

Sevegnani, Michele, and Pereira, Eloi (2014) Towards a bigraphical
encoding of actors. In: MeMo2014: 1st International Workshop on Meta
Models for Process Languages, 6 June 2014, Berlin, Germany.

Copyright © 2014 The Authors

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

Content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/94772/

 Deposited on: 27 June 2014

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296163733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards a Bigraphical Encoding of Actors

Michele Sevegnani1,⋆ and Eloi Pereira2,3,⋆⋆

1 School of Computing Science, University of Glasgow, UK
Michele.Sevegnani@glasgow.ac.uk

2 Systems Engineering, UC Berkeley, USA
eloi@berkeley.edu

3 Research Center, Portuguese Air Force Academy, Portugal

Abstract. Actors are self-contained, concurrently interacting entities of
a computing system. They can perform local computations, communicate
via asynchronous message passing with other actors and can be dynami-
cally created. Bigraphs are a fully graphical process algebraic formalism,
capable of representing both the position in space of agents and their
inter-connections. Their behaviour is specified by a set of reaction rules.
In this paper, we present a bigraphical encoding of a simplified actor
language with static topology. We express actor configurations in terms
of sorted bigraphs while the rules of the actor operational semantics are
encoded by bigraphical reactive rules.

1 Introduction

Actors [2] is a model for distributed concurrent computing systems. An actor
system, called actor configuration, is a collection of autonomous objects, called
actors, and messages that have been sent but not yet received. Each actor is
characterised by a unique address used for asynchronous communication with
other actors and by an internal state. The local computation carried out by
an actor is typically specified in a sequential language. However, the authors
in [1] developed an actor semantics in a framework where local computation
is specified using an extension of λ-calculus. The operational semantics of ac-
tor configurations is defined by a transition relation on configurations. We will
describe it in greater detail in the next section.

Bigraphical reactive systems (BRS) is a recent formalism for modelling the
temporal and spatial evolution of computation. It was initially introduced by
Milner [9] to provide a fully graphical model capable of representing both con-
nectivity and locality. A BRS consists of a set of bigraphs and a set of reaction
rules, which defines the dynamic evolution of the system by specifying how the

⋆ The author was supported by The Royal Society (through International Exchanges
Scheme IE130886) and by The Scottish Informatics and Computer Science Alliance
(SICSA).

⋆⋆ The author was supported by the National Science Foundation (CNS1136141), by the
Fundação para a Ciência e Tecnologia (SFRH/BD/43596/2008), by the Portuguese
MoD - PITVANT

set of bigraphs can be reconfigured. The development of bigraphs has been di-
rected toward both the modelling of ubiquitous systems by focusing on mobile
connectivity and mobile locality [4, 5] and the definition of a unifying theory ca-
pable of representing many existing calculi for concurrency and mobility within
the same theoretical framework. Some examples are the bigraphical encodings
of CCS, mobile ambients, condition-event Petri nets and λ-calculus [7, 8].

In this paper, we present a bigraphical encoding of a simplified actor language
with static topology, i.e. actor addresses are not communicable variables. We
express actor configurations in terms of sorted bigraphs while the rules of the
actor operational semantics are encoded by bigraphical reactive rules.

The paper is organised as follows. In the next section, we recall the definition
of operational semantics for the actor model. In Section 3, we informally intro-
duce bigraphs and BRS. Section 4, describes our bigraphical encoding of actors
into bigraphs. Conclusions and directions for future work are in Section 5.

2 Actors Operational Semantics

In this section we present an operational semantics for the actor model. We
follow a simplified version4 of the approach presented in [10].

Let us set some notational conventions. We let a, a′, . . . range over the set
of actor addresses, v, v0, v1, . . . range over values, and x range over identifiers.
A value expression, i.e. either a value or an identifier, is indicated by e, while
f, f ′, . . . denote expressions of a sequential language used to specify actor be-
haviors. Since we do not rely on a specific language, its definition is omitted.
Local environments (written as E,E′, . . .) are mappings from identifiers to their
values in the form [x↦ v].

The semantics is formalized as a transition relation over the set of actor
configurations.

Definition 1. An actor configuration is a pair ⟪α ∣ µ⟫ where α is a set of actor

names, and µ is the set of pending messages.

Actor configurations are syntactically defined according to the grammar de-
fined in Figure 1.

