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ABSTRACT  An anisotropic plasticity model is proposed to describe the effect of fabric and fabric evolution on the cyclic behaviour of 
sand within the framework of anisotropic critical state theory. The model employs a cone-shaped bounding surface in the deviatoric stress 

space and a yield cap perpendicular to the mean stress axis to describe sand behaviour in constant-mean-stress shear and constant-stress-

ratio compression, respectively. The model considers a fabric tensor characterizing the internal structure of sand associated with the void 

space system which evolves with plastic deformation. The fabric evolution law is assumed to render the fabric tensor to become co-

directional with the loading direction tensor and to reach a constant magnitude of unit at the critical state. In constant-stress-ratio compres-

sion, the final degree of anisotropy is proportional to a normalized stress ratio. An anisotropic variable defined by a joint invariant of the 
fabric tensor and the loading direction tensor is employed to describe the fabric effect on sand behaviour in constant-mean-stress monotonic 

and cyclic shear. Good comparison is found between the model simulations and test results on Toyoura sand in both monotonic and cyclic 

loadings with a single set of parameters. 

 

RÉSUMÉ  Un modèle anisotrope de plasticité est proposé pour décrire l'effet de fabrique et de l'évolution de fabrique sur le comportement 

cyclique de sable dans le cadre de la théorie d'état critique anisotrope. Le modèle utilise une surface de délimitation en forme de cône dans 
l'espace de contrainte déviatorique et une surface limite perpendiculaire à l'axe de la contrainte signifie pour décrire le comportement de 

sable dans contrainte moyenne constante et de rapport de contrainte constant, respectivement. Le modèle prend en compte un tenseur de fa-
brique caractérisation de la structure interne de sable associé au système d'indice des vides qui évolue avec déformation plastique. La loi 

d'évolution de fabrique est supposé rendre le tenseur de fabrique pour devenir co-directionnelle avec la direction de chargement tenseur et 

d'atteindre une amplitude constante de l'unité à l'état critique. Dans le rapport de contrainte  constant en compression, le degré d'anisotropie 

final est proportionnelle à un rapport de contrainte normalisée. Une variable anisotrope définie par un invariant conjointe du tenseur de fa-

brique et la direction de tenseur de chargement  est employé pour décrire l'effet de fabrique sur le comportement de sable dans contrainte 

moyenne constante monotone et cyclique. Bonne comparaison est trouvée entre les simulations du modèle et les résultats des essais sur le 
sable Toyoura dans les deux chargements monotones et cycliques avec les meme valeurs des paramètres. 

 

1 INTRODUCTION 

Natural and manmade sand deposits/samples are 

commonly cross-anisotropic due to gravitational 

forces and/or compaction. The anisotropic soil fabric 

(internal structure) plays an important role in affect-

ing the overall behaviour of sand such as strength and 

dilatancy. For instance, Oda et al. (1978) demonstrat-

ed that the bearing capacity for the model with the 

load perpendicular to the bedding plane may be 34% 

higher than with the load parallel to the bedding 

plane. The observed difference in strength is appar-

ently attributable to the effect of cross anisotropy. 

Meanwhile, the undrained shear strength and cyclic 

liquefaction resistance of sand, which are of great 

concern in earthquake engineering design, are also 

found to be strongly dependent on the degree of fab-

ric anisotropy and the relative orientation between 

the loading direction and material fabric (e.g., Miura 

and Toki 1982). For instance, Miura and Toki (1982) 



found that sand deposits with a higher degree of ani-

sotropy and a horizontal bedding plane show a higher 

undrained shear strength in monotonic triaxial com-

pression tests but lower liquefaction resistance in un-

drained cyclic triaxial tests. This is mainly due to 

sand samples that are more anisotropic showing more 

contractive responses in the triaxial extension side in 

cyclic loading.  

