
An in-core grid index for transferring finite element data across dissimilar
meshes

Daniele Scrimieria,∗, Shukri M. Afazovb, Svetan M. Ratcheva

aDepartment of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD,
UK

bThe Manufacturing Technology Centre Limited, Pilot Way, Ansty Business Park, Coventry CV7 9JU, UK

Abstract

The simulation of a manufacturing process chain with the finite element method requires the selection of an
appropriate finite element solver, element type and mesh density for each process of the chain. When the
simulation results of one step are needed in a subsequent one, they have to be interpolated and transferred
to another model. This paper presents an in-core grid index that can be created on a mesh represented by a
list of nodes/elements. Finite element data can thus be transferred across different models in a process chain
by mapping nodes or elements in indexed meshes. For each nodal or integration point of the target mesh,
the index on the source mesh is searched for a specific node or element satisfying certain conditions, based on
the mapping method. The underlying space of an indexed mesh is decomposed into a grid of variable-sized
cells. The index allows local searches to be performed in a small subset of the cells, instead of linear searches
in the entire mesh which are computationally expensive. This work focuses on the implementation and
computational efficiency of indexing, searching and mapping. An experimental evaluation on medium-sized
meshes suggests that the combination of index creation and mapping using the index is much faster than
mapping through sequential searches.

Keywords: Manufacturing chain simulation, Finite element data mapping, Grid indexing, Nearest
neighbour search

1. Introduction

The manufacture of a product can involve the manufacture and assembly of several components, each
requiring the application of a sequence of processes, integrated into a manufacturing chain. The finite element
method (FEM) is commonly used to simulate every process of the chain, where a different modelling strategy
can be adopted for each process. A strategy includes the selection of the most appropriate finite element
solver, element type, element density, mesh refinement and material model.

FEM has been widely applied in industry to simulate static, dynamic, multi-physics and highly non-linear
physical phenomena. In particular, FEM has been used to simulate manufacturing process chains, including
forging, heat treatment and cutting of stainless steel SS316L [1]; multi-stage forging processes of carbon
steel [2]; forming, material cutting and welding of frame structures in the vehicle industry [3]; extrusion and
friction stir welding [4]; metal forming assembly [5].

To simulate a manufacturing process chain, finite element (FE) data may have to be transferred across
different solvers and meshes. These issues are addressed by Afazov et al [6] in the development of FEDES, an
FE data exchange system.1 Afazov [7] reviews some manufacturing process chains of aero-engine components

∗Corresponding author
Email addresses: Daniele.Scrimieri@nottingham.ac.uk (Daniele Scrimieri), Shukri.Afazov@the-mtc.org (Shukri M.

Afazov), Svetan.Ratchev@nottingham.ac.uk (Svetan M. Ratchev)
1http://www.sourceforge.net/projects/fedes/

Preprint submitted to Adv. Eng. Software May 2, 2015



and their integration using FEDES. Tersing et al [8] simulates a manufacturing process chain of an aerospace
component where FEDES is used for FE data transfer.

FEDES can transfer FE data between meshes with 2D and 3D solid linear and quadratic elements,
including mixed element types. FEDES can read and write files compatible with six commercial packages,
namely ABAQUS, ANSYS, DEFORM, Marc, Morfeo and Vulcan. It can also use a neutral XML file
that can be visualised with the open source software ParaView. With relation to the interoperability of
simulation software, a method using regular expressions to convert different types of file formats for finite
element meshes is presented in [9]. Many mesh frameworks have been developed, including the Mesh-
Oriented datABase (MOAB)[10], which can store and interpolate structured and unstructured mesh, and
is optimised for efficiency in space and time. In MOAB, physical access to a mesh does not occur through
individual entities, but in chunks. However, the MOAB interface is very flexible and supports individual
entity access. GetFEM++2 is a generic and efficient open source library for FEM elementary computations
and offers interpolation methods and mesh operations.

In order to transfer an FE variable between a source and a target mesh, FEDES reads the elements and
nodes of both of them and the values of the FE variable at the nodes of the source mesh. Solvers calculate FE
variables at either nodal or integration points. If a variable (e.g. strain, stress) is calculated at integration
points, the solver can usually obtain its values at nodal points by extrapolation. When transferring variables
such as strain and stress, also the integration points of the target mesh have to be read or calculated. This is
necessary because these variables are required by FE solvers to be associated with integration points. Four
mapping methods are implemented in FEDES: a method using the nearest node, a method using fields of
points, a method using elements and a method using the element shape function.