A busy actor with unique address a, local environment E, and local behaviour
b is written [E ⊢ b]a. Similarly, an inactive actor is denoted by (E ⊢ b)a. The
local behaviour b is specified as a sequential composition of actor commands
send(,), ready(), and new(), expressions f that manipulate the state of
the actor, and terminal symbol nil. A message is a pair ⟨a⇐ v⟩ consisting of a
destination address a and a value to be communicated v.

The set of possible computations of an actor configuration is defined in terms
of transition relation → defined in Figure 2. The actor model is by principle a
model of concurrency. Thus, the semantics neatly separates concurrent inter-
actions between actors (specified by relation →) and the internal computations

4 Dynamic topologies and external actors are not allowed.

config ∶ ⟪actor∗ ∣msg∗⟫

actor ∶ [E ⊢ b]a ∥ (E ⊢ b)a

b ∶ send(a, e) ∥ ready(x) ∥ new(b) ∥ b; b ∥ f ∥ nil

msg ∶ ⟨a⇐ v⟩

Fig. 1. Grammar for actors syntax.

within an actor (modelled by the transition relation →λ). This provides means
for using the actor model with an arbitrary language specified by →λ. For the
sake of readability, we assume that this language is equipped with a sequential
composition operator (i.e. ;). For a more abstract actor semantics definition
refer to [1].

Our semantics consists of five rules. We now briefly comment on them.

Rule ⟨nil⟩ specifies the behaviour of an actor a with empty behaviour nil.
The rule simply removes a from the set of actors.

Rule ⟨fun ∶ a⟩ defines the effect on the local state when an actor a performs
an internal computation step. It takes an expression f ; b, evaluates f , produces
the corresponding side-effects in the local environment (i.e. E becomes E′), and
changes the behaviour of actor a to b.

Rule ⟨new ∶ a, a′⟩ defines the creation of a new actor a′ spawned by a. The
rule takes an expression new(b′); b, creates a′ with behaviour b′, and changes the
behaviour of a to b. Note that address a′ must be different from all the other
actor addresses in the current configuration.

Rule ⟨snd ∶ a, ⟨a′ ⇐ v⟩⟩ models actor a sending a message with content v to
actor a′. The rule takes an expression send(a′, v); b, adds a message ⟨a′ ⇐ v⟩ to
the set of pending messages in the configuration, and changes the behaviour of
a to b.

Finally, rule ⟨rcv ∶ a, ⟨a⇐ v⟩⟩ defines the evolution of an actor a receiving a
message with content v. The rule takes an expression ready(x); b, and a message
⟨a ⇐ v⟩ from the set of pending messages, substitutes v for all the free occur-
rences of x in b, and changes the behaviour of a to b[x ∶= v]. Note that actor a is
inactive in the left-hand side of the rule while it becomes busy in the right-hand
side.

3 Bigraphical Reactive Systems

In this section we define informally BRS with rule priorities as in [6], with enough
detail to support the encodings we will present in the following sections. Refer
to [9] for a complete account.

⟨nil ∶ a⟩ ⟪α, [E ⊢ nil]a ∣ µ⟫→ ⟪α ∣ µ⟫

⟨fun ∶ a⟩
E ⊢ f ; b→λ E

′
⊢ b

⟪α, [E ⊢ f ; b]a ∣ µ⟫→ ⟪α, [E′ ⊢ b]a ∣ µ⟫

⟨new ∶ a, a′⟩ ⟪α, [E ⊢ new(b′); b]a ∣ µ⟫→ ⟪α, [E ⊢ b]a, [E ⊢ b
′
]a′ ∣ µ⟫ a′ fresh

⟨snd ∶ a, ⟨a′ ⇐ v⟩⟩ ⟪α, [E ⊢ send(a′, v); b]a ∣ µ⟫→ ⟪α, [E ⊢ b]a ∣ µ, ⟨a′ ⇐ v⟩⟫

⟨rcv ∶ a, ⟨a⇐ v⟩⟩ ⟪α, (E ⊢ ready(x); b)a ∣ µ, ⟨a⇐ v⟩⟫→ ⟪α, [E ⊢ b[x ∶= v]]a ∣ µ⟫

Fig. 2. Actor operational semantics.

