University

&7 of Glasgow

Chimeh, M. K., and Cockshott, P. (2016) Optimising Simulation Data Structures
for the Xeon Phi. In: 2016 International Conference on High Performance
Computing & Simulation (HPCS 2016), Innsbruck, Austria, 18-22 July 2016.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/120179/

Deposited on: 14 June 2016

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Optimising Simulation Data Structures
for the Xeon Phi

Mozhgan K. Chimeh
School of Computing Science
18 Lilybank Gardens, University of Glasgow
Glasgow, G12 8RZ, UK
Email: Mozhgan.kabiri@gmail.com

Abstract—In this paper, we propose a lock-free architecture
to accelerate logic gate circuit simulation using SIMD multi-core
machines. We evaluate its performance on different test circuits
simulated on the Intel Xeon Phi and 2 other machines. Compar-
isons are presented of this software/hardware combination with
reported performances of GPU and other multi-core simulation
platforms. Comparisons are also given between the lock free
architecture and a leading commercial simulator running on the
same Intel hardware.

Index Terms—Xeon Phi; many integrated core (MIC); Gate-
level simulation; Parallel logic simulation

I. INTRODUCTION

Basing our work on a low-cost SIMD multi-core machine,
we describe experiments which use a lock-free architecture
to accelerate logic simulation. These experiments verify that
the proposed data structures allow SIMD acceleration, partic-
ularly on machines with gather instructions (Section VIII-A).
Furthermore, on sufficiently large circuits, we can achieve
substantial performance gains from multi-core parallelism
(Section VIII-B). Moreover, the experimental results show
that a simulator using this approach surpasses that of an
existing commercial simulator on a standard workstation
(Section VIII-D). Besides, these experiments show that the
performance on a cheap Xeon Phi card is competitive with
results reported elsewhere on much more expensive super-
computers (Section VIII-F).

In clocked synchronous circuits, the utility of simulators
depends upon the maximal size of a circuit that can be
simulated in addition to its simulation time. Let n be the
number of gates in the circuit and ¢ the time in seconds to
simulate the circuit for one clock cycle, the raw performance
will be n/t.

The performance of a logic gate simulation system is gener-
ally expressed in terms of e the number of gate evaluations per
seconds. During the simulation, since not every gate will un-
dergo a transition each clock cycle of the simulated machine,
it is usually the case that e < n/t. The difference between
these two quantities is exploited by event-based simulation.

When simulation is performed on single processor machine,
the method is known to be effective. Event-based simulation
depends on the maintenance of queues. Parallelisation would
lead to potential lock contention for the queues. Message

Paul Cockshott
School of Computing Science
18 Lilybank Gardens, University of Glasgow
Glasgow, G12 8RZ, UK
Email: William.cockshott@ glasgow.ac.uk

passing models of parallelism have queues, for messages, built
into their basic communication mechanism. As such message
passing parallelism has been successfully used to accelerate
event-based simulation.

Massively parallel discrete-event execution on several thou-
sand of processors has been extended to simulating very
large numbers of circuits in detailed hardware simulations of
microprocessors [1], [2].

In contrast to dynamically scheduling the behaviour of
the model during the simulation, static scheduling of all the
computations would be well suited for massively parallel
machines. This technique is called oblivious simulation. In
this paper, we describe a lock-free architecture that allows
contention free parallelism on low-cost SIMD multi-core ac-
celerator boards.

II. RELATED WORK

The initial research work on logic simulation started around
1980, where the concept of oblivious (cycle based) and even
based simulation was first addressed [3], [4], [5]. Research on
parallel simulation algorithms bloomed around the same time
targeting both platforms with distributed memory [6], [7], and
multiprocessors with shared memory [8].

There are various existing studies on parallelizing logic
simulation targeting various platforms such as supercomputers
and workstations with accelerators such as GPUs.

Parallelising simulation algorithm targeting SIMD (Single
Instruction Multiple Data) hardware systems was first done
by [9]. The compiled code logic simulation targeting GPUs did
not achieve an ideal performance. Due to the communication
overhead between CPU and GPU and not optimizing the data
transfers between host and device, the CPU outperformed
GPU. Moreover, they did not use the general purpose parallel
programming model CUDA.

In contrast to our work, Chatterjee, Deorio, and
Bertacco [10], [2], [11], Sen, Aksanli, and Bozkurt [12],
and [13], [14] use circuit partitioning algorithms to achieve
fast simulation.

Chatterjee et al. propose both oblivious and event-based
simulation algorithm. Although their oblivious simulator [10]
was simple and statically optimize-able, unfortunately, the size
of the circuits that can be simulated by this simulator is limited

due to the size of the local shared memory as well as a
number of multiprocessor on the GPU. In their event based
simulator [2], they partition the design to macro-gates. During
the simulation, one or more macro-gates is/are assigned to a
multiprocessor. The number of concurrent thread blocks in a
multiprocessor can determine the number of macro-gates that
are simulated together.