When transferring FE data across dissimilar meshes, a significant computational effort is spent in search-
ing the source mesh for the nodes or elements specified by the mapping formulation. A sequential search
requires a considerable amount of time, particularly for large meshes (i.e. more than 500,000 elements). The
mapping time can be greatly reduced by creating a spatial index on the source mesh and then conducting a
local search in the index instead of a sequential search in the entire mesh. Generally, a spatial index enables
a rapid response to spatial queries, considering spatial relationships between objects such as points, lines,
polygons. In the case of finite elements, the indexed objects are nodes and elements. Spatial data struc-
tures have been used extensively in computer graphics, databases, pattern recognition, solid modelling and
other areas [11]. With relation to FE analysis, applications of spatial indexes include mesh generation [12],
adaptive mesh refinement [13] and spatial contact search [14].

This paper presents a technique for performing searches in indexed meshes in order to map FE data
between meshes within a manufacturing process chain. The meshes can have different densities or element
types. An in-core grid index is created on the source mesh. For each nodal or integration point of the
target mesh, the index on the source mesh is searched for a specific node or element, in accordance with the
mapping method. The technique has been implemented and tested in FEDES.

The remainder of this paper is organised as follows: Section 2 presents the indexing technique, Section 3
describes the mapping methods employing the index structure, Section 4 contains an evaluation of the
performance of index creation and mapping, Section 5 draws overall conclusions.

2. Indexing

The indexing technique that we propose partitions the 2- or 3-dimensional space underlying a mesh into
a 2- or 3-dimensional orthogonal grid, respectively. The cells of the grid are not required to be equal-sized.
This means that the splitting lines (for 2-dimensional meshes) or planes (for 3-dimensional meshes) do
not have to be equidistant. Consequently, auxiliary structures, called scales, are necessary to specify the
coordinates of the lines or planes subdividing each dimension.

The index access structure allows rapid location of the cell containing a given point and the points
indexed in it. The spatial query we are interested in is the nearest neighbour query. That is, given a point

2home.gna.org/getfem/

2



in the underlying space, we want to find the nearest to it in the index. Of course, if the point itself has been
indexed, it represents the answer. Some variants of the nearest neighbour query are employed in the mesh
mapping methods described in this paper. Some mapping methods need to know which nodes are contained
in a cell, while others need to know which elements are covered by a cell. Depending on the method, either
a node index or an element index is used. A node index associates nodes with cells. An element index is a
variation of a node index that contains also the elements of the indexed nodes.

Cells point to buckets where references to indexed nodes are stored. Each cell points to one bucket and
several cells can point to the same bucket. Thus, the correspondence between cells and buckets is many-
to-one. If some cells point to the same bucket we say that they share it and that such a bucket is shared.
Similarly, a non-shared bucket is one that is pointed to by only one cell. All the buckets have the same fixed
size in terms of number of references to nodes. In this work, all the data is kept in the main memory. Other
solutions are also possible, where everything is stored on the disk or the mesh is on the disk and only the
index structure is in-core.

The grid can be refined while indexing. An initial size is specified. While indexing nodes, new splitting
lines or planes may be added, thereby creating new cells and increasing the grid size. A refinement occurs
when a non-shared bucket overflows, i.e. a node being indexed cannot be inserted in it because it is full. A
splitting line or plane passing through the cell pointing to the overflowing bucket is added. The overflowing
bucket is also split into two. The following subsections describe in detail the indexing and splitting process.

The use of fixed-sized buckets and the splitting mechanism enable the grid to reflect the level of refinement
of the mesh in every location. That is, the more refined the mesh is in a certain location, the more cells and
buckets will be created in the corresponding location in the grid.

Our approach is similar to the grid file of Nievergelt et al [15], a database system where a directory
associates each cell with a data bucket stored on a disk page. The grid file guarantees that a data item
can be retrieved with only 2 disk accesses, one to the directory and one to the bucket. Another technique,
called EXCELL, with the same objective of minimizing the number of disk accesses, is described in [16]. The
difference from the grid file is that cells are equal-sized, so there is no need to maintain auxiliary structures
to locate them. An index with equal-sized cells for FE data transfer is described in [17]. Although with this
technique the identification of cells is faster (as it takes constant time), a refinement requires the splitting of
all the cells to maintain the equal-size property. Therefore, at each refinement the number of cells doubles.
With the method presented in this paper, a refinement involves only the introduction of a splitting line or
plane and the update of the corresponding scale.

