)⌝): reasoning in S, suppose Pr(⌜¬Pr0(⌜0 = 1⌝)⌝); then Pr0(⌜¬Pr0(⌜0 = 1⌝)⌝)
(since PA proves ∀x(Pr*(x) → Pr0(x))); but then Pr0(⌜0 = 1⌝) (by the second incompleteness
theorem); and thus Pr(⌜Pr0(⌜0 = 1⌝)⌝) (since for any Σ1-sentence A of the language of arithmetic,
PA proves A → Pr*(⌜A⌝)); giving Pr(⌜0 = 1⌝) and then 0 = 1. On the other hand, S will not prove
Pr0(⌜0 = 1⌝).�at is, we do not have: A is refutable in S i� Pr(⌜A⌝) is (for any sentence A).
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idea. I will suggest that broadly similar approaches to provability would also seem
to be natural.

�e basic idea is simply as follows. Given some initial theory T , one adds a new
1-place predicate letter Pr to the language, intended to mean provable in S, where
S is the theory that one is extending T to. In S, Pr will be governed by rules that
allow one to go from a proof of A to one of Pr(‘A’), and from a refutation of A (i.e.
proof of ¬A) to one of Pr(‘A’) (i.e. a proof of ¬Pr(‘A’)).
I should comment on some features of this way of proceeding. Firstly, the de-

cision to add a new predicate to the language of our base theory T . �is follows
standard methodology in the theory of truth, but in this context it may come as
a surprise. A�er all, as long as the language of T includes that of arithmetic (or
similar), and the theory S we are going to end up with is a formal system, the lan-
guage of T will already contain a predicate that corresponds to the property of
being provable in S. Why then add this new predicate? Simply because doing so
allows theories that can prove things about themselves that would be impossible if
we stuck to doing things in the language of arithmetic. Secondly, it would in some
ways be more natural not to directly add a predicate for provability in S, but rather
to add a 2-place predicate Proof(x , y), intended to mean x is a proof in S of y. I
will add a 1-place predicate just because this is simpler, but versions of many of
the approaches below that instead add a 2-place predicate would also seem possi-
ble. �irdly, I will focus on theories in which (under the intended interpretation)
Pr applies to sentences, rather than gödel numbers. �is is primarily because my
aim is to give natural theories concerned with their own provability, and theories
that do this directly, rather than via coding, seem clearly to be more natural. But a
secondary reason is that doing things in terms of gödel numbers precludes certain
approaches that doing things in terms of sentences allows (e.g. that of §2.5).

2.1 First Classical Approach
I now give the �rst simple approach along these lines (a more sophisticated one
will be given in §2.3). �us, let L be a �rst-order language with equality, and let
T be a set of sentences of L that is closed under classical consequence. �at is, in
the main presentation I identify our base theory T with the set of sentences that it
proves.9 However, this is just for simplicity: it is straightforward to give versions of

9As in the introduction, I will use ‘theory’ for a collection of axioms and rules, rather than simply
for a set of sentences. But I will also count a set of sentences as a theory, i.e. that whose axioms are
the members of the set and which has no rules.

11



the approaches below that think of T rather as a collection of axioms and rules. Let
L be the extension of L that results from adding the new 1-place predicate letter Pr.
I make the following further assumption about these things.

Assumption 1. (i) For any sentence A of L, ‘A’ is an individual constant of L.

(ii) �ere is a classical interpretation of L, M = ⟨D, I⟩ (D is the domain and I is
the interpretation function), which is the intended interpretation of L.

(iii) For any sentence A of L, I(‘A’) = A.

(iv) �ere is a formula B(x) of L that is satis�ed inM precisely by the sentences
of L. I use Sent(x) as an abbreviation of this formula.

(v) M is a model of T .

�is might seem to be a rather demanding assumption, for two reasons. Firstly,
the languages of somemathematical theories will not have intended interpretations
in this sense (i.e. with set domains). For example, the language of set theory, as-
suming that its quanti�ers are intended to range over absolutely all sets. As we will
see, however, everything that I will say can be extended to such theories. But for
simplicity I assume (except when otherwise stated) that T is not such a theory. Sec-
ondly, the languages of most mathematical theories do not contain quote-names or
formulas that apply to sentences. However, it is straightforward to extend any lan-
guage, theory and intended interpretation so that they do satisfy assumption 1.10
�us, I am in e�ect simply assuming that we have already done that.

�e �rst way of extending T to a theory that can prove a range of things about
its own provability is then as follows.

De�nition 1. Φ(T) is the theory with language L, axioms the members of T and
(A1), and rules (RC), (R1) and (R2).

(A1) ∀x(Pr(x)→ Sent(x))

(RC) A1, . . . ,An / B if n ≥ 0 and B is a classical consequence of A1, . . . ,An.

(R1) A / Pr(‘A’)
10�at is, by expanding the language and domain in the obvious way, and restricting the quanti-

�ers in the theory by a new predicate letter intended to apply exactly to the objects in the original
domain.
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(R2) ¬A / ¬Pr(‘A’)

�at is, a sequence A1, . . . ,An of sentences of L is a proof in Φ(T) if for each i
(1 ≤ i ≤ n) either Ai ∈ T ∪ {(A1)}, or Ai results from applying one of (RC), (R1) or
(R2) to earlier members of the sequence. For the rest of the paper, I will use S for
Φ(T). If R is a theory with language L, then I use ⊢R A to mean that A is provable
in R;�R for the set of theorems of R; IR for the interpretation function that is just
like I except that IR(Pr) =�R; andMR for ⟨D, IR⟩.
Is S a natural theory to adopt, given the intendedmeaning of Pr (i.e. provability

in S itself)? In particular, is S sound? �at is, do we have MS ⊧�S (i.e. MS ⊧ A
for every A ∈ �S)? If R is a theory in L with this property, that is, MR ⊧ �R,
then I say that it is p-sound (with respect to M). In fact, it is straightforward to
show that S is indeed p-sound. One way of doing this is via a construction from
Kripke [1975].11 However, it is more direct to proceed without going via such a
truth-theoretic construction. Further, this argument establishes that S has an im-
portant property—(III) below—that does not follow from the Kripkean one (cf.
§1.2).
I start by de�ning sets of sentences as follows.