The hybrid simulator (GPU event-based simulator) by Chat-
terjee et al. [11] uses event-based simulation as a coarse
granularity and oblivious simulation within each coarse grain
group. Limited amount of shared memory on GPU that is
shared among threads in a block, puts a constraint on the size
of these micro-gates.

Similar to our work, Chatterjee et al. used lookup table
for gate evaluation, whereas Sen et al. used AIGs (And
Inverter Graph) representation where all the logic gates in the
circuit were AND gates. AIG is a way of representing Boolean
function manipulation. The technique has been widely used
in technology mapping, logic synthetic, and verification [15],
[16], [17], [18], [19].

There have been other research works on parallel logic sim-
ulation targeting platforms other than GPUs. Gonsiorowski,
Carothers, and Tropper [1] study parallel logic gate sim-
ulation on supercomputers. They mainly focus on parallel
simulation of a OpenSPARC T2 crossbar. Gonsiorowski et
al. use Parallel Discrete Event Simulation (PDES) simulation
kernel ROSS [20] framework that is built on Jefferson’s Time
Warp [21] and is designed for PDES.

Similar to our work, Gonsiorowski et al. use gate level
netlist with basic Boolean gates and also considers unit-delay
model (each gate has one clock cycle delay).

There are existing papers on the acceleration of digital
circuit simulation using GPUs [22], [13], [23], [24], [25], [26]
and multicores [1], [27]. In our work we use the Intel Xeon
Phi [28] to run digital logic simulation.

III. MIC ARCHITECTURE (INTEL XEON PHI
COPROCESSORS)

Intel makes alternative technology to GPUs, the Many
Integrated Core (MIC) Architecture. The first version is the
22 nm Knights Corner chip, sold under the name of Xeon
Phi.The Intel Xeon Phi coprocessors are SMPs that plug into
the host (Intel Xeon processor) via PCI Express. The Xeon Phi
is configured as a daughter card which runs an independent
copy of Linux. It relies on the host motherboard for power and
communication. This makes the Xeon Phi physically similar
to GPUs.

Xeon Phi cores are based on the Pentium architecture. It has
57 to 61 cores clocked at around 1GHz. There are 4 hardware
threads per core, that results in roughly 240 logical cores.
Every core has 512-bit wide vector registers, in addition to
the standard x86 registers.

Interconnection among cores is based on a ring network
model that allows the L2 caches for each core to be accessible
by all others. In all, a total coherent cache of over 30MB is
available. A Xeon Phi has from 6 to 16 GB of GDDR5 RAM

giving around 170 GB/s bandwidth. Each core has its own
32KB L1 cache only accessible locally.

The Xeon Phi is equipped with a new set of instructions, the
Intel Initial Many-Core Instructions (IMCI) that is supported
by Vector Processing Units (VPUs) within each core. Each
VPU supports 512 bit SIMD vectors.

An advantage of using MIC rather than GPUs is that the
same code written for a multicore CPU can run on the Xeon
Phi coprocessors. This contrast with the way CPU application
code needs alterations in algorithm and syntax when ported
to a GPU using CUDA. An application written for the MIC
architecture using the Intel C or Vector Pascal compilers runs
unaltered not only on the Xeon Phi, but also on computers
with standard Intel processors [29].

IV. SIMD REQUIREMENTS

SIMD seems initially attractive for simulation since it would
allow a single instruction to perform a logical operation on 512
bit worth of data. But this tantalizing vision faces two serious
obstacles;

1) All of the bits in the 512 bit word must perform the
same operation : AND, OR etc. This seems to imply that
a SIMD simulator would have to segregate logic gates
into blocks of ANDs ORs etc.

2) If one represents simulated logic signals using packed
single bits in a CPU register one needs a means of
redistributing the outputs of the previous logic layer into
the appropriate packed bit representation. Whilst this
can readily be coded using shift and OR instructions,
this would impose a serialization that would offset the
gains from SIMD parallelisation. No machine currently
supports an instruction that loads a packed bit format
from a vector of other bit addresses.

A weaker approximation to this type of instruction does
exist. The Xeon Phi vgather instruction loads a SIMD
register rx with 16 doublewords such that rx [1] is loaded
from mem [ry[i]] where ry is another SIMD register, and
i is in range 0..15.

Although, a single instruction performs operation on 16
logic signals instead of 512, it is still 15 more than what can
be done without SIMD. With 60 cores on the chip, there is a
potential for a simulation parallelism level of 960.