2.1. Grid representation

A 2- or 3-dimensional grid is represented by a 2- or 3-dimensional array, respectively. Each element of
the array represents a cell of the grid, identified by the element’s coordinates, and contains a pointer to the
cell’s bucket. When a 2-dimensional grid is refined, a new row or column is inserted in the array. When a
3-dimensional grid is refined, a new 2-dimensional array, a “slice”, is inserted along one dimension. Insertion
is performed by allocating a larger memory area and copying the cells’ pointers. Since this operation is
computationally expensive, the indexing mechanism tries to reduce the number of times it is required.

2.2. Scale representation

A grid spans a bounded interval along each dimension. A scale specifies the intervals into which a
dimension of the grid is partitioned and the coordinate of each interval in the grid along the partitioned
dimension. When a new splitting line or plane is added to the grid along one dimension, the corresponding
scale is updated to reflect the change. Initially, all the splitting lines/planes are equidistant. However, this
is not a requirement. In fact, the initial grid could be more refined where the mesh has more nodes. This
would aim to reduce the number of subsequent refinements.

A scale contains the initial point of each interval of the partitioned dimension. To perform searches
efficiently, values are sorted. Since their number is not known in advance, a static data structure such as an
array is not suitable, as it would require reallocations and shifts whenever new elements are added. A tree
structure (e.g. binary search tree, b-tree), instead, can grow dynamically and is therefore more appropriate.

3



Our implementation represents scales by binary search trees. If the tree is balanced, operations like
insertion and searching take O(log2(n)) time in the worst case, since the number of items to check is halved
at each level.3 If the tree is a linear chain, the same operations run in O(n) time in the worst case. Self-
balancing binary search trees (e.g. red-black trees, AVL trees) and b-trees can adjust themselves so that
they are always balanced (see, for example, [18]). However, in our application the relatively small size of the
scales (i.e. less than 1000 values) and the relatively small number of grid refinements (i.e. less than 1000)
did not justify a more complex implementation. In addition, the initial scales (i.e. the scales associated
with the initial grid) are constructed in such a way that they are balanced. Thus, there should not be a
significant degradation in performance, if any. An evaluation of the performance of four variants of binary
search trees (unbalanced binary search trees, AVL trees, red-black trees and splay trees) in system software
is contained in [19].

Let us briefly review the definition of a binary search tree. A binary tree is a tree whose nodes have
at most two children. A binary search tree is a binary tree whose nodes store a key and, optionally, an
additional value. Keys satisfy the following property:

Property 1. (Binary-search-tree) For each node x, the following two conditions hold:

1. every key in the left subtree of x is less than x’s key;

2. every key in the right subtree of x is greater than x’s key.

The binary-search-tree property allows a tree of depth h to be searched for a key in O(h) time. From this
property, it follows that keys are not duplicated. For a node x, let key(x) be the key of x, value(x) be the
value of x, left(x) be the left subtree of x, and right(x) be the right subtree of x. If the left or right subtree
is missing, then left(x), respectively right(x), is equal to nil .

A scale is represented by a binary search tree whose nodes represent the intervals of the partitioned
dimension. The key of a node is the initial point of the node’s interval, whereas the value of a node is the
grid coordinate of the node’s interval. A scale satisfies the following property:

Property 2. (Contiguity) Let s be a scale partitioning a dimension in k intervals. An in-order tree walk4

of s yields all nodes’ values from 1 to k in ascending order.

The contiguity property allows searches for grid coordinates to be performed efficiently. Similarly to keys,
it guarantees that the search for a value in a tree of depth h takes O(h) time.

Initial construction. The initial tree is constructed in such a way that it is balanced. Given a sorted sequence
of points to insert, the algorithm consists of the following steps:

1. Select the midpoint of the sequence as root of the tree;

2. Apply recursively the algorithm to the left and right subtrees with all the points that are, respectively,
less than and greater than the midpoint.

Note that if points were added in ascending or descending order, the tree would be a linear chain. Fig. 1
shows the initial scale for the intervals of length 0.5 between -2 and 2. Nodes are labelled by pairs of the
form key/value.

Searching. The most frequent operation performed on a scale is searching. There are two types of searches:

1. Search for the grid coordinate of the interval containing a given point;

2. Search for the initial point of the interval having a given grid coordinate.

3A binary tree is balanced if, for each node x, the depths of the left and right subtrees of x differ by at most 1.
4i.e. by recursively visiting the tree in this order: left subtree, root, right subtree.

4



-0.5/3

-1.5/1

-2/0 -1/2

0.5/5

0/4 1/6

1.5/7

Figure 1: Initial scale for the intervals of length 0.5 between -2 and 2.