To characterize the fabric effect on sand behav-

iour, many theoretical attempts have been made dur-

ing the past few decades. Various constitutive models 

have been developed to describe the effect of inher-

ent anisotropy on sand responses (e.g., Li and Dafali-

as 2002). These models are shown to be able to char-

acterize the stress-strain and strength behaviour of 

sand under certain loading conditions with varied de-

gree of satisfaction. However, the assumption of a 

constant fabric during loading in these models may 

not be consistent with experimental and numerical 

observations where sand fabric has been found to 

change appreciably during loading in order to ac-

commodate the applied stress (Li and Dafalias 2012; 

Zhao and Guo 2013). The evolution of sand fabric, if 

not properly accounted for, may result in some im-

portant features of sand behaviour not being mod-

elled.  

The main objective of this work is to present a 

comprehensive bounding surface model to describe 

the fabric effect on sand behaviour in both monotonic 

and cyclic loading based on the recent work by Gao 

et al. (2014) and the anisotropic critical state theory 

(Li and Dafalias 2012).  

 

2 MODEL FORMULATIONS 

2.1 Bounding surface and yield cap 

The proposed model is based on the bounding sur-

face concept originally described by Li (2002), with 

further adaption to be consistent with the anisotropic 

critical state theory recently developed by Li & 

Dafalias (2012) and materialized by Gao et al. 

(2014). 

The bounding surface 1f  is expressed as (Li 2002) 

 1 1/ 0f R g H                     (1) 

where ijijrrR 23  with ijr  being the ‘image’ 

stress ratio tensor of the current stress ratio tensor 

 ij ij ij ijr s p p p    , in which 
ij  is the stress 

tensor, 
ijs  is the deviatoric stress tensor and 

ij  is the 

Kronecker delta; 
1H  is a function of the internal state 

variables associated with the loading history;  g   

is an interpolation function describing the variation 

of critical state stress ratio with Lode angle   (Li 

2002) 
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where ce MMc   with 
eM  and 

cM  denoting the 

critical state stress ratio in triaxial extension and 

compression, respectively.  

The condition of consistency for the cone is ex-

pressed as (Li and Dafalias 2002; Li 2002) 

1 1 1 1 1 0ij ij p ij ij pdf pn dr L K pn dr L K      (3) 

where ijn  is the deviatoric unit loading direction ten-

sor defined as the norm to 1f  at the image stress ratio 

point ijr , 1pK  and 1pK  are respectively the plastic 

moduli for the reference and current stress state, 
1L  

is the loading index for constant-mean-stress shear 

and   are the Macauley brackets. ijr  and ijn are 

obtained by the radial mapping rule shown in Li 

(2002). 

The cap yield surface is expressed as (Li, 2002) 

2 2 0f p H                             (4) 

where 2H  defines the location of the flat cap at the 

mean stress axis. The condition of consistency for 

this cap is (Li, 2002) 

2 2 2 0pdf dp L K                 (5) 

where 2L  is the loading index for constant-stress-

ratio compression and 2pK  is the plastic modulus for 

the yield cap. Following Gao et al. (2014) and Gao 

and Zhao (2013), a fabric dependent flow rule ex-

pressed as below is employed for constant-mean-

stress shear 
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where 
1p

ijde  is the plastic deviatoric strain increment 

associated with the loading index 
1L . The plastic po-

tential function g  is expressed as 

   
2

1
0

k A

gg R g H e
 

                (7) 

where k  is a positive model parameter with default 

value of 0.03; A  is an anisotropic variable and  gH  

should be adjusted to make 0g   based on current 

ijr  and ijF .   

In constant-stress-ratio compression, the plastic 

deviatoric strain increment is assumed to align in the 

same direction of ijr  as follows (Li 2002) 

2
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p
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where 2p

ijde  is the plastic shear strain increment as-

sociated with the loading index 
2L . 