Comming up with a data structure that allows both uses the
vgather instruction and also ensures good cache locality, is
the main challenge. Note that the technique is applicable to
machines other than Xeon Phi, as similar gather instructions
are being made available on AVX-512.

V. DATA STRUCTURE
A. Levels of logic
We restrict ourselves to simulating synchronous state ma-
chines and make further simplifying assumptions as bellow:

o All gates are two input, NOT is represented by a NAND
with duplicate inputs, 3 input ANDs made up of pair of
2 input ones etc.

Level 1 Level 2 Level d-1 Level d

outputs

fe——sindu—>

0000
5 - 000

9-008
-0

Fig. 1. Levelisation example in a circuit, each of the coloured blocks can be
simulated in parallel

« All two input gates have same gate delay, ¢.

Working backwards from the rising edge of the system clock,
the state latches can be affected either by external inputs that
feed them directly or by logic gates. No change to an input to
a logic gate occurring after a time —¢ can affect an input to a
latch, it follows that there can be no dependencies in the last
t of the machine cycle in the set of signals that either feed the
latches or between the gates the generate signals that feed the
latches. Thus all of these gates can in principle be simulated
in parallel. Call this set of signals level N. Clearly we can, by
induction, apply the same argument to the signals which feed
these gates which we will call level NV — 1. Given a netlist we
levelise it as follows:

Step 1.

Step 2.
Step 3.

form set of all signals feeding the latches or outputs.
push gates whose outputs generate this set onto a stack
form set of all signals feeding the set of gates on the
top of the stack

if this set is empty goto step 5 otherwise goto step 2
set n=0

pop the stack and label all gates with level n

if stack empty terminate, otherwise set n=n+1 and
goto step 6

Step 4.
Step 5.
Step 6.
Step 7.

By levelisation (Fig. 1), we can perform parallel indepen-
dent calculations of whole levels and only force synchroniza-
tion at the end of each level’s simulation [30], [10], [9].

VI. SIMD BASED SIMULATOR ARCHITECTURE

In order to benefit from SIMD architectures, the same
operation should be applied to a large number of data elements.
Different logic gates perform different boolean functions.
However, all can be represented as truth table lookup. We
can thus perform AND, OR, NAND, etc. in parallel using
SIMD instructions which read an aggregate look up table of
size 16x4, which in turn holds truth tables for all binary logic
gates. A simplified version of lookup table is as bellow:

1 =1

}i

clk

Fig. 2. An example of a circuit with label. Logic gates of the same level are
shown in the same color.

34 56 7 8

[T [1]]
inp0 [0..n] INULL I1I2I3I4IOI6I
inp1 [0..n] [woe Jo 9T 4T 0] 5 0]

0
comp [0..n] [|

0 1 2 3 45 6 7 89 10

statef0.m || | [[[[T [TT7]]

LO L1 L2 L3

Fig. 3. An example of the array data structure used in the simulator. In
practical examples the vectors would be much longer.

To keep the lookup table simple, we have used only basic
two input logic gates. Larger circuits are broken down to the
level of two input logic gates.

To allow efficient parallel access, we represent the circuit
as 4 contiguous vectors. The first three vectors hold the date
related to the structure of the circuit: comp holds logic types,
inp0, inpl identify the two inputs to the logic gate. The
final vector called state, holds the time varying information
of the simulation. In other words, this final vector array
contains the current state values of all the signals. To update
the state of Flip Flops, a separate set of arrays are used, that
contain the location of input and output signal of each Flip
Flop in the state array.

Fig. 3, shows an example of the array data structure used
for the given circuit (Fig. 2). The circuit netlist contains all
the information related to the gate levels, inputs and outputs,
and etc. state array holds the signals values from each level
close to each other to ensure data locality. Level O in the state
array contains all the values of input signals to the circuit.

Each location ¢ in arrays inp0O and inpl, contains the ID
number of the input signals to the logic gate in location ¢ in
array comp, where its type is stored. The current state value
of its output signal is stored at index ¢ in state array.

During each clock cycles, the simulation function is called
up to the maximum depth of the circuit, to simulate logic gate
of the same level all together 1. Listing 2, line7, shows how
the value of current state signals is calculated.

The use of lookup table in this calculation, and the way
the data is stored in the arrays, allow this calculation to run

comp [0..n];
inp0 [0..n]
inp1 [0..n]| m
state [0..n] |

. A 5 >

.2 r Y
Level 0 Level 1 Level d

Fig. 4. Example of performing SIMD operation on 512-bits of data in the
integer array. Each block is 32 bits.

in SIMD. In order to have an aligned memory access, all the
relevant pieces of data for a block of 16 components 4..(i+15)
stored at the same block of indices in the arrays. This induces
adjacent memory access which accelerates the running of the
calculation in SIMD. To ease the read and write access pattern,
we store chunks of information related to each level in the
circuit, next each other in the arrays.

int main

(int argc, charx argv([]) {

int index = inputNum;

for (int level = 1;
{

simulation(state, shape_vec[level],index);

// points to the start of comps in the next Level
index += shape_vec[level] ;

1
2| ...