Function FindGridCoord (x, p)
if p = key(x) then

return value(x)
else if p < key(x) then

if left(x) 6= nil then
return FindGridCoord (left(x), p)

else
return value(x)− 1

else
if right(x) 6= nil then

return FindGridCoord (right(x), p)
else

return value(x)

Figure 2: Search for the grid coordinate of an interval.

The first type of search works as follows. Let p be a point in the interval spanned by the grid along the
partitioned dimension. The search starts from the root and, at each node x, p is compared to key(x). Based
on the result of the comparison, the search stops or continues in either the left or right subtree. The choice
of which subtree to explore is made by applying the binary-search-tree property.

The algorithm is implemented in the function FindGridCoord shown in Fig. 2. A scale is identified with
its root node. To understand the case when p < key(x) and left(x) = nil note the following. Let x′ be the
node such that value(x′) = value(x) − 1 (which exists by definition of scale). By the contiguity property,
there is no node y such that x′ is in left(y) and x is in right(y). Thus, x must be in right(x′). This means
that x′ was examined before x during the search and, in particular, that p > key(x′). Hence, it is correct to
return value(x)− 1. The case when p > key(x) and right(x) = nil is handled similarly.

The function LocateCell(n), which locates the cell containing a mesh node n, can be easily defined using
FindGridCoord for each dimension.

The second type of search is simpler because the given grid coordinate is contained in one of the nodes. In
this case the search is by the nodes’ values and not the keys, and is made by applying the contiguity property.
The function FindInitialPoint(x, i), which finds the initial point of the interval having grid coordinate i in a
scale x, is assumed to be defined.

Splitting. Suppose that a split is to be made in an interval along the dimension partitioned by a scale.
The midpoint of the interval is selected as the splitting point, as in general there is no knowledge of the
distribution of points. Fig. 3 shows the result of splitting the interval with grid coordinate 1 in the scale
of Fig. 1. The interval’s midpoint -1.25 is inserted in the scale and the values of all the nodes whose key is
greater than -1.25 are incremented by 1.

5



-0.5/4

-1.5/1

-2/0 -1/3

0.5/6

0/5 1/7

1.5/8-1.25/2

Figure 3: Splitting of interval 1: the interval’s midpoint -1.25 is inserted in the scale and the nodes’ values are updated.

To calculate the midpoint of an interval with grid coordinate i, the endpoints of the interval are retrieved
from the scale by searching for the nodes with values i and i+ 1. The keys of these two nodes represent the
endpoints. If i is equal to the size of the grid along the scale’s dimension, then the high endpoint is that of
the whole interval spanned by the scale.

Because of the update of grid coordinates, splitting in a scale of size n takes O(n) time. An in-order
traversal can be performed combining the search of the endpoints with the updating. When the traversal
starts, the node with value i is searched for. When it is found, the traversal continues as follows. The next
node that is encountered is the one with value i+ 1. The value of this last node, and of every node that is
visited afterwards, is incremented by 1. The splitting point is then inserted, with associated value i+ 1.

Alternatively, given the node x representing the interval to split, the high endpoint can be found by
accessing x’s successor. To be implemented efficiently, the successor operator requires that the parent of a
node be accessible [18]. The nodes to update can be accessed similarly by repeatedly applying the successor
operator, starting from x.

2.3. Indexing of nodes

After the initial grid structure is created, nodes are indexed (i.e. added to the index) one by one. To
index a node, the cell containing it is located using the scales. From an implementation point of view, only
references to nodes are added to the index. Nodes are represented by their coordinates and stored in an
array separate from the index. The position of a node in the array is used to identify the node. The same
identification method is used to associate FE variables with nodes or interpolation points.

Figures 4-7 illustrate the indexing process. The axes indicate the intervals and their grid coordinates.
An initial grid is constructed, with all the cells having the same size (Fig. 4). Associated with each cell there
is a node bucket. The correspondence between cells and buckets is one-to-one at this point.

When a (non-shared) bucket overflows, the grid is refined along one dimension (Fig. 5). The dimension
is chosen by cycling through all the dimensions. The interval, along the chosen dimension, containing the
cell pointing to the overflowing bucket is split. Each cell in this interval is divided into two, both sharing
the same bucket as the original cell, except for those resulting from the split of the cell c pointing to the
overflowing bucket. The overflowing bucket is split into two, one for each of the two cells resulting from the
split of c, and its content is redistributed between them, i. e. each of its nodes is inserted in the appropriate
bucket based on the cell containing it. In the figures, a dashed line separating two cells indicates that they
share the same bucket. Although buckets are depicted with different dimensions, they all have the same size
in memory!