Constituents of Bigraphs and Graphical Notation Some example bi-
graphs are depicted in Table 1 (right column). Dashed rectangles denote regions.
Their rôle is to describe parts of the system that are not necessarily adjacent.
The ovals and circles are nodes, which can represent physical or logical compo-
nents within the system. Each node has a type, called control, denoted here by
the labels A to D. The set of controls of a bigraphs is called signature. Each
node can have zero, one or many ports, indicated by bullets, which represent
possible connections. Actual connections are represented as links, depicted by
solid (green) lines, which may connect ports and names. In the examples, they
are ranged over by x, y, z. They can be thought of as links (or potential links)
to other bigraphs. Gray squares are called sites. They encode parts of the model
that have been abstracted away, also called the parameter of the bigraph. Sum-
marising, nodes represent the spatial placement of agents while links represent
their communication capabilities.

Interfaces and Sorting The capabilities of bigraph B to interact with the
external environment are recorded in its interface. For example, we write B ∶
1 → ⟨2,{x, y}⟩ to indicate that B has one site, two regions and its names are x
and y. Interfaces are ranged over by I, J,K. We sometimes use ε to denote 0 and
the pair ⟨0,∅⟩.

Controls and links in a bigraph can be classified by means of sorts. A sorting
discipline is a triple Σ = (Θ,K, Φ) where Θ is a non empty set of sorts, K is
a signature and Φ is a formation rule. Sorts are ranged over by a, b, A
formation rule can be thought of as a set of properties a bigraph has to satisfy.
For examples, it can specify that nodes of sort a may only contain b-nodes or
that a-nodes may only by linked to b-nodes. Disjunctive sorts are written as âb,
meaning that a node can either be of sort a or sort b. The interface of a sorted

Table 1. Operations on bigraphs.

Operation Algebraic Graphical

Parallel product Axy ∥ Byz

x

BA

y z

Merge product Axy ∣ Byz

x

BA

y z

Nesting Axy.Bxz

x

B
A

y z

Name closure and new name /z Axz ∥ y

x

A

y

bigraph is expressed as follow: B ∶ a → ⟨b,{z}⟩. The notation indicates that B’s
site is of sort a, its region is of sort b and its name is z. From now on, all bigraphs
are assumed sorted.

Algebraic Definition The structure of a bigraph can also be formulated in
an algebraic form closing resembling traditional process calculi. This is done by
combining elementary bigraphs via the operations listed in Table 1. Note that,
the algebraic form is equivalent to the graphical notation.

Parallel product F ∥ G expresses a bigraphical term obtained by juxtaposing
bigraphs F and G and merging their common names. Bigraphs F and G are
called the factors of bigraph F ∥ G. When bigraphs F and G do not have
common names, the same operation is denoted by F ⊗ G. Note that the two
operations described above are not commutative. Similarly to parallel product,
merge product F ∣ G denotes the juxtaposition of bigraphs F and G which is
then placed inside a single region. Common names are merged. Nesting operation
F.G allows us to place bigraph G inside F . Also in this case, common names
are merged. Name closure /x F is used to disallow connections on name x in
bigraph F . This means that all F ’s links to x are broken and x removed. In
example /z Axz ∥ y given in Table 1, new name introduction is simply indicated

by y. The new name y is not linked to any node. Notation λF is a shorthand for
(/x0 ⊗⋯⊗ /xn+1)F .

The elementary bigraphs most commonly used in our application are identi-
ties and 1. An example identity is id2,ab. It indicates a bigraph with two regions
each one containing a site, and two separate links a and b. Bigraph 1 ∶ 0 → 1
consists of one single region. Bigraphs in the form Ka0⋯an ∶ 1→ ⟨1,{a0, . . . , an}⟩
are called ions.

Bigraphical Reactive Systems A Bigraphical Reactive System (BRS) con-
sists of a set of bigraphs representing the state of the system, and a set of reaction
rules, defining how the system can reconfigure itself. A reaction rule R is a triple
(R ∶ m → J,R′ ∶ m′ → J, η), where R and R′ are bigraphs and η ∶ m′ → m an
instantiation map which determines, for each j < m′, which factor of the pa-
rameter of R should occupy the jth site of R′. Sometimes, we indicate a rule
as R = R ▸R′ when η is the identity map. We also define the interface of a
reaction as the interface of its left-hand side R. The evolution of a bigraph St
is derived by checking if R is an occurrence in St (this is also called bigraph
matching) and by substituting R.d with R′.η(d) to obtain a new bigraph St+1.
Such a reaction is indicated with St ⊳

R
St+1. Instance function η on bigraphs

is defined as η(d) def
= λ(d′0 ∥ ⋯ ∥ d′m′+1), where d = λ(d0 ⊗⋯⊗ dm+1) and with

d′j = dη(j) for each j < m′. The instance function allows to easily duplicate or
discard parts of a bigraph after the application of a reaction rule. We use ⊳∗
to indicate zero or more applications of a reaction.