3| generate_input (state);
4

5

level < maxLevel; level ++)

© ® 9 o

10

nf}

Listing 1. Pseudocode for simulator program. Iteration through levels is
sequential Note that the outer for loop start from level 1 as the primary inputs
are considered to be at level 0.

1| void simulation int

index) {

2| int i;

// last index in state that the last gates in this
level resides

int last_index = glev_Num+index;

#pragma omp parallel for simd
for (i = index; i<last_index ;
state[i] = lut[comp[i]~*4
+ state[inpO[i]]*2
+ state[inpl[i]]l];

(int *state,int glev_Num,

w

i++) {

S

10 }

Listing 2. The function simulates logic gates at a given level with a lookup
table using multi-core and SIMD parallelism

Intel Xeon Phi has 128, 512-bit SIMD registers on each of
its cores (32 per thread). Components of the same path depth
will be simulated as 512 bits chunks of data (Fig. 4). In other
words, the load/store, read/write, as well as calculations are
done in SIMD on 512-bit of data at the same time (Fig. 4).

Given an array of size N, on Intel Xeon Phi with 240
threads, each physical thread is allowed to process N/240
elements of the array. On top of this, vectorization allows 16
simultaneous calculations. So, each arithmetic unit only has
to do N/3840 calculations.

During the simulation, logic gates of the same level are
divided among threads. The amount of workload for each
thread depends on the shape of the circuit (distribution of logic
gates per level). Thus, the workload for each thread varies
at each level. Each thread performs calculations on an equal
piece of data. This ensures work balancing. Fig. 5, shows the

N

R

/|
e

.

Level 1 Level 2 Level 3 Level d

Fig. 5. An example of workload among the threads per level simulation

. Input Data
7Y

Random Circuit S
Generator Xy Input
J(Circuit Simulator
=
RITL Netist BIif Netlist
pu Parser

Fig. 6. Process of transforming Netlists to gate Array Netlist for the Simulator

I

Output

workload among thread at each level, during the simulation.
The curved lines in the figure symbolize the synchronization
between threads.

VII. EXPERIMENTAL DATA
A. Test sets

To evaluate our proposed parallel SIMD circuit simulator,
we have used test circuits from IWLS benchmark suit, in
addition to synthetic circuits.

We took the benchmarks available in BLIF (Berkeley Logic
Interchange Format)! We used a parser to flatten the circuit
and generate the netlist array.

Due to the absence of large benchmark designs (for con-
fidentiality concerns in industry), in addition to the ITWLS
benchmarks suit, we generate synthetic circuits to be used as
benchmark suit for the experiments. The construction algo-
rithm we used is that published in [32] which has been well
validated for the way the circuits it builds are representative
of real circuits.

The process of generating the test circuits and the simulation
itself is shown in Fig. 6.

B. Experimental Setup and Benchmark

We used an Intel Xeon, an Xeon Phi coprocessor as our
primary platforms, to evaluate performance of our parallel
SIMD simulators.

To assess the performance, the circuit simulator was ran
on two different architectures for a varying number of cores
over different sizes of circuits. The Intel Xeon Phi 5110S
coprocessor with 60 cores, each operating at 1.053 GHz,
an Intel Xeon E5-2620 processor operating at 2 GHz, and
Intel core i7-2630QM were used. Table I shows the detail
specification for the architectures.

Throughout the experiments, we focus on the total physical
elapsed time. We also used other metrics such as event rate. We

IBLIF [31] is used to represent combinational and sequential logic circuits
in logic synthesis and verification tools such as Quartus.

TABLE I
SPECIFICATION OF PROCESSORS USED IN THE EXPERIMENTS

Parameter Intel Xeon Phi | Intel Xeon | Intel i7
Coprocessor Processor

Core, Threads | 60, 240 6, 12 4,8

Clock Speed 1.053 GHz ‘ 2 GHz ‘ 2 GHz

have used a counter to measure the number of gate transitions.
Regardless of how many cores are used, this metric would give
us the number events that can be computed per seconds.

For comparison, we also used a commercial simulator
(Xilinx) run on our Intel i7 machine.

VIII. RESULTS

In order to validate the effectiveness of our SIMD simulator,
we ran the simulator over 1000 clock cycles on two main
platforms of Intel Xeon and Intel Xeon Phi.

A. SIMD acceleration

In order to show the effect of vectorization on the perfor-
mance of the sequential simulator, we ran the simulator on
one core with and without SIMD.