De�nition 2. X0 = ∅ and Y0 = D − {sentences of L}. For any n ∈ N, Xn+1 is the
set of sentences of L that are provable in S using (R1) and (R2) at most n times
(i.e. in total); and Yn+1 is the set of sentences of L whose negations are so provable,
together with the members of Y0.

If Z and W are disjoint subsets of D, then by M + ⟨Z ,W⟩ I mean the partial
interpretation of L that extends M by interpreting Pr with ⟨Z ,W⟩. A sentence A
of L is true (false) in M + ⟨Z ,W⟩ under the supervaluationist scheme if A is true
(false) in every classical extension ofM + ⟨Z ,W⟩.
We then have the following.

Lemma 1. For any n ∈ N,

(a) Xn ∩ Yn = ∅;

(b) every member of Xn+1 is true in M + ⟨Xn ,Yn⟩ under the supervaluationist
scheme.

11Taking Pr as our truth predicate, themembers of�S are true inKripke’s basic supervaluationist
construction. It follows that�S is classically consistent, from which it is easy to show that S is p-
sound.
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Proof. Induction on n. If n = 0, then (a) is obvious and (b) is clear given that the
members of X1 are provable without using either (R1) or (R2). So let n = r + 1. (a)
is clear by the inductive hypothesis. For (b), suppose A ∈ Xn+1.�ere is thus some
proof B1, . . . , Bm in S that uses (R1) and (R2) at most n times. If there are no uses
of (R1) or (R2) in this proof then we are done (as in the n = 0 case). So suppose
that there is at least one such use, and let Bk result from the last one.�us for every
j < k, B j ∈ Xn. By (b) of the inductive hypothesis, each such B j is true (under the
supervaluationist scheme) in M + ⟨Xr ,Yr⟩. �us since ⟨Xr ,Yr⟩ ≤ ⟨Xn ,Yn⟩,12 each
such B j is true in M + ⟨Xn ,Yn⟩. If Bk results from a use of (R1), then Bk = Pr(‘B j’)
for some j < k. �en since B j ∈ Xn, Bk is true in M + ⟨Xn ,Yn⟩. Further, since
Bm is a classical consequence of T ∪ {(A1), B1, . . . , Bk}, Bm must also be true in
M + ⟨Xn ,Yn⟩.�e case where Bk results from a use of (R2) is similar.

�eorem 1. S is p-sound.

Proof. We must show MS ⊧�S . If A ∈ �S , then for some n, A ∈ Xn+1. By (b) of
lemma 1, A is true inM+⟨Xn ,Yn⟩. ButMS is an extension ofM+⟨Xn ,Yn⟩, because
Xn ⊆�S , and Yn ∩�S = ∅ (by (a) of lemma 1). So A is true inMS .

As I noted, however, some mathematical theories will not have intended inter-
pretations in the sense that I have assumed that T has (i.e. (ii) of assumption 1).
Can we be sure that S is sound, even if we drop this assumption? Yes, given only
the following assumptions: (i), (iii) and (iv) of assumption 1 hold for the intended
meaning of L; T is sound for this intended meaning; truth under this intended
meaning is preserved by classical consequence; and there is a classical interpreta-
tion (i.e. with a set domain) that satis�es (i), (iii–v) of assumption 1. It is then easy
to show that every theorem of S is true under the intended meaning of L (we show
that�S is consistent as before, from which the claim easily follows). For the rest
of the paper I will assume that T does have an intended interpretation in the sense
of (ii) of assumption 1. However, any uses that I will make of this assumption can
be shown to be inessential along the lines just sketched.

�us, the soundness of S follows from that of T , and so if we accept T , it would
seem reasonable to accept S, too.

S satis�es the minimal conditions that one would expect any extension of T
concerned with its own provability to satisfy, i.e. the following.13,14

12I.e. Xr ⊆ Xn and Yr ⊆ Yn .
13(II) is sometimes called the Kreisel condition: see Kreisel [1953].
14(II) on its own could be satis�ed simply by treating Pr(‘A’) as a notational variant of A. One

might thus worry that it is a toothless requirement. In the context of natural assumptions about S,
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(I) S is p-sound.

(II) For any sentence A of L, ⊢S Pr(‘A’) i� ⊢S A.

(�e le�-to-right direction of (II) follows from MS ⊧ �S ; the right-to-le� from
the fact that S contains (R1).)
We do not in general have: ⊢S ¬Pr(‘A’) i�⊬S A. (�is is impossible if S is recur-

sively enumerable, contains a reasonable amount of arithmetic, and is consistent.)
But we do have the following: as I noted, this is a result that alternative approaches
and arguments seem unable to deliver.

(III) For any sentence A of L, ⊢S ¬Pr(‘A’) i� ⊢S ¬A.

For the le�-to-right direction, suppose ⊢S ¬Pr(‘A’). It follows that for some n,
¬Pr(‘A’) ∈ Xn+1. �en by (b) of lemma 1, ¬Pr(‘A’) is true in M + ⟨Xn ,Yn⟩ under
the supervaluationist scheme. From which it follows that A ∈ Yn and thus ⊢S ¬A.
�e right-to-le� direction is of course immediate from the fact that S contains (R2).
What about ‘provability-liars’, i.e. sentences A such that A↔ ¬Pr(‘A’) is a clas-

sical consequence of T? It follows from the classical consistency of S that it proves
none of: A (by (R1)), ¬A (by (R2)), Pr(‘A’) (since it would then prove ¬A), and
¬Pr(‘A’).
Further, unlike approaches that employ non-standard provability predicates

(§1.2), the rules of S are entirely natural given the intended interpretation of Pr
as provability in S. For, under this interpretation, (A1) holds given that L is the
language of S. (R1) is obviously sound (i.e. it only allows us to prove truths). And
the fact that (R2) is sound follows immediately from the fact that S is consistent.
For the rest of the paper, I use � for some arbitrary classical logical falsehood

of L. We of course have ⊢S ¬Pr(‘�’). However, S cannot prove its own consistency,
i.e. the quanti�ed claim that for any sentence A, either A or ¬A is unprovable (the
fact that S cannot prove this follows from (b) of lemma 1).�ere are slightly more
sophisticated approaches that can prove this (§2.3). Before giving such an approach,
however, I will do two things: I will make some remarks about ways in which the
results of this subsection can be strengthened; and then, in the next subsection,
I will consider some objections to the approach given above (versions of which
might also be made to the other approaches I will give).