Priority BRS A Priority BRS (PBRS) is a BRS with rule priorities in the
style of [3], i.e. by introducing a partial ordering on the rules of the reactive
system. A reaction rule of lower priority can be applied only if no rule of higher
priority is applicable. We write R < R′ to indicate that reaction rule R′ has
higher priority than reaction rule R. A priority class P is a set of reaction rules
with the same priority. By an abuse of notation, we write P <P′ when, for any
two rules R ∈P and R′ ∈P′, we have R < R′. We also say that class P has lower
priority than class P′.

4 Encoding the Actor Model in Bigraphs

In this section we define a sorting for the class of bigraphs used to represent
actors, an encoding of actors into bigraphical expressions and a translation of
the actor model operational semantics given in Figure 2 into bigraphical reaction
rules.

4.1 Sorting

The controls listed in Table 2 are used to represent the syntactical structure
of actor model configurations specified by the grammar given in Figure 1. In

more detail, sort b = {Snd,Rdy,New,Fun,Nil} corresponds to the terminals for
symbol b, control Mail indicates a set of pending messages µ, control M represents
symbol msg and control A encodes symbol actor. The other controls are required
by the encoding to express an actor’s local environment (E), variable names
(sort n), identifiers (sort i), values (sort v) and dynamically instantiated actors
(A′). Finally, control Sub is used by the encoding to represent substitutions
of free variables in the body of actor behaviours. The set of sorts is written
ΘAct = {a, x,b, e,n,m, a′, v, i, s} and the signature is given by KAct = ⋃S∈ΘAct

S.

Table 2. Controls for encoding A ⟦ ⟧.

Description Control Arity Atomic Sort

Actor A 1 no a
Mail Box Mail 0 no x

Send a message Snd 0 no b
Ready to receive Rdy 0 no b
Spawn a new actor New 0 no b
Internal computation Fun 0 no b
Termination Nil 0 yes b

Environment E 0 no e
Variable name x Nx 0 no n
Message M 1 no m
New actor A′ 1 no a′

Integer v Intv 0 yes v
Other value type ⋯ 0 yes v

Identifier x Xx 1 no i
Substitution Sub 0 no s

The sorting discipline ensures that only bigraphs with a meaningful structure
are constructed. For example, it forces actors to have an environment and a
unique address and messages to contain a value and have a destination address.
This is formalised in formation rule ΦAct with conditions Φi, 1 ≤ i ≤ 17, given in
Table 3. In particular, conditions Φ1-Φ12 specify a hierarchic structure on the
placing of the nodes, condition Φ13 ensures that an âa′-node may only share a
name with m-nodes, condition Φ14 states that v-nodes and Nil-nodes are atomic
(i.e. they contain nothing) and conditions Φ15, Φ16 specify the structure for the
encoding of substitutions of free variables. Finally, condition Φ17 forbids multiple
nodes of controls Mail and Sub. We refer the sorting defined in this section as
ΣAct = (KAct,ΘAct, ΦAct).

Table 3. Conditions of formation rule ΦAct.

Φ1 all children of a θ-regions have sort θ, where θ ∈ ΘAct

Φ2 all children of an a-node have sort b̂e
Φ3 an a-node has one b-child and one e-child
Φ4 all children of an x-node have sort m
Φ5 a Snd-node has one b-child and one m-child
Φ6 a Rdy-node has one b-child and one i-child
Φ7 a New-node has one b-child and one a′-child
Φ8 a Fun-node has one b-child and zero or more n-children
Φ9 all children of an e-node have control n
Φ10 an n-node has one v-child

Φ11 an m-node has one v̂i-child
Φ12 an a′-node has one b-child
Φ13 an aa′-node may only be linked to m-nodes
Φ14 v-nodes and Nil-nodes are atomic
Φ15 an i-node may only be linked to i-nodes
Φ16 all children of an s-node have sort i
Φ17 ΣAct-sorted bigraphs have at most one Mail-node and at most one Sub-node