With or without the vectorization, the Xeon sequential
simulator runs faster the Xeon Phi one. However, the purpose
of this experiment was only to show how much improvement
the SIMD vectorization would give.

SIMD acceleration increases the speed for up to 10 times
on Intel Xeon Phi and up to 4 times on Intel Xeon. We can
see that the acceleration falls to 2 for large circuits (Fig. 7).
This reduction is due to the size of the circuit and size of the
L2 cache.

When the circuit does not fit into the cache, the performance
degrades. Note that each logic gate occupies 4 integers (Fig. 3).
With 512K L2 cache per core, the maximum size of the circuit
that fits the cache is about 32k.

The bit-vector length in Xeon Phi is 512, 256 on Xeon.
The expected potential speedup enabling SIMD acceleration:
on Intel Xeon Phi is 16, and 8 on Intel Xeon. Meaning 16 logic
gates on Xeon Phi and 8 logic gates on Xeon can be evaluated
at the same time. However, the achieved vectorization speedup
on one core was 10 on Xeon Phi, and 4 on Xeon. This is
unsurprising, since Amdahl’s law predicts that vectorization
speedup would normally be less than the vector length.

B. Multi-core acceleration

The log/log plots in Fig. 8, shows the effect of multi-core
parallelism.

On Intel Xeon Phi, as we increase the number of threads
(from 1 to 240), we clearly see improvements on larger
circuits. From the circuit size of 3 million logic gate, the use of
240 threads shows some speedup.The larger synthetic circuit
that was used in these experiment has around 160 million of
logic gates. For this circuit size, we achieved the speedup
of 10 using 240 threads on Intel Xeon Phi, in comparison
to the baseline (the sequential version on Intel Xeon). When

—%— Intel Xeon Phi
— * —Intel Xeon

Vectorization Performance
>

10' 10 10° 10 10° 10°
Number of Logic Gates

Fig. 7. Acceleration relative to non vectorized code. Both vectorized and non
vectorized versions used only 1 core. Note that acceleration gain falls off for
larger circuits that do not fit in cache.

-—0---1 thread
— * —25 threads l-o»
—=—240 threads 2 A
--+- Sequential no SIMD / A

Execution Time (Seconds)
3

10° 10° 10 10

3 o
Number of Logic Gates

10' 10° 10

Fig. 8. Performance comparison of multicore SIMD with single core
sequential code on Intel Xeon Phi

compared to the sequential version on Intel Xeon Phi, this
number increases to 300.

When using multiple threads, not all the resources (hyper-
threads) are always available and free to do the simulation. As
a circuit grows larger, there will be memory contention (when
cores trying to access part of memory that is not accessible)
leading to hyperthread stalls. Although smaller circuits fit into
cache, they benefit less from multi-threading. We hypothesize
that there is not enough work to keep the cores busy and task
dispatch overhead degrades the performance.

C. Circuit Connectivity

The results reported so far have used synthetic circuits with
random interconnect, random both in terms of which previous
layer of logic an input comes from, and in terms of which logic
gate within a layer is used. The circuits are thus maximally
disordered to provide a worst case.

The same experiments were applied to another set of less
random synthetic circuits. In these, the inputs to each logic
gate are derived from the immediately previous layer. Ran-
domness is thus significantly reduced, and with the reduction
of randomness, we should expect greater locality of access.
We call this set the semi-random set.

The observed speedup peaks at 460 as opposed to 300 for
maximally random circuits. It shows the effect of data de-
pendency and data locality on the performance. The increased
performance is due to the change in write/read pattern. Most

25r

—6— Random circuits
X — + — Semi-random circuits|

N a »
3 & S

Vectorization Performance

@

10 10° 10° 10 10° 10° 10 10f 10
Number of Logic Gates

Fig. 9. Semi random synthetic circuits with inputs from previous level
only compared with random circuits, both traces using SIMD + multi-cores.
Speedup compared to one core non-SIMD on same circuit on Intel Xeon Phi.

——ZSIM (1 thread)
— * —ZSIM (8 threads)
2| —=— Commercial Simulator

Execution Time (Seconds)
3

10
Number of Logic Gates

Fig. 10. Performance comparison of our simulator (ZSIM) vs. the commercial
simulator on Intel i7 (IWLS benchmark suits)

likely, a lesser number of gather instruction cycles is needed
to collect the required data during the simulation.

D. Comparison with a commercial workstation simulator

In this part of the experiments, we used the commercial
simulator only on standard Intel chips. So, this comparison
did not use the Xeon Phi. The commercial simulator could
only take circuits of small size. The circuits are of a size for
which our simulator works best with only SIMD and multicore
parallelism. The circuits are small and there is not enough
work to keeps the cores busy and hide the latency. As we
increase the number of threads, the overhead due to thread
creation worsen the performance. However, even using one
thread on the same machine, our SIMD simulator is much
faster than the commercial simulator (Fig. 10)

E. Comparison with simulations on GPUs

There are prior papers on logic circuit simulation on GPUs,
though the results reported in the literature are for compara-
tively small circuits.