however, (II) will place signi�cant further requirements on S. For example, if we assume that S is
closed under classical consequence, and proves ‘A’ ≠ ‘B’ whenever A ≠ B, then (II) requires that
S proves ∃nxPr(x) (for any n ∈ N), which doesn’t follow from the assumptions alone. Similarly,
if we assume that S proves c = ‘¬Pr(c)’, then (II) entails: if S proves ¬Pr(c) then it is classically
inconsistent; which, again, doesn’t follow from the assumption alone.
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�e �rst way in which the above results can be strengthened is as follows. It
is easy to show, given weak assumptions about T , and using essentially the same
arguments as before, that S is not only p-sound but also a conservative extension
of T (i.e. for any sentence A of L, ⊢S A only if ⊢T A). Speci�cally, one can show
this as long as for any sentences A and B of L: (a) if A ≠ B then ⊢T ‘A’ ≠ ‘B’;
and ⊢T Sent(‘A’). One can then use versions of the arguments above to show that
any model of T can be extended to one of S, which establishes that the latter is a
conservative extension of the former.

�e second way in which the results can be strengthened is this. If T is given in
part by axiom schemes, then—again, given certain assumptions—it can be shown
that the above results hold of the extension of S that extends these schemes to L.
Speci�cally, ifM contains the natural numbers, then lemma 1 and theorem 1 can (by
essentially the same arguments) be seen to hold of the extension of S that contains
every instance of induction for L.�at is,

(A(0) ∧ ∀n(N(n) ∧ A(n)→ A(s(n))))→ ∀n(N(n)→ A(n)),

where N applies exactly to the natural numbers. Similar remarks apply to all of the
other approaches presented below.

2.2 Objections
I will now consider some objections that stem from the observation that although S
is sound given the intended interpretation of Pr as provability in S, it is also sound
given the interpretation of Pr as truth; speci�cally, certain varieties of Kripkean
truth (i.e. the supervaluationist ones).

�e �rst objection that this might give rise to is as follows. If the theory that I
have proposed holds when Pr is interpreted as truth, then by what right do I claim
to have added a provability predicate to L, rather than a truth one? But the simple
answer is thatwe have added a provability (rather than truth) predicate because that
is the intention with which Pr was introduced.�at is, the intended interpretation
of Pr is provable in S (and not any species of truth), and the intended extension is
thus�S (rather than the set of sentences that would be true if Pr was interpreted
as truth15). And, further, the theory that we have proposed for Pr is indeed sound
given this interpretation. It is true that it does not force this interpretation (in the

15�ese sets will of course in general be distinct. For example, if L includes the language of
arithmetic, then the set of truths ofLwhen Pr is interpreted as truth will contain either A or ¬A for
any sentence A of L. But as long as T is recursively enumerable this will not be the case with�S .
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sense that it is also sound given certain unintended ones). But it is hard to see why
this should be regarded as an objection. A�er all, theories never force their in-
tended interpretations. And we know from the Löwenheim-Skolem theorems that
most standardmathematical theories do not even force theirs up to isomorphism.16
We thus seem to be well within our rights in claiming to have added a provability
predicate to L.
Nevertheless, the fact that we used theories of truth as our starting point, and

have then ended up with a theory that is sound when Pr is interpreted as truth,
might make one worry that we have not adopted the axioms and rules that are
most natural for provability. Rather, one might worry that we have simply adopted
those that happen to hold for both provability and truth. It is just a fact, however,
that themost natural, general axioms and rules that onemight adopt for provability
also hold for truth. As I noted in the introduction, this is true not only of (R1) and
(R2), and the factivity schema Pr(‘A’)→ A, but also of the derivability conditions.17
�e fact that our axioms and rules hold for truth is thus no indication that we have
failed to adopt those that are most natural for provability.
But a di�erent objection is as follows. Given that our axioms and rules hold for

truth, onemight wonder: why bother adding a predicate for provability at all? Can’t
one get by with just a truth predicate? �e most straightforward response to this
objection is that one wants a provability predicate (and not just a truth predicate)
because one wants to prove claims about provability (and not just about truth), and
for this one needs a predicate that expresses provability. But to this the objector
might reply: if everything that we want to prove about provability also holds of
truth, why can’t we use a single predicate, i.e. a predicate originally introduced for
truth, to express both truth and provability? But the answer is of course that many
claims that we will want to make about truth do not hold of provability in any rea-
sonable theory. For example, suppose that L includes the language of arithmetic.
�en, if T(x) is our truth predicate, and A is a sentence of the language of arith-
metic, we will want to assert: T(‘A’)∨T(‘¬A’). However, for no reasonable theory
will we want to assert this schema for provability (since no such theory will be able
to decide its own Gödel sentence, for example). �e fact that S is sound for truth
16It is true that some extensions of theories �x the interpretation of the new vocabulary, in the

sense that this is forced if one takes for granted the interpretation of the old vocabulary. However,
given that the interpretation of our language must in general be �xed by something other than
laying down a theory, it is hard to see what would motivate any requirement to the e�ect that the
interpretation of ‘new’ vocabulary must always be so �xed.
17Similar points apply to related notions such as that of necessity. For it is also true that most

popular modal theories, e.g. S5, are sound when the box is interpreted as it is true that.
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should not therefore lead us to think that we can get by with a single predicate for
both truth and provability.
I should note further that it is straightforward to give a version of the approach

above that is not sound for truth, if for some reason one wanted to do this. For
example, suppose that T is recursively enumerable, and includes Peano arithmetic.
Suppose also that L contains a formula SentL(x) that is satis�ed in M precisely by
the sentences of L, and a formula Neg(x , y) that is satis�ed inM precisely by pairs
of the form ⟨¬A,A⟩ for A a sentence of L. One could then extend T to a theory
S′ that adds to S an axiom to the e�ect that some sentence of L is neither provable
nor refutable (i.e. ∃x∃y(SentL(x) ∧ Neg(y, x) ∧ ¬Pr(x) ∧ ¬Pr(y))). �is theory
is not of course sound for truth, but it straightforward to show that it is sound for
provability in S′.