4.2 Syntax Encoding

In Figure 3 we define a formal encoding of actors into bigraphical expressions.
Formally, we specify a map A ⟦ ⟧ ∶ Act → Bg(ΣAct) where Act is the language
produced by the grammar in Figure 1 and Bg(ΣAct) is the set of bigraphs satis-
fying sort ΣAct. The active/inactive state of an actor is not modelled explicitly
in the encoding. However, observe that inactive actors always correspond to bi-
graphs in the form Aa.(Rdy ∣ id). An additional encoding E⟦ ⟧() ∶ E × N →
Bg(ΣAct) specifies an encoding of environments into bigraphs, with E and N
the sets of local environments and identifiers, respectively. The main feature of
this encoding is that only the rightmost assignment of a variable is translated, ef-
fectively rendering the stack structure of an actor’s environment. For simplicity,
we assume all values are integers.

Finally, note that the actor model assumes a sequential language that spec-
ifies the internal computation performed by an actor. Since the terms of this
language (i.e. f expressions) are left unspecified in the grammar for actors, we
also do not encode them.

Example 1. Take actor configuration C = ⟪A,A′ ∣ ε⟫ with

A = ([x↦ 2] ⊢ ready(x);send(a′, x);nil)a
A′ = [ε ⊢ send(a,3);nil]a′

A ⟦⟪α ∣ µ⟫⟧
def
= A ⟦α⟧ ∣ Mail.A ⟦µ⟧ ∣ Sub.1

A ⟦ε⟧
def
= 1

A ⟦α⟧
def
= A ⟦A⟧ ∣ A ⟦α′⟧ with α = A,α′

A ⟦µ⟧
def
= A ⟦m⟧ ∣ A ⟦µ′⟧ with µ = m,µ′

A ⟦m⟧
def
= Ma.Int

v.1 with m = ⟨a⇐ v⟩

A ⟦A⟧
def
= Aa.(E.E⟦E⟧∅ ∣ A ⟦b⟧) with A ∈ actor

A ⟦send(a, e); b⟧
def
= Snd.(Ma.A ⟦e⟧ ∣ A ⟦b⟧)

A ⟦ready(x); b⟧
def
= Rdy./x (Xx.1 ∣ A ⟦b⟧)

A ⟦new(b); b′⟧ def
= New.(A′a.A ⟦b⟧ ∣ A ⟦b′⟧) with a fresh

A ⟦f ; b⟧
def
= Fun.(A ⟦f⟧ ∣ A ⟦b⟧)

A ⟦nil⟧
def
= Nil.1

A ⟦v⟧
def
= Intv.1

A ⟦x⟧
def
= Xx.1

E⟦E⟧N
def
= E⟦E′⟧N∪{x} ∣ E⟦x↦ v⟧N with E = E′[x↦ v]

E⟦x↦ v⟧N
def
=

⎧
⎪⎪
⎨
⎪⎪
⎩

Nx.Intv.1 if x ∉ N

1 otherwise

E⟦ε⟧N
def
= 1

Fig. 3. Encodings A ⟦ ⟧ and E⟦ ⟧().

The corresponding bigraphical encoding is as follows:

A ⟦A⟧ = Aa.(E.Nx.Int2.1 ∣ Rdy./x (Xx.1 ∣ Snd.(Ma′ .Xx.1 ∣ Nil.1)))
A ⟦A′⟧ = Aa′ .(E.1 ∣ Snd.(Ma.Int

3.1 ∣ Nil.1))
A ⟦C⟧ = A ⟦A⟧ ∣ A ⟦A′⟧ ∣ Mail.1 ∣ Sub.1

4.3 Semantics Encoding

We now encode the rules defining the actor operational semantics given in Fig-
ure 2 into bigraphical reaction rules. All the rules respect the sorting ΣAct. Note
that an actor transition may correspond to a sequence of one or more bigraphical
reactions. This will be discussed at the end of the section.

Rule ⟨nil ∶ a⟩ removes an empty actor from the current configuration. It is
encoded by the following bigraphical reaction rule:

Rnil
def
= Aa.(Nil.1 ∣ id) ▸a ∣ 1

with instantiation map η = [] and interface e→ a. This means that the contents
of site 0 (i.e. the site contained by ion Aa indicated by id) in the left-hand side is
discarded. In this reaction rule, site 0 acts as a placeholder for the actor’s local
environment. Note that actor address a is still defined in the right-hand side of
the reaction rule. A graphical representation of Rnil is given in Figure 4. The
node of control Nil is indicated by a solid red box.