In [12], the authors use partitioning and replication in
conjunction with levelization in order to handle the problem
that the GPUs provide a small amount of shared memory.

It is possible to directly compare the performance of our
data structure with the result they report for only two of their
circuits, working BLIF representations of the others not being
available. Table II shows that when our data structure is run

TABLE II
COMPARISON OF TIME PER GATE SIMULATION FOR INTEL 17 AND NVIDIA
QUADRO FX3800 GPU

Design ‘ Time per gate simulation (nano seconds)
Alpsen et. al Chimeh & Cockshott
PAR2 (Nvidia GPU) Intel i7
aes-core 3.56 1.88
system-cdes 50.67 1.90
TABLE III

TIME PER GATE SIMULATION AND GATE TRANSITION PER SEC FOR
PARALLEL OBLIVIOUS SIMULATION (YUXUAN ET. AL) ON NVIDIA GTX

465
Design | Gates | Nano sec per gate cycle | Transitions per sec
LDPC 60752 6.67 1.50E+8
DES3 52372 2.15 4.65E+8
Or1200 25924 13.3 7.51E+7
OpenSparc | 189487 2.17 4.59E+8

10° ¢

10'

10°

—%— 1 thread

- * - 25 threads
—8— 240 threads

Time per gate cycle (MicroSeconds)

10' 10° 10° 10 10° 10° 10 10
Number of Logic Gates

Fig. 11. Comparison of time per gate cycle of multicore SIMD simulator on
Intel Xeon Phi. Note that the fast time per gate cycle is around 2.7ns.

even on one core of a standard Intel i7, the performance
substantially exceeds the results reported from [12], when
we use the metric of nanoseconds per gate simulation.

It is also worth noting that the mentioned paper report
results only on comparatively small circuits well under a
million gates. So, the applicability of their technique to large
circuits is unclear.

Yuxuan et al. [13], introduced a strategy to extract and
partition the circuit in order to compile it to GPUs. They
presented comparison between the Intel Core Duo T2400
processors with 1.8 GHz frequency and the NVIDIA GTX
465.

They achieved gate cycle times (Table III) comparable to
the peak performance of MIC (Fig. 11). This reflects the lower
task dispatch cost in CUDA relative to Xeon Phi. The Xeon
Phi achieves it best performance on large circuits where the
task dispatch cost can be amortized.

Chatterjee et al. report simulation on NVIDIA 8800GT GPU
with 14 multiprocessors. Due to no overlap of test circuits, in
order to compare the performance of our simulator with the
GCS simulator [11], we compare our speedup relative to our
sequential commercial simulator mentioned in Section VII-B
to the speedup that Chatterjee et al. [11] report relative to
a commercial simulator. Their GCS simulator outperforms

TABLE IV
CHARACTERISTIC COMPARISON OF INTEL XEON PHI AND IBM BLUE
GENE/L
Parameter IBM Blue Gene/L Intel Xeon Phi
Cores 1024 60
Clock Speed 700 MHz/core 1.053 GHz/core
Price $0.8m - $1.3m $1600.00 - $2649.00
Size 2m height x 24.61cm x
Im width 11.12cm x 3.86cm
TABLE V

COMPARISON OF NUMBER EVENTS PER SECOND (IBM BLUE GENE/L VS.
INTEL XEON PHI)

Max number of gates ~ 216 million
Blue Gene/L Cores Event rate (millions/sec)

64 15
128 20
256 30
512 60
1024 116

Max number of gates ~ 160 million
Xeon Phi Threads Event rate (millions/sec)

125 76.8
240 142

Number of Transitions per Second

—%— 1 thread
- * - 25 threads
—=— 240 threads

10° 10 10° 10° 10

Number of Logic Gates

10 10

Fig. 12. Comparison of number of transitions per second in parallel simulator
on Intel Xeon Phi. Note that these actual transitions in contrast to Fig. 11
which shows time per gate cycle.

their commercial simulator by between 4 to 44 times with
an average speedup of 13. Our simulator running SIMD
parallelism on one core Intel i7, outperforms our commercial
simulator by an average factor of 356.

1) Conclusions relative to GPUs: GPUs can achieve com-
parable gate cycle per second rates to the Xeon Phi. But this is
only been demonstrated on the GPUs for the relatively small
circuits. Although it is not explained in the literature why small
circuits have been used in GPU experiments, we hypothesize
that the relatively small local memory on GPUs motivates
experiments to select problems that are easier to map to the
local memory. It is clear from our results that Xeon Phi can
be extended to the circuits of around 100 millions of gates.