2.3 Second Classical Approach
I make the following additional assumption about L andM.

Assumption 2. (i) D contains every �nite set of sentences of L.

(ii) �ere is a formula ∈(x , y) of L that is satis�ed in M precisely when x and y
are assigned objects d and e, respectively, such that d ∈ e.

(iii) �ere is a formula Conseq(x , y) of L that is satis�ed in M precisely when x
is assigned a set of sentences of L and y is assigned a sentence of L that is a
classical consequence of this set.

As before, any mathematical theory R in language K with intended interpreta-
tion N can easily be extended so as to meet these assumptions.
(In the following, I abbreviate formulas containing ∈ in the usual way.)

De�nition 3. Ψ(T) is the theory with language L and the axioms and rules of S,
i.e. Φ(T), together with the following axiom.

(A2) ∀x∀y(Conseq(x , y) ∧ ∀z ∈ xPr(z)→ Pr(y))

I will use U for Ψ(T). As before, Pr is intended to mean provable in U . What
exactly U can prove will depend on what T can, however. �us, I will make the
following, not completely precise, assumption about T .

Assumption 3. T can prove any claim about sentences ofL, �nite sets of sentences
of L, and classical consequence in L that is provable in Peano arithmetic via gödel
numbering and standard techniques.

18



For example, I will assume that L contains a formula Neg(x , y) applying pre-
cisely to pairs ⟨¬A,A⟩ for A a sentence of L; that T can prove that every sentence
of L has a negation; that it can prove that for any sentence there is a set containing
precisely that sentence and its negation; and so on. Since assumption 3 is impre-
cise, one could if one preferred simply assume that T contains Peano arithmetic,
and do everything in terms of gödel numbers. But, for the reasons stated above, I
will persist with doing things in terms of sentences.
Given assumption 3, U will prove the following.

(3) ∀x∀y(Neg(x , y)→ ¬Pr(x) ∨ ¬Pr(y))

For T will prove that for any sentence A of L there is a set X containing precisely
A and its negation; and it will prove Conseq(X , ‘�’); but ⊢U ¬Pr(‘�’) (by (R2));
and so from (A2) we have ∃z ∈ X¬Pr(z); i.e. either A or its negation is unprovable
in U . (3) is of course the claim that U is consistent. Similarly, using Triv(x) for
∀y(Sent(y)→ Conseq(x , y)), U proves the following.

(4) ∀x(Triv(x)→ ∃y ∈ x¬Pr(y))

It will also prove that all logical truths are provable, i.e. ∀x(∀yConseq(y, x) →
Pr(x)), that conjunctions are provable i� their conjuncts are, i.e.

∀x∀y∀z(Conj(x , y, z)→ (Pr(x)↔ Pr(y) ∧ Pr(z))),

that instances of provable universally quanti�ed claims are provable, i.e.

∀x(Pr(x)→ ∀y(Inst(y, x)→ Pr(y))),

that a sentence that entails �when combined with something provable is refutable,
i.e.

∀x(∃y(Pr(y) ∧Conseq({x , y}, ‘�’))→ ∀y(Neg(y, x)→ Pr(y))),

and so on.
Further, it is straightforward to show that U is p-sound, essentially as we did

with S. To this end, we de�ne sets as follows.

De�nition 4. X0 is the set of sentences of L that are classical logical truths. For
any n ∈ N, Xn+1 is the set of sentences that are provable in U using (R1) and (R2) at
most n times (in total).
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By the CC-supervaluationist scheme I mean that which restricts attention to
classical interpretations of L in which Pr is assigned a set of sentences of L that
is classically consistent, and closed under classical consequence.�e following are
then proved similarly to lemma 1 and theorem 1. (�e fact that we are using the
CC-supervaluationist scheme, and thus restricting attention to classically consis-
tent interpretations of Pr, eliminates the need for a non-empty anti-extension in
(b) of lemma 2.)

Lemma 2. For any n ∈ N,

(a) Xn is classically consistent and closed under classical consequence;

(b) every member of Xn+1 is true in M + ⟨Xn ,∅⟩ under the CC-supervaluationist
scheme.

�eorem 2. U is p-sound.

(II) and (III) above will also be satis�ed. (II) follows from (R1) andMU ⊧�U .
�e right-to-le� direction of (III) follows from (R2). For the le�-to-right direction
suppose ⊢U ¬Pr(‘A’). �en for some n, ¬Pr(‘A’) is true in M + ⟨Xn ,∅⟩ under
the CC-supervaluationist scheme (by (b) of lemma 2). It follows that Xn ∪ {A} is
classically inconsistent, and thus ⊢U ¬A.
If A is a provability-liar, then as with S U will prove none of: A, ¬A, Pr(‘A’) and

¬Pr(‘A’).
U thus seems to be a natural theory that can prove a wide range of claims about

what it can and cannot prove, including the claim that it is consistent. We began
with the question: given some theory that we accept, is there some natural, gen-
erally applicable way of extending this to a theory that can prove a range of things
about its own provability, including its consistency? And I will consider further
ways of extending theories below. But we seem already to have done enough to
establish that the answer is ‘yes’.

2.4 Claims from Gödel’s Result
As I noted in the introduction, however, discussions of Gödel’s second incomplete-
ness theorem typically contain claims that require that the answermust be ‘no’. (For
example, that of Gaifman quoted there.)�ese claims must thus be false.
But what is the source of these mistakes? What Gödel showed was that if T is a

formal system that contains a certain amount of arithmetic, then it can prove coded
versions of claims aboutwhat it can prove. He showed further that ifT is consistent,
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then it will not in this way be able to prove its own consistency. Why think that this
justi�es the claim that the answer to our question is ‘no’, or claims along the lines
of ‘no reasonable theory can prove its own consistency’? �e thought (as I said
in the introduction) is that the argument of Gödel’s result will apply not only to
the proof of coded consistency claims, but to any alternative way of proving things
about what is provable in a given theory—or at least to any reasonable such. �e
approach of §2.3, however, would seem to show that such thoughts are mistaken.