Assuming that the plastic deviatoric and volumet-

ric strain increments (
p

ijde  and 
p

vd ) can be decom-

posed into two parts associated with 
1L  and 

2L , re-

spectively, one has 
1 2
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where 
1D  ( 1 1 12 3p p p

v ij ijd de de ) and 
2D  

( 2 2 22 3p p p

v ij ijd de de ) denote the dilatancy rela-

tions for constant-mean-stress shear and constant-

stress-ratio compression, respectively.  

2.2 Anisotropic variable and dilatancy state 

parameter 

The following anisotropic variable A  and dila-

tancy state parameter   (Li and Dafalias 2012) will 

be used to characterize the fabric effect on the dila-

tancy and plastic hardening of sand in constant-

mean-stress shear 

ij ijA F n                          (11) 
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where 
re  is a positive model parameter,   is the 

state parameter and x=50 is a default model constant 

which makes the term   0
x

    unless   is very 

close to  .   and 
 
denote respectively the dis-

tances of the ‘image’ and current stress ratio point 

from the projection centre (Li, 2002). 

In the present model, the critical state line in the 
e p  plane is given by (Li and Wang 1998) 

 c c ae e p p


        (13) 

where 
ce  is the critical stat void ratio; e , 

c  and   

are material constants and 
ap   (=101 kPa) is the at-

mospheric pressure. 

2.3 Plastic modulus and dilatancy relation 

The following plastic modulus is employed in 

constant-mean-stress shear  
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where G is the elastic shear modulus, the expression 

of which will be shown in the subsequent sections, n 

is a positive model parameter, h is a scaling factor for 

the plastic modulus When   1
x

   , 
1 1p pK K . 

In the present model, the following form of h is used 
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where  

         
2

11 1
x x

ch h F       
 

    (16) 

where hc  and h
1
 are two positive model parameters. 

The following dilatancy relation in constant-mean-

stress shear is proposed based on the work by Li 

(2002), Li and Dafalias (2012) and Gao et al. (2014), 
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where m, d1,   and dr are positive model parame-

ters.   is a model constant with default value of 

5000. dr is a  relatively small number with default 

value of 0.1.  

We propose the following plastic modulus under 

constant stress ratio loading 
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where   is the Lode angle for ijr ,  3 2ij ijR r r  is 

the current stress ratio, 
2d  is a positive model pa-

rameter. The expression for 
2r  describes the e-p rela-

tion in constant-stress-ratio compression which is al-

ways greater than zero. The term 2 3  is added to 

offer a simpler relation between 
2p

vd  and dp
 
[see 

Eq. (22) below], dp is the increment of mean effec-

tive stress.  

The dilatancy in constant-stress-ratio loading is 

expressed as follows 
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Based on Eqs. (5), (10), (20) and (21), the com-

pressive behaviour of sand under constant-stress-ratio 

loading [  cR M g  ] can be obtained as below 

2

2

p
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In the present model, the expression for r
2
 is pro-

posed based on Taiebat and Dafalias (2008)  
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where 0K  is a model parameter for the elastic modu-

lus of sand,   is a parameter which controls the cur-

vature of the predicted e-p relation in constant-stress-

ratio compression, c  is the slope of the limit com-

pression curve (LCC) for isotropic compression in 

the log loge p  space (Taiebat and Dafalias, 2008) 

and 
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where 
bp  is the ‘image’ mean stress on the LCC for 

isotropic compression corresponding to the current 

void ratio e. The expression for the LCC in isotropic 

compression is  log logc re p p , where 
rp  is the 

means stress corresponding to 1e  on the LCC.  

2.4 Fabric evolution 

By neglecting potential fabric change due to pure 

elastic deformation, the following fabric evolution is 

assumed in the present model 
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(25) 

where 
fk  is a model parameter describing the rate of 

fabric evolution with plastic strain increment associ-

ated with 
1p

qd ( 1 12 3p p

ij ijde de ) and 
2p

vd . Eq. 

(25) indicates that ijF  will eventually become co-

directional with ijn  and reach a constant magnitude 

of F=1 when at the critical state (Li and Dafalias 

2012). In a pure constant-stress-ratio compression, 

Eq. (25) will not lead ijF  to critical state but give a 

material fabric which is co-directional with ijl  and 

has a constant magnitude  cF R M g   when 

2p

v (
2p

vd  ) is large enough.   