Fig. 4. Bigraphical encoding of rule ⟨nil ∶ a⟩.

Rule ⟨new ∶ a, a′⟩ spawns a new actor. A visual description of its encoding
is in Figure 5. Intuitively, the A′ -ion inside New becomes an actor A, with new
address a′ and a copy of a’s environment. The algebraic definition is as follows:

Rnew
def
= Aa.(New.(A′a′ ∣ id) ∣ id) ▸Aa.(id ∣ id) ∣ Aa′ .(id ∣ id)

with η = [{1},{2},{0},{2}] and interface bbe → ⟨a,{a, a′}⟩. The duplication of
site 2 encodes the duplication of the local environment.

Fig. 5. Bigraphical encoding of rule ⟨new ∶ a, a′⟩.

Rule ⟨snd ∶ a, ⟨a′ ⇐ v⟩⟩ defines an asynchronous send action. This behaviour
is encoded by moving the message contained by a Snd-node to the node of control

Mail which represents the set of pending messages of an actor configuration. The
algebraic form of the reaction rule for the encoding is

Rsnd
def
= Aa.(Snd.(Ma′ .Int

v.1 ∣ id) ∣ id) ∣ Mail ▸Aa.(id ∣ id) ∣ Mail.(Ma′ .Int
v.1 ∣ id)

with η = [{0},{1},{2}] and interface bem→ ⟨ax,{a, a′}⟩. Note that the reaction
rule can only be applied when message M contains a value, i.e. a node of sort
v. The equivalent graphical representation is shown in Figure 6. Nodes encoding
values are depicted as solid blue boxes.

Fig. 6. Bigraphical encoding of rule ⟨snd ∶ a, ⟨a′ ⇐ v⟩⟩.

Rule ⟨rcv ∶ a, ⟨a ⇐ v⟩⟩ defines the behaviour of an actor when a message is
received. The following three reaction rules are required for the encoding:

Rrcv
def
= Aa.(Rdy.(Xx.1 ∣ id) ∣ id) ∣ Mail.(Ma ∣ id) ∣ Sub

▸Aa.(id ∣ id) ∣ Mail ∣ Sub.(Xx ∣ id)

Rsub
def
= Sub.(Xx ∣ id) ∥ Xx.1 ▸Sub.(Xx ∣ id) ∥ id

Rrem
def
= Sub.(/xXx ∣ id) ▸Sub

The corresponding graphical notation is in Figure 7. Reaction rule Rrcv con-
sumes the Rdy-node in the left-hand side and initiates a substitution of the
free occurrences of x by placing Xx inside Sub. Moreover, the value carried by
message Ma is placed inside ion Xx in the right-hand side. This is specified pre-
cisely by instantiation map ηrcv = [{0},{1},{3},{2},{4}]. In particular, sites
3 and 4 are swapped to represents the value contained in the message moving
into identifier Xx. Observe that since messages are placed in the Mail-node by
rule Rsnd they are guaranteed to always contain a v-node. The interface is given
by Rrcv ∶ bevmi → ⟨axs,{x, a}⟩. The previous rule only initiates the substitu-
tion of the free occurrences of x in the behaviour of the actor. Reaction rule
Rsub ∶ vi → ⟨si,{x}⟩ needs to be applied to actually replace each occurrence of x.
By definition of encoding A ⟦ ⟧, all the free occurrences of x are linked to an ion
Xx inside the Sub-node. This is also specified by the left-hand side of the rule

where the two X-nodes share name x. In the right-hand side, the content of the
X-node inside Sub (i.e. site 0) is duplicated to replace the other X-node as spec-
ified by instantiation map ηsub = [{0},{1},{0}]. The third reaction rule removes
substitutions that are no longer required. This is encoded by closed link x in the
right-hand side. The interface is Rrem ∶ vi→ s. In this case, the instantiation map
is ηrem = [{1}] because site 0, i.e. the content of ion Xx is discarded. In order to
force rules Rsub and Rrem to be applied before any other rule, they are assigned
a higher priority. We formalise the complete PBRS resulting from the encoding
at the end of the section.