�is point should thoughbe discussed in greater depth.�e argument ofGödel’s
result certainly does show that there are limits on what a theory can prove about
itself. In particular, it shows that if R is a set of sentences of L, which is closed un-
der classical consequence and classically consistent, then it cannot satisfy all of the
following.18

(5) �ere is a sentence G of L such that ⊢R G ↔ ¬Pr(‘G’).

(D1) For any sentence A of L, if ⊢R A then ⊢R Pr(‘A’).

(D2) For any sentences A and B of L, ⊢R Pr(‘A’) ∧ Pr(‘A→ B’)→ Pr(‘B’).

(D3) For any sentence A of L, ⊢R Pr(‘A’)→ Pr(‘Pr(‘A’)’).

(6) ⊢R ¬Pr(‘�’)

(D1–D3) are (versions of) the (Hilbert-Bernays-Löb) derivability conditions. U
satis�es (D1) and (D2), and so by this argument it cannot satisfy (D3) (assuming
18�e argument is as follows. Suppose R satis�es (5), (D1–D3) and (6). We then have the follow-

ing.

1. ⊢R G → (Pr(‘G’)→ �) (5)

2. ⊢R Pr(‘G → (Pr(‘G’)→ �)’) 1 and (D1)

3. ⊢R Pr(‘G’)→ Pr(‘Pr(‘G’)→ �’) 2 and (D2)

4. ⊢R Pr(‘G’)→ (Pr(‘Pr(‘G’)’)→ Pr(‘�’)) 3 and (D2)

5. ⊢R Pr(‘G’)→ Pr(‘Pr(‘G’)’) (D3)

6. ⊢R Pr(‘G’)→ Pr(‘�’) 4 and 5

7. ⊢R ¬Pr(‘G’) (6) and 6

8. ⊢R G 7 and (5)

9. ⊢R Pr(‘G’) 8 and (D1)

�at is, R is classically inconsistent. See e.g. Smith [2013].
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that T is su�ciently strong to ensure that U satis�es (5)). When it is assumed that
Gödel’s argument will apply to any reasonable theory concerned with its own prov-
ability, what is being assumed is essentially that any such theory will satisfy (5) and
(D1–D3). But why make this assumption? In particular, why assume that any such
theory will satisfy (D3)? Well, one might argue as follows. Any reasonable theory
concerned with its own provability should be such that if it proves something, then
it proves that it proves it (i.e. it satis�es (D1)). But then all of the conditionals in
(D3) will be true, and will express important facts about the theory. �us, if the
theory is adequate, it will prove them!

�is is a good argument for the claim that, other things being equal, it is desir-
able for a theory concerned with its own provability to satisfy (D3). But it certainly
does not follow that any reasonable such theory will satisfy (D3). For we are simply
in an area where we cannot get everything that we want: prima facie, we would also
like a theory that can prove its own factivity, i.e. every instance of Pr(‘A’)→ A; but
we know that this is not going to be possible if certain other perhaps even more
desirable conditions are satis�ed. We would also like a theory that satis�es (6), but
in the presence of the other conditions above that means that (D3) cannot be satis-
�ed. Given the approach of §2.3, amore accurate description of the situation would
seem to be as follows. �ere are reasonable theories that can prove of a range of
things about their own provability, including their consistency. Indeed, any given
theory that we might accept can be extended to one.�ere are, to be sure, certain
prima facie desirable conditions that these theories will not satisfy. But that is al-
ways going to be true of theories concerned with their own provability, as a range
of arguments, including not only that of Gödel’s second theorem but also those of
the introduction, show.

�e analogy with truth is once again instructive here.�e conditionals in (D3)
are analogues of special cases of one direction of the truth schema (i.e. T(‘A’) →
T(‘T(‘A’)’)). And one can give an argument just like that above for the claim that
any reasonable language containing its own truth predicate must be such that all
of these conditionals are true in it, as follows. Surely (the argument would begin)
any such language must be such that if a sentence A is true in it, then so is the
sentence that says this. But that is just what the conditionals in question say! And
so (as in the provability case) these seem to express important facts about the lan-
guage in question. �us (one would conclude) if the language is adequate, then
surely these conditionals will be true in it. Again, this is a good argument for the
claim that—other things being equal—an approach on which these conditionals
are true is desirable. It is just that other things are not equal, and many of the most
important approaches to truth do not deliver the truth of these conditionals: for
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example, the approaches of Kripke [1975], Gupta [1982], Herzberger [1982], Gupta
and Belnap [1993] and Maudlin [2004].
To illustrate,the parallel in the case of Kripke’s approaches is striking. Forwhen-

ever a sentence A is true in one of Kripke’s languages, so is T(‘A’). It would seem,
therefore, that what the conditionals say is the case, and that they express impor-
tant facts about these languages. But despite this the conditionals are not true in
these languages.�e standard reaction to such limitations of Kripke’s approaches,
however, is not at all to stick to the claim that no reasonable language can contain
its own truth predicate. Rather, it is to recognize that these approaches are natu-
ral ways of extending any given language to one that does contain such a predicate,
even if these language do not give us everything that wemightwant. I would suggest
that our response to limitations in the provability case that are so clearly analogous
should be similar.

2.5 �ird Classical Approach: Restricted Self-Reference
I will brie�y consider one �nal classical approach. For it should be pointed out that
there are in fact theories that satisfy all of the derivability conditions, are closed
under classical consequence and classically consistent, and prove their own con-
sistency. �ese are theories with restricted self-reference: e.g. that do not contain
resources su�cient to generate provability-liars. Such restrictions in no way limit
how much arithmetic is contained (but they do mean that if the theory’s language
contains that of arithmetic, then one cannot use of gödel numbers in place of sen-
tences). What these restrictions limit are of course syntactic resources (e.g. one
cannot have resources su�cient to express a diagonal function for L). So this is
not an approach that will show how to extend any base theory. But it will show that
given any theory not concerned with the sentences of L (e.g. any standard mathe-
matical theory), one can extend this to a theory that satis�es all of the derivability
conditions and proves its own consistency.�is would seem to make even clearer
howwide of themark typical characterizations of the signi�cance ofGödel’s second
theorem are.
In this subsection I maintain assumption 1 but drop 2 and 3. Instead, I make

the following. (SENT(L) is the set of sentences of L.)