2.5 Elastic stress strain relations 

Hypo-elastic stress-strain relations are used in this 

model. The elastic shear modulus G is expressed as a 

function of e and p as below 
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where 0G  is a model parameter. 

Following Taiebat and Dafalias (2008), the elastic 

bulk modulus K expressed below is used for the pre-

sent model 
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3 MODEL SIMULATION 

Figure 1 compares the model simulations against 

test data for Toyoura sand in undrained cyclic simple 

shear tests (
0 0.5F   is used in the simulations and 

the model parameters are shown in Table 1). For the 

test shown here, the sample was first isotropically 

consolidated to 100kPap   and cyclic undrained 

simple shear was then applied with constant ampli-

tude of shear stress   (Chiaro et al. 2009). Evidently, 

the model gives good predictions for the effective 

stress path and shear stress-strain relation. In Fig-

ure 1, 
max  and 

min  respectively denote the maxi-

mum and minimum shear stresses in each cycle and 

  is the shear strain.  

 

Table 1. Model parameters 

Parameter Value 

G0 125 

K0 150 

Mc 1.25 
c  0.75 

e  0.934 

c  0.019 


 

0.7 

hc  0.90 

re  0.09 

n 4.0 

d1 0.4 
m 5.3 

h1 7.6 


 
5000 

dr 0.1 

c
 

0.37 

rp (kPa) 5500.0 

  0.18 

d2 1 

kf
 

7.35 

 

Figures. 2a and 2b show the undrained cyclic tri-

axial test results on Toyoura sand prepared by two 

different methods (Miura and Toki, 1982). The mon-

otonic triaxial test results indicate that the sample 

prepared by wet rodding method is approximately 

isotropic (Miura and Toki, 1982), and thus 
0 0F   is 

used in the simulations (Figure 2c). The sample pre-

pared by the multiple sieving pluviation method is 

found to be initially anisotropic (Miura and Toki, 

1982), its initial degree of anisotropy is set to be 

0 0.22F   based on best fitting of the effective stress 

path shown in Figures 2b and d. Note that the model 

parameters listed in Table 1 are used for these two 

samples.  

(a) 

(b) 

(c) 

(d) 

Figure 1 Model simulation for sand behaviour in undrained cyclic 

simple shear test 



Though the predicted effective stress path shows a 

relatively large deviation from the measured one for 

the sample prepared by multiple sieving pluviation 

method, the model does offer reasonable characteri-

zations of the fabric effect on the sand behaviour in 

cyclic loading. The more isotropic sample shows 

higher liquefaction resistance in undrained cyclic tri-

axial tests (p decreases with the number of cycles 

more slowly). For example, at the end of the 6th cy-

cle, p for the sample prepared by multiple sieving 

pluviation is around 110 kPa, which is lower than 

that for the wet-rodded sample (155 kPa). 

 

4 CONCLUSION 

The paper presented a comprehensive bounding 

surface model to characterize the fabric effect on the 

behaviour of sand in both monotonic and cyclic load-

ing conditions within the framework of the aniso-

tropic critical state theory (Li and Dafalias 2012). It 

assumes that the fabric evolves with both plastic 

shear and volumetric strains. An anisotropic variable 

defined by the joint invariant of the deviatoric fabric 

tensor and the loading direction tensor is used to 

model the fabric effect on sand behaviour in con-

stant-mean-stress shear. The model offers a unified 

description for the effect of fabric and fabric evolu-

tion in both monotonic and cyclic loading. The model 

predictions of sand behaviour for a series tests on 

Toyoura sand compare well with the test data. 
 

(a) 

(b) 

(c) 

(d) 

 

Figure 2 Model simulation for effect of initial degree of anisotro-
py on sand behaviour in undrained cyclic triaxial tests 
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