Grid refinement creates shared buckets. If a shared bucket overflows, the grid is usually not refined.
Instead, the overflowing bucket is simply split into two: one for the cell containing the node being indexed
and one for the other cells sharing it (Fig. 6). However, if after splitting a bucket (shared or not) and
redistributing, the new bucket where the node being indexed is inserted is again full, then a (further) grid
refinement is made (Fig. 7).

6



1 2

1

2

c12 c22

c11 c21

b3

b1 b2

b4

x

y

Figure 4: Initial grid of size 2 × 2; all cells have the same size.

1

2

c12 c32

c11 c31

b3

b1 b2

b4

y
c22

b'3

c21

1 2 3 x

Figure 5: Bucket b3 overflows: the grid is refined along the x-axis and b3 is split into b3 and b′3.

1

2

c12 c32

c11 c31

b3

b2

b4

y
c22

b'3

c21

b'1 b1

1 2 3 x

Figure 6: Bucket b1 overflows: a split occurs and a new bucket, b′1, is associated with C11, the cell where the node being
indexed is located.

1

2

c13 c33

c12 c32

b3

b2

b4

y
c23

b'3

c22
b'1

b1c11
b''1

c21 c31

3

1 2 3 x

Figure 7: Bucket b′1 is still full after redistribution: a further grid refinement is performed along the y-axis and b′1 is split into
b′1 and b′′1 .

7



Function RefineGrid (grid , axis, splitpos, cellb)
copy ← copyGrid(grid)
split grid at splitpos along axis
if axis = x then

for i = 1 to splitpos do
for j = 1 to y-size(grid) do

SetCellBuf (grid [i, j], copy [i, j], cellb)

for i = splitpos + 1 to x-size(grid) do
for j = 1 to y-size(grid) do

SetCellBuf (grid [i, j], copy [i− 1, j], cellb)

else
for i = 1 to x-size(grid) do

for j = 1 to splitpos do
SetCellBuf (grid [i, j], copy [i, j], cellb)

for i = 1 to x-size(grid) do
for j = splitpos + 1 to y-size(grid) do

SetCellBuf (grid [i, j], copy [i, j − 1], cellb)

foreach node n ∈ cellb do
reinsert n in grid

Figure 8: Grid refinement.

Grid refinement is more computationally expensive than simply creating a new bucket and redistributing
one bucket’s nodes. Nonetheless, it occurs less and less often as nodes are indexed because the number of
shared buckets increases while the number of non-shared buckets decreases.

Specifically, when indexing a node n in a cell c, three cases can be distinguished, depending on whether
c’s bucket, let us call it b, is full or shared:

1. b is not full: n is simply added to b.
2. b is full and non-shared: the grid is refined by splitting, along one dimension, the interval containing
c; b is split and redistributed. If, after redistributing, the bucket of the cell containing n is not full
then n is added to it. Otherwise, the grid is recursively refined until the bucket of the cell containing
n is not full.

3. b is full and shared: a new bucket b′ is created and associated with c. The content of b is redistributed
between b and b′. The other cells sharing b are not changed. If, after redistributing, b′ is not full then
n is added to it. Otherwise, the grid is recursively refined until the bucket of the cell containing n is
not full.

The function RefineGrid(grid , axis, splitpos, cellb) for performing one refinement on a 2-dimensional grid
is shown in Fig. 8, where grid is split at splitpos along axis and cellb is an overflowing non-shared bucket
pointed to by a cell having coordinate splitpos along axis. The procedure SetCellBuff(c1, c2, b) is defined as
follows: if c2’s bucket is not b then SetCellBuff associates c2’s bucket with c1, otherwise it associates a new
bucket with c1. For the sake of simplicity, RefineGrid creates two new buckets. However, it is sufficient to
create only one and reuse the overflowing bucket.

The function RecRefineGrid(grid , n) for recursively refining grid and inserting n is shown in Fig. 9. In
general, a grid refinement recursively splits a series of increasingly narrower intervals i1, i2, . . . , ik, where
ij+1 ⊂ ij . However, most of the times only one level of refinement is necessary.