Assumption 4. (i) �e connectives of L are ¬ and→.

(ii) L contains a 2-place predicate letter Neg such that I(Neg) = {⟨¬A,A⟩ ∶ A ∈
SENT(L)}, and a 3-place predicate letter Cond such that I(Cond) = {⟨A→
B,A, B⟩ ∶ A, B ∈ SENT(L)}.
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Assumption 5. (i) For any individual constant c of L not of the form ‘A’ for
some A ∈ SENT(L), I(c) ∉ SENT(L).

(ii) For any n-place predicate letter P of L distinct from =, Neg and Cond, and
any d1, . . . , dn , d′i ∈ D (1 ≤ i ≤ n), if di , d′i ∈ SENT(L), then: ⟨d1, . . . , di ,
. . . , dn⟩ ∈ I(P) i� ⟨d1, . . . , d′i , . . . , dn⟩ ∈ I(P).

(iii) For any n-place function symbol f of L, the range of I( f ) is disjoint from
SENT(L); and for any d1, . . . , dn , d′i ∈ D (1 ≤ i ≤ n), if di , d′i ∈ SENT(L),
then I( f )(d1, . . . , di , . . . , dn) = I( f )(d1, . . . , d′i , . . . , dn).

We then have the following (Gupta [1982: 9–19]). (M +X is the extension ofM
that assigns Pr the interpretation X.)

�eorem 3. �ere is a unique X ⊆ SENT(L) such that for any A ∈ SENT(L),
M + X ⊧ Pr(‘A’)↔ A.

What follows for our purposes? To answer this, consider the following exten-
sion of T .

De�nition 5. Θ(T) is the theory with language L and the axioms and rules of S,
i.e. Φ(T), together with the following axioms.

(A3) Pr(‘A’) ∧ Pr(‘A→ B’)→ Pr(‘B’)

(A4) Pr(‘A’)→ Pr(‘Pr(‘A’)’)

(A5) ∀x∀y(Neg(x , y)→ ¬Pr(x) ∨ ¬Pr(y))

I will use V for Θ(T). Of course, Pr is intended to mean provable in V . We
have the following.

�eorem 4. V is p-sound.

Proof. Let X be as in theorem 3. It is easy to see M + X ⊧�V , and thus that�V
is classically consistent. It is then straightforward to show MV ⊧ �V (using an
argument similar to those given above).

V also satis�es (II) (the le�-to-right direction follows from theorem 4, and the
right-to-le� is clear given (R1)).19 And it clearly satis�es the derivability conditions
19V satis�es the right-to-le� direction of (III) by (R2), but I do not know whether it satis�es the

le�-to-right direction.

24



(D1–D3). �e drawback is of course that V can only talk about the syntax of its
language in a rather limited way. But this approach does seem to show that even if
we insist on (D1–D3), we can still have natural theories that can prove a range of
things about their own provability, including their consistency.

3 Non-Classical Approaches
In §2, we considered various theories that can prove a range of things about their
own provability, including in some cases their consistency. However, while these
theories could prove of many things that they are unprovable, they could not prove
this of provability-liars, e.g. a sentence ¬Pr(c) with ⊢T c = ‘¬Pr(c)’. One might
thus wonder: even if a variety of natural theories can prove their own consistency,
is the unprovability of such sentences an important fact that no such theory can
prove about itself?�at is, even if ‘self-re�ection’ can encompass consistency, is the
unprovability of such sentences always beyond its reach? In this section, I will argue
that the answer is ‘no’, by considering an extension of T that can prove that such
sentences are unprovable. For reasons of space, I will consider only one example
of a general sort of approach, but I hope that this will be su�cient to illustrate the
more general idea.

�e fact that the theories of §2 cannot prove that provability-liars are unprov-
able is analogous to the fact that in the languages of Kripke [1975] one cannot truth-
fully assert that Liar sentences are untrue.�ere are, however, approaches to truth
that augment Kripke’s so as to remedy this. For example, an approach of Gaif-
man [2000a], which adds to Kripke’s a more nuanced treatment of paradoxical
sentences, including Liar sentences.20

�is approach starts with the following idea about Liar tokens. Suppose that at
some time t Gottlob utters ‘what Gottlob says at t is not true’. If one tries to work
out whether this utterance is true, one is sent to consider whether the utterance it
is about is true, but that is of course just the utterance that we started with. Gott-
lob’s utterance is thus a ‘loop’ in this sense. Consequently (the idea continues) it is
neither true nor false. On the other hand, suppose that a�er re�ecting on all this
Bertrand utters ‘what Gottlob says at t is not true’. �is second utterance is not a
20I should note that the approach of Gaifman [2000a] that I will describe is mentioned only

in passing in that work. �e approaches that are the main focus there are concerned exclusively
with truth for tokens, whereas that which I will describe is also concerned with truth for types
(i.e. sentences). For another approach that augments Kripke’s in a broadly similar way, see Skyrms
[1984].