The ring architecture, in which memory accesses by each
core are satisfied in the priority: local cache, cache of other
cores on ring, GDDR ram, seems very effective. It obviates
the need for the programmer to schedule transfers to local

memory whilst still giving very good performance even with
maximally random circuits.

FE. Comparison with simulation on the IBM Blue Gene

Gonsiorowski et al. [1] used a discrete event simulation
framework that allows simulations to be run in parallel, called
ROSS (Rensselaer Optimistic Simulation System), a modular
time wrap system. The paper reports the performance of this
framework executing parallel event based simulation (based
on the time wrap protocol) using a message passing interface
on Blue Gene/L.

1) Blue Gene/L Architecture: The experiments were done
on two machines (IBM Blue Gene/L, and Intel X5650). The
Blue Gene/L has up to 1024 cores, each performing at 700
MHz clock rate.

To evaluate the simulation performance, we compare the
number of gate transitions per second between our simulator
and [1].

We are comparing the event metric for our largest circuit
(with over 160 millions of gates) with their 216 million gates
circuit. On Blue Gene/L with 1024 cores, they achieved an
event rate of 116 million events per second.Our simulator
achieved an event rate of 141 million events per second
(Fig. 12). Table IV, compares some of the characteristics of
both Intel Xeon Phi and Blue Gene/L, in terms of the price
per rack and the size, in addition to the number of available
cores. Table V compares the event rate data taken [1] with
the event rate measured in our simulator. We are achieving
better performance on many fewer cores at much lower cost.
The MIC clock speed is slightly higher than that of the Blue
Gene, but the main gain comes from the ability of our data
structure to handle both SIMD and multi-core parallelism with
low synchronization overhead.

IX. CONCLUSION

In this paper, we proposed a lock-free architecture for
accelerating logic gate simulation that allows targeting a low
cost SIMD multi-core machine.

We used and applied a data structure on the state of art,
Intel Xeon Phi technology. This data structure minimizes the
synchronization overhead as well as maximizing the possibility
of SIMD and parallel operations. The combination of this data
structure and the Xeon Phi chip is a cost effective solution for
simulation acceleration.

We have shown that this combination is far faster than, and
can handle much bigger circuits than, a widely used commer-
cial simulator running on a workstation. We have shown that
the Xeon Phi is competitive with simulation on GPUs and
allows the handling of much larger circuits than have been
reported for GPU simulation. We also presented results which
show that it gives comparable simulation performance to the
IBM Blue Gene supercomputer at very much lower cost.

In future publications, we will address the portability of
our simulator to other programming languages and to parallel
machines by different manufacturers.

[2]

[3]
[4]

[5]

[6]

[7]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

E. Gonsiorowski, C. Carothers, and C. Tropper, “Modeling Large
Scale Circuits Using Massively Parallel Discrete-Event Simulation,”
in Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th International Symposium on, Aug
2012, pp. 127-133.

D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GP-GPUs,” in Design Automation Conference, 2009.
DAC °09. 46th ACM/IEEE, July 2009, pp. 557-562.

G. Meister, “A survey on parallel logic simulation,” University of
Saarland, Department of Computer Science, Misra J, Tech. Rep., 1993.
L. Soulé and T. Blank, “Parallel logic simulation on general
purpose machines,” in Proceedings of the 25th ACM/IEEE Design
Automation Conference, ser. DAC °88. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1988, pp. 166—171. [Online]. Available:
http://dl.acm.org/citation.cfm?id=285730.285757

W. Baker, A. Mahmood, and B. Carlson, “Parallel event-driven logic
simulation algorithms: tutorial and comparative evaluation,” Circuits,
Devices and Systems, IEE Proceedings -, vol. 143, no. 4, pp. 177185,
Aug 1996.

Y. Matsumoto and K. Taki, “Parallel logic simulation on a distributed
memory machine,” in Design Automation, 1992. Proceedings., [3rd]
European Conference on, Mar 1992, pp. 76-80.

N. Manjikian and W. M. Loucks, “High performance parallel logic
simulations on a network of workstations,” SIGSIM Simul. Dig., vol. 23,
no. 1, pp. 76-84, Jul. 1993.

H. K. Kim and S. M. Chung, “Parallel logic simulation using time
warp on shared-memory multiprocessors,” in Proceedings of the Sth
International Symposium on Parallel Processing. — Washington, DC,
USA: IEEE Computer Society, 1994, pp. 942-948.

A. Perinkulam, “Logic Simulation using Graphics Processors,” Master’s
thesis, University of Massachusetts Amherst, January 2007.

D. Chatterjee, A. DeOrio, and V. Bertacco, “GCS: High-performance
gate-level simulation with GPGPUS,” in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., April 2009, pp. 1332—
1337.