(a) Reaction rule Rrcv

(b) Reaction rule Rsub (c) Reaction rule Rrem

Fig. 7. Bigraphical encoding of rule ⟨rcv ∶ a, ⟨a⇐ v⟩⟩.

Finally, rule ⟨fun ∶ a⟩ models the execution of a local computation step.
Since expressions f and transition relation →λ are left unspecified in the actor
operational semantics, it is only possible to define a bigraphical encoding of the
effect of the internal computation on the local environment. Our approach is to
consider f as an explicit update of the environment. More precisely, we let nodes
of control Fun contain a collection of mappings from identifiers to values in the
form E⟦x ↦ v⟧∅ = Nx.Intv.1. For instance, if the execution of expression f in
environment E leads to a new environment E′ = E, [x↦ 4, y ↦ 3], then A ⟦f⟧ =
Nx.Int4.1 ∣ Ny.Int3.1. At this point, the following three bigraphical reaction rules

can be specified:

Rfun
def
= Aa.(Fun ∣ id) ▸Aa.(id ∣ id)

Rupd
def
= Aa.(Fun.(Nx.Intv.1 ∣ id) ∣ E.(Nx ∣ id)) ▸Aa.(Fun ∣ E.(Nx.Intv.1 ∣ id))

Radd
def
= Aa.(Fun.(Nx.Intv.1 ∣ id) ∣ E) ▸Aa.(Fun ∣ E.(Nx.Intv.1 ∣ id))

In the first one, the Fun-node is removed, the instantiation map is the identity
function and the interface is be → ⟨a,{a}⟩. The second reaction rule models a
value update of an identifier already present inside the E-node in the left-hand
side. Here the instantiation map is ηupd = [{0},{2}] because the old value for
identifier Nx (i.e. site 1) is discarded. The interface is bnvn → ⟨a,{a}⟩. In the
right-hand side the new value Intv is in the environment. The last rule is similar
to the previous one and handles the case when a new binding is added to the
environment. The interface is bnn→ ⟨a,{a}⟩. Again the instantiation map is the
identity function. Note that in order to have the expected behaviour, Rupd has
to be applied before Radd and both have to be applied before Rfun. We formalise
this by defining priorities over the reaction rules in the encoding as follows:

P0 = {Rnil,Rnew,Rsnd,Rrcv,Rfun}
P1 = {Rsub,Rrem}
P2 = {Radd}
P3 = {Rupd}

where Pi <Pj if i < j.
The PBRS defining our encoding of the actor operational semantics is given

by (Bg(ΣAct),R) with R = ⋃i<4Pi.

Example 2. Take bigraph A ⟦C⟧ = S0 defined in Example 1. Since the node of
control Mail is empty, only reaction rule Rsnd can be applied:

S0 ⊳
snd
A ⟦A⟧ ∣ Aa′ .(E.1 ∣ Nil.1) ∣ Mail.(Ma.Int

3.1) ∣ Sub.1 = S1

Then, either rule Rrcv or rule Rnil can be applied. We show the transitions when
a message is received:

S1 ⊳
rcv

/x (Aa.(E ∣ Snd.(Ma′ .Xx.1 ∣ Nil.1)) ∣ A′ ∣ Mail.1 ∣ Sub.Xx.Int3.1)

⊳
sub

Aa.(E ∣ Snd.(Ma′ .Int
3.1 ∣ Nil.1)) ∣ A′ ∣ Mail.1 ∣ Sub./xXx.Int3.1

⊳
rem

Aa.(E ∣ Snd.(Ma′ .Int
3.1 ∣ Nil.1)) ∣ A′ ∣ Mail.1 ∣ Sub.1 = S2

with E = E.Nx.Int2.1 and A′ = Aa′ .(E.1 ∣ Nil.1). In S2, either actor a′ can be
removed from the configuration or an asynchronous send can be executed. The

trace showing the evolution of the bigraph when the events happen in this order
is:

S2 ⊳
nil
Aa.(E ∣ Snd.(Ma′ .Int

3.1 ∣ Nil.1)) ∣ Mail.1 ∣ Sub.1

⊳
snd

Aa.(E ∣ Nil.1) ∣ Mail.Ma′ .Int
3.1 ∣ Sub.1 = S3

Finally, actor a is removed from the configuration:

S3 ⊳
nil
a ∣ Mail.Ma′ .Int

3.1 ∣ Sub.1 = S3

4.4 Operational Correspondence

We now turn to showing that there is a close operational correspondence between

actor configurations ⟪α ∣ µ⟫ and their encodings A ⟦⟪α ∣ µ⟫⟧. We give some of

the correspondences (the others are similar):

⟪α ∣ µ⟫ ⟨snd∶a,⟨a′⇐v⟩⟩ÐÐÐÐÐÐÐÐ→ ⟪α′ ∣ µ′⟫ implies A ⟦⟪α ∣ µ⟫⟧ ⊳
snd
A ⟦⟪α′ ∣ µ′⟫⟧

⟪α ∣ µ⟫ ⟨fun∶a⟩ÐÐÐÐ→ ⟪α′ ∣ µ′⟫ implies A ⟦⟪α ∣ µ⟫⟧ ⊳
FUN
A ⟦⟪α′ ∣ µ′⟫⟧

⟪α ∣ µ⟫ ⟨rcv∶a,⟨a⇐v⟩⟩ÐÐÐÐÐÐÐÐ→ ⟪α′ ∣ µ′⟫ implies A ⟦⟪α ∣ µ⟫⟧ ⊳
RCV
A ⟦⟪α′ ∣ µ′⟫⟧

with

⊳
FUN

def
= ⊳∗

upd
⊳∗
add

⊳
fun

⊳
RCV

def
= ⊳

rcv
⊳∗
sub

⊳
rem

The proofs are by induction over the transition derivation (one case for each
rule).

5 Conclusion and Future Work

We presented a bigraphical encoding of a simplified actor language with static
topology. In more detail, we defined map A ⟦ ⟧ ∶ Act → Bg(ΣAct) to encode
the terms of the actor language into sorted bigraphs and a set of prioritised
reaction rules R to match the behaviours specified by the actor operational
semantics. Sorting discipline ΣAct allowed us to define an encoding introducing
a minimal amount of entities unrelated to the input language. The only example
of “artificial” entity introduced by our encoding is the node of control Sub used to
express substitutions of free names. Similarly, rule priorities allowed us to define
a PBRS with a small number of reaction rules that do not have an immediate
equivalent rule in the actor semantics.

The main limitations of our work derive from the fact that our target actor
language does not allow for dynamic topologies, external actors and does not
specify terms for internal computation. Future work is to define a similar encod-
ing for a richer actor language in the style of [1]. We will also investigate how the
algebraic operators (e.g. composition) on actor configurations can be encoded
into bigraphs.

Finally, we will extend our encoding to include BigActors [11] a hybrid model
that combines actors with bigraphs.

References

1. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation.
Journal of Functional Programming 7(1), 1–72 (1997)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA (1986)

3. Baeten, J., Bergstra, J., Klop, J., Weijland, W.: Term-rewriting systems with rule
priorities. Theoretical Computer Science 67, 283–301 (October 1989)

4. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical models
of context-aware systems. In: Foundations of software science and computation
structures. pp. 187–201. Springer (2006)

5. Calder, M., Koliousis, A., Sevegnani, M., Sventek, J.: Real-time verification of
wireless home networks using bigraphs with sharing. Science of Computer Pro-
gramming 80, 288–310 (2014)

6. Calder, M., Sevegnani, M.: Modelling IEEE 802.11 CSMA/CA RTS/CTS with
stochastic bigraphs with sharing. Formal Aspects of Computing pp. 1–25 (2013)

7. Milner, R.: Bigraphs for petri nets. In: Lectures on Concurrency and Petri Nets,
pp. 686–701. Springer (2004)

8. Milner, R.: Local bigraphs and confluence: Two conjectures: (extended abstract).
Electronic Notes in Theoretical Computer Science 175(3), 65 – 73 (2007), pro-
ceedings of the 13th International Workshop on Expressiveness in Concurrency
(EXPRESS 2006)

9. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press (2009)

10. Nielsen, B., Agha, G.: Semantics for an actor-based real-time language. Proceedings
of the 4th International Workshop on Parallel and Distributed Real-Time Systems
pp. 223–228 (1996)

11. Pereira, E., Kirsch, C., Sengupta, R., Borges de Sousa, J.: Bigactors - a model for
structure-aware computation. In: 4th International Conference on Cyber-Physical
Systems. ACM/IEEE (April 2013)