25



loop: if one tries to work out whether it is true, one is sent to consider Gottlob’s
utterance—one isn’t sent back to consider Bertrand’s. It thus seems plausible that
Bertrand’s utterance, unlike Gottlob’s, is simply true.
Note that the idea is not that ‘true’ is context sensitive (in the way that ‘yours’ is,

for example), expressing di�erent properties inGottlob’s and Bertrand’s utterances.
A�er all, there do not appear to be two properties, or two contents, to express here.
�e idea is rather that the explanation of the fact that Gottlob’s utterance is not true,
while Bertrand’s is, is simply that the former is a loop, while the latter isn’t.
And a similar approach to Liar sentenceswould also seem to be natural.�us, if

c denotes ¬T(c), then this sentence would be neither true nor false (like Gottlob’s
utterance). But if b is a distinct name of the same sentence (i.e.¬T(c)), then¬T(b)
would simply be true (like Bertrand’s utterance). For these sentences seem to be
‘structurally’ just like the utterances: ¬T(c) is a ‘loop’ (saying of itself that it is
untrue) while ¬T(b) is not. One would thus have exceptions to classical logic:
because ¬T(b) and b = c will be true (the latter is a simple identity, a�er all),
but ¬T(c) will not be. However, these exceptions �ow naturally from what would
seem to be a plausible treatment of Liar and related sentences. Gaifman [2000a]
shows how to develop an approach to truth on which Liar tokens and sentences,
and related tokens and sentences, are handled along these lines. Note that, although
on this approach there will be exceptions to classical logic in the sense that there
will be classically valid arguments with true premises but untrue conclusions, there
will certainly not be exceptions in the sense of there being such argumentswith true
premises and false conclusions.
If we want an approach to provability on which we can prove that analogous

sentences cannot be proved then a similar approach would seem to be natural. On
such an approach, if our base theory T proves c = ‘¬Pr(c)’, for example, then
¬Pr(c) will not be provable (in the extended theory concerned with its own prov-
ability). However, if b is a distinct name with ⊢T b = c, then ¬Pr(b) will be prov-
able. We would thus have exceptions to classical logic in the sense that certain sen-
tences will be provable (in our theory), even though certain classical consequences
of them will not be. As I said in the introduction, the idea is not that classical logic
fails to be truth-preserving in such cases. It is simply that the most natural way
of satisfying certain desiderata (such as being able to prove that provability-liars
cannot be proved) would seem to be by allowing such exceptions to classical logic.
Further, as in the truth case, we will have exceptions to classical logic only in the
sense of there being classical consequences of things that we can prove that we can-
not prove; we will never be able to refute, i.e. prove the negations of, such classical
consequences.
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How might one actually give such a theory? Proofs that use the rule (R1) �rst
prove a sentence A, and then, on this basis, prove Pr(‘A’). Similarly, proofs that use
(R2) �rst prove ¬B, and then prove ¬Pr(‘B’). �e process by which we will prove
that provability-liars cannot be provedmust of course be di�erent.�e natural way
to conceive of this is as follows. (Here¬Pr(c) is such that⊢T c = ‘¬Pr(c)’.) One �rst
‘classi�es’ ¬Pr(c) as unprovable, and then, on this basis, proves ¬Pr(‘¬Pr(c)’).�e
�rst step is constituted by a line in the proof consisting not of a sentence, but a pair
of a sentence together with the letter ‘e’, i.e. ⟨¬Pr(c), e⟩. (‘e’ is for ‘exception’, since
¬Pr(c) will lead to exceptions to classical logic in the sense described.)�e reason
for having this line ⟨¬Pr(c), e⟩, rather than proving ¬Pr(‘¬Pr(c)’) more directly,
is that it will be useful to keep track of which sentences have been classi�ed as
unprovable in this way (because we do not want to prove them, even once we have
proved things that have them as classical consequences).

3.1 A Non-Classical Approach
I will now give a simple version of this sort of approach. For the rest of the paper
I make assumptions 1–3 (i.e. all of the assumptions of §2 except those of §2.5 on
restricted self-reference). And I adopt the following de�nition.

De�nition 6. A sentence A of L is a loop if either A↔ Pr(‘A’) or A↔ ¬Pr(‘A’) is
a classical consequence of T .

�at is, on the approach to be given it will be such sentences that are classi�ed
as unprovable (or ‘exceptions’). �e aim of this de�nition is just to illustrate the
general idea behind this sort of approach. Other approaches of this sort would of
course de�ne loops in more sophisticated ways.

De�nition 7. ∆(T) is the theory with languageL, axioms the members of T , (A1),
(A6) and (A7), and rules (RE), (R1) and (R3).

(A6) ∀x(Triv(x)→ ∃y ∈ x¬Pr(y))

(A7) ⟨A, e⟩ if A is a loop.

(RE) α1, . . . , αn / B if n ≥ 0, B is a classical consequence of SENT(L)∩{α1, . . . , αn},
and ⟨B, e⟩ is not one of α1, . . . , αn.

(R3) ⟨A, e⟩ / ¬Pr(‘A’)
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I will useW for ∆(T). I should say something to explain this choice of axioms
and rules. Firstly, I should stress that a line of the form ⟨A, e⟩ is simply a way of
marking the fact that A has been classi�ed as unprovable. Such a pair is not a
formula of the language, and so cannot be combinedwith connectives, for example,
to form larger formulas such as ⟨A, e⟩ ∧ B. Similarly, such pairs do not belong to
�W (which is the set of sentences that are provable inW).
Secondly, we do not need (R2) simply because (A6) allows us to do without it.

(If ⊢W ¬A, then ⊢W Pr(‘¬A’), by (R1), and so by (A6) and assumption 3 we will
have ⊢W ¬Pr(‘A’).)

�irdly, we have (A6) rather than (A2), i.e.

∀x∀y(Conseq(x , y) ∧ ∀z ∈ xPr(z)→ Pr(y)),

because the latter will not be true on this approach (given the exceptions to classical
logic).21
As before, we want to prove thatW is p-sound. To this end, let α1, . . . , αn be

some proof inW .

De�nition 8. Let m ∈ N with 0 ≤ m ≤ n. Xm = {αi ∶ i ≤ m and αi is a sentence}.
Ym = {A ∶ for some i ≤ m, αi = ⟨A, e⟩}.

By the C-supervaluationist scheme I mean that which restricts attention to clas-
sical interpretations in which Pr is assigned a classically consistent set of sentences
of L.

Lemma 3. For any m ≤ n,

(a) Xm contains no loops;

(b) Xm is classically consistent;

(c) if m < n, then every member of Xm+1 is true in M + ⟨Xm ,Ym⟩ under the C-
supervaluationist scheme.