D. Chatterjee, A. Deorio, and V. Bertacco, “Gate-Level Simulation with
GPU Computing,” ACM Trans. Des. Autom. Electron. Syst., vol. 16,
no. 3, pp. 30:1-30:26, Jun. 2011.

A. Sen, B. Aksanli, and M. Bozkurt, “Speeding Up Cycle Based Logic
Simulation Using Graphics Processing Units,” International Journal of
Parallel Programming, vol. 39, no. 5, pp. 639-661, 2011.

Z. Yuxuan, W. Tingcun, K. Yaowen, F. Xiaoya, Z. Meng, and Z. Lili,
“Logic simulation acceleration based on GPU,” in Mixed Design of
Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the
18th International Conference, June 2011, pp. 608-613.

T. Hashiguchi, Y. Mori, M. Toyonaga, and M. Muraoka, “Yapsim: Yet
another parallel logic simulator using gp-gpu,” in The 19th Workshop
on Synthesis And System Integration of Mixed Information technologies.
SASIMI 2015, 2015.

R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Proceedings of the 22Nd International Conference
on Computer Aided Verification, ser. CAV’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 24-40.

A. Mishchenko, R. Brayton, and S. Jang, “Global delay optimization us-
ing structural choices,” in Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’10. New York, NY, USA: ACM, 2010, pp. 181-184.

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting
a fresh look at combinational logic synthesis,” in Proceedings of the 43rd
Annual Design Automation Conference, ser. DAC 06. New York, NY,
USA: ACM, 2006, pp. 532-535.

Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Sat sweeping with local observability don’t-cares,” in Design Automa-
tion Conference, 2006 43rd ACM/IEEE, 2006, pp. 229-234.

S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Computer-Aided
Design, 2005. ICCAD-2005. IEEE/ACM International Conference on,
Nov 2005, pp. 519-526.

C. D. Carothers, D. Bauer, and S. Pearce, “Ross: A high-performance,
low memory, modular time warp system,” in Proceedings of the Four-
teenth Workshop on Parallel and Distributed Simulation, ser. PADS *00.

Washington, DC, USA: IEEE Computer Society, 2000, pp. 53—60.
D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst., vol. 7,

no. 3, pp. 404425, Jul. 1985.

M. Chimeh, C. Hall, and J. O’Donnell, “Optimisation and parallelism in
synchronous digital circuit simulators,” in Computational Science and
Engineering (CSE), 2012 IEEE 15th International Conference on, Dec
2012, pp. 94-101.

Y. Zhu, B. Wang, and Y. Deng, “Massively Parallel Logic Simulation
with GPUs,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 3,
pp- 29:1-29:20, Jun. 2011.

K. Gulati and S. P. Khatri, “Towards acceleration of fault simulation
using graphics processing units,” in Proceedings of the 45th Annual
Design Automation Conference, ser. DAC "08. New York, NY, USA:
ACM, 2008, pp. 822-827.

M. Li and M. S. Hsiao, “Fsimgp2: An efficient fault simulator with
gpgpu,” in Proceedings of the 2010 19th IEEE Asian Test Symposium,
ser. ATS "10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 15-20.

M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient
fault simulation on many-core processors,” in Proceedings of the 47th
Design Automation Conference, ser. DAC *10. New York, NY, USA:
ACM, 2010, pp. 380-385.

J. Wang, D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev, “Parallel
Discrete Event Simulation for Multi-Core Systems: Analysis and Op-
timization,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 25, no. 6, pp. 1574-1584, June 2014.

J. Reinders. (2012) An Overview of Programming for Intel Xeon
processors and Intel Xeon Phi coprocessors [Online]. Avail-
able: http://download.intel.com/newsroom/kits/xeon/phi/pdfs/overview-
programming-intel-xeon-intel-xeon-phi-coprocessors.pdf

M. Chimeh, P. Cockshott, S. B. Oehler, A. Tousimojarad, and T. Xu,
“Compiling Vector Pascal to the XeonPhi,” Concurrency and Computa-
tion: Practice and Experience, 2015.

A. Sen, B. Aksanli, M. Bozkurt, and M. Mert, “Parallel Cycle Based
Logic Simulation Using Graphics Processing Units,” in Parallel and
Distributed Computing (ISPDC), 2010 Ninth International Symposium
on, July 2010, pp. 71-78.

B. L. Synthesis and B. Verification Group, University of California.
Berkeley Logic Interchange Format (BLIF). [Online]. Available:
https://www.ece.cmu.edu/ ee760/760docs/blif.pdf

M. Hutton, J. Rose, and D. Corneil, “Automatic generation of synthetic
sequential benchmark circuits,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 21, no. 8, pp. 928—
940, Aug 2002.