Proof. Induction onm. Ifm = 0 then Xm = ∅, and so (a) and (b) are trivial. For (c):
Xm+1 = X1 contains atmost a single sentence ofT∪{(A1), (A6)}, and it is easy to see
21An alternative version of the approach would have an additional new predicate letter E (for

‘exception’). We could then have:

∀x∀y(Conseq(x , y) ∧ ∀z ∈ xPr(z) ∧ ¬E(y)→ Pr(y)).
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that any such sentence will be true inM + ⟨X0,Y0⟩ (under the C-supervaluationist
scheme). So let m = r + 1. For (a) suppose that A is a loop with A ∈ Xm.�ere are
two cases, corresponding to those of de�nition 6. Suppose �rst that A↔ Pr(‘A’)
is a classical consequence of T . By (c) of the inductive hypothesis, A is true in
M+⟨Xr ,Yr⟩. But this requires A ∈ Xr, contradicting (a) of the hypothesis. Suppose
now that A ↔ ¬Pr(‘A’) is a classical consequence of T . By (c) of the inductive
hypothesis we again have that A is true in M + ⟨Xr ,Yr⟩, and thus that ¬Pr(‘A’) is.
�is requires that either Xr ∪ {A} is inconsistent, or A ∈ Yr. But Xr ∪ {A} cannot
be inconsistent because every member of Xr ∪ {A} is true in M + ⟨Xr ,Yr⟩ (by (c)
of the inductive hypothesis). And we cannot have A ∈ Yr since this would require
A (i.e. αm) to be either an axiom or derived using (R1) or (R3). But it is easy to see
that none of the axioms or sentences that can be derived in this way are such that
A ↔ ¬Pr(‘A’) is a classical consequence of T . (b) is clear by (c) of the inductive
hypothesis. And (c) is clear by the inductive hypothesis together with inspection
of the axioms and rules.

�eorem 5. W is p-sound.

Proof. Let A ∈ �W , and let β1, . . . , βk be a proof of A inW . Let Xk and Yk be as
in de�nition 8 (but in terms of this proof rather than α1, . . . , αn). By (c) of lemma
3, A is true in M + ⟨Xk ,Yk⟩. We thus have MW ⊧ A as long as�W is classically
consistent, and�W ∩ Yk = ∅. �e latter follows from (a) of lemma 3. For the
former it is su�cient that if γ1, . . . , γp and δ1, . . . , δq are proofs in W , then so is
γ1, . . . , γp, δ1, . . . , δq (since we would then be done by (b) of lemma 3). But this is
clear by inspection of the rules together with (a) of lemma 3.

W also satis�es (II). It satis�es the right-to-le� direction of (III), and the le�-
to-right direction except for the case when A is a loop such that A↔ ¬Pr(‘A’) is a
classical consequence of T . (Failure of this direction of (III) in this case is of course
natural and desirable, since we would not want to prove ¬A.)
Loops are treated as outlined above. For example, suppose ⊢T c = ‘¬Pr(c)’.

�en ⊢W ¬Pr(‘¬Pr(c)’), ⊢W c = ‘¬Pr(c)’ but ⊬W ¬Pr(c). Similarly, the follow-
ing will all be provable inW : ¬¬¬Pr(c), ¬Pr(c) ∧ A (for any A with ⊢W A), and
¬Pr(‘�’) → ¬Pr(c). We will thus have exceptions not just to the indiscernibil-
ity of identicals, but also to double negation elimination, conjunction elimina-
tion, modus ponens, and so on. For a slightly di�erent example, suppose that
B is ∃x(x = b ∧ ¬Pr(x)), and ⊢T b = ‘B’. �en ⊢T B ↔ ¬Pr(‘B’), and so
⊢W ¬Pr(‘B’) and then ⊢W b = b ∧ ¬Pr(b). We will thus have an exception to
existential generalization; an exception to universal instantiation can be produced
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similarly. Although exceptions to all of these rules are perhaps unfamiliar, they are
an almost immediate consequence of what would seem to be a natural treatment
of provability-liars. A�er all, we cannot prove ¬Pr(c)without violating soundness,
but there is no comparable obstacle to proving any of the sentences just mentioned.
We also of course have

⊢W ∀x∀y(Neg(x , y)→ ¬Pr(x) ∨ ¬Pr(y)).

W would thus seem to be a natural extension of T that can prove a range of things
about its own provability, including its consistency, and the fact that provability-
liars cannot be proved.

�ere is one further point aboutW that should be noted, which is that although
neither (D2) nor (D3) will hold in general, the instances of these used in the argu-
ment ofGödel’s second theorem (note 18) are satis�ed.22�is suggests that a version
of this sort of approach might be possible that would yield theories that can prove
not only their consistency, but also conditionals corresponding to—i.e. stating—
their rules (in the way in which those in (D2) correspond to modus ponens, and
those in (D3) correspond to (R1)). Consideration of such approaches must be le�
for another time, however.

Conclusion
�e above framework and results also suggest a range of more general questions:
some technical, some philosophical.�e most obvious technical question is: what
are the possible p-sound extensions of T? Another is: are there any natural clo-
sure properties of these theories?23 (It is easy to see that they are not closed under
unions, intersections or taking a subtheory.) On the philosophical side, the most
obvious question would seem to be as follows. Gödel’s second incompleteness the-
orem has been appealed to in a striking variety of philosophical debates, on issues
22More precisely, if G is such that G ↔ ¬Pr(‘G’) is a classical consequence of T , then the in-

stances of (D2) and (D3) used in that argument are satis�ed.�ese are the following.

⊢W Pr(‘G’) ∧ (Pr(‘G → (Pr(‘G’)→ �)’)→ Pr(‘Pr(‘G’)→ �’))

⊢W Pr(‘Pr(‘G’)’) ∧ (Pr(‘Pr(‘G’)→ �’)→ Pr(‘�’))

⊢W Pr(‘G’)→ Pr(‘Pr(‘G’)’)

23�anks here to a referee for this journal.
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from Hilbert’s programme to mechanism. We have seen that some of the most ba-
sic and widespread philosophical claims made on behalf of this theorem are false.
It is thus natural to ask: what light does this shed on such broader uses of the result?
But these questions, too, must wait for future work. What I hope to have estab-

lished here is simply this: theories can ‘self-re�ect’ to a far greater degree than is
commonly supposed.24
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