2.4. Indexing of elements

Indexing of elements is carried out by indexing their nodes. Elements are represented by lists of nodes
and are stored in a separate array. The indexing mechanism identifies elements by their position in the

8



Function RecRefineGrid (grid , n)
repeat

choose axis
get the coordinate x of n along axis
splitpos = FindGridCoord(scale(axis), x)
cellb = bucket(LocateCell(n))
RefineGrid (grid , axis, splitpos, cellb)

until cellb is not full

Figure 9: Recursive grid refinement.

element array. The nodes of each element are indexed as described in Section 2.3. The bucket structure of
an element index is extended to associate the nodes referenced in a bucket with their elements.

Since nodes are shared by several elements, they are processed multiple times while indexing. Before
adding a reference to a node or element in a cell’s bucket, a check can be made to see if it was already
present. This allows duplicates to be avoided, thereby saving memory and simplifying redistribution and
mapping.

Note that an element can overlap more than one cell. In such a case, each cell containing any of the
element’s nodes will reference the element. It can happen, however, that a cell is contained within an element
or overlaps an element without containing any of its nodes. Such a cell will not reference the element. To
deal with this case, the mapping methods presented in this paper examine neighbouring cells.

The nodes stored in an element index are not used when mapping, but only when indexing. In fact, they
are only needed when redistributing elements between cells. When a cell is split, each element referenced in
it is redistributed based on the redistribution of its nodes.

3. Mapping

Once an index has been built on the source mesh, the indexed nodes or elements can be mapped to nodal
or integration points of the target mesh. The calculated FE variables can thus be transferred between the
mapped entities. This section describes how to implement the mapping methods developed in FEDES using
the proposed index. The method using the nearest node and the method using fields of points map nodes
to nodes and thus require a node index, while the method using elements and the method using the element
shape function map elements to nodes and thus require an element index.

Whether or not an index is used, mapping can be executed in parallel on a multiprocessing system
by distributing the nodes or the elements of the target mesh across the running processes (or threads).
Each process executes the same mapping code but on a different chunk of data. Processes can all access
simultaneously the source mesh or the index without needing to synchronize, since the access is read-only.

3.1. Method using the nearest node

This method projects each node or integration point n of the target mesh into the space underlying the
source mesh and finds the node which is nearest to n. The FE variables to transfer to n are taken from this
node. The application of this method without a spatial index requires that each node of the source mesh be
scanned, the distance between it and n be calculated, and the nearest node be identified. With the proposed
index, the cell c containing n is located using the scales. Only the nodes indexed in c and, if required, in
neighbouring cells are examined, thereby considerably reducing the search space.

The algorithm works as follows. First, cell c is located by finding its coordinates using FindGridCoord,
its nodes are examined and the nearest is found. Then, if the distance between n and neighbouring cells is
less than the current minimum distance (see Fig. 10) or no node has been found, the nodes of neighbouring
cells are also examined. Neighbouring cells are located with increasing offsets from c, going outwards in
all directions, i.e. all the adjacent cells along the 4 surrounding rows/columns in 2-dimensional grids (6
planes in 3-dimensional grids) are added to the search space. Usually neighbouring cells do not need to

9



xi-2 i-1 i

j

j-1

j+1

y

n
m

Figure 10: Nearest neighbour search in a grid. Node m is the nearest to n in the cell (i, j) containing n. The other grey cells
with coordinates (x, y) such that i − 2 ≤ x ≤ i and j − 1 ≤ y ≤ j + 1 must be examined because they may contain a nearer
node.

be examined at all or the search stops at very small offsets. However, if the grid is very refined and the
difference in density between source and target mesh is relatively big, then the search might stop at higher
offsets.

The function FindNearestNode for searching a 2-dimensional grid index is shown in Fig. 11 (the function
can be easily extended to search a 3-dimensional grid index by handling the additional dimension similarly).
Instead of calculating the distance between n and each neighbouring cell, FindNearestNode calculates just
one distance for each direction, that is the distances between n and the lower and upper bounds, on the x-
and y-axis, of the rectangular area already examined. The search in direction i stops at the offset where
the distance d(n, bi) between n and bound bi is greater than or equal to the current minimum distance
min, or there are no more cells to examine. The function EndSearch, which is used in the termination
condition of the while loop, indicates when the search stops in every direction. EndSearch(k, n, min, b1, b2,
b3, b4) is equal to true when, for i = 1, . . . , 4, either d(n, bi) ≥ min or there are no more cells to examine
along direction i. The border of the examined area along each direction is determined using FindInitialPoint
with the corresponding scale and the coordinate of the interval whose initial point delimits the area. This
technique reduces the number of distances calculated at each iteration to the number of directions but, being
a conservative approximation, may cause some cells to be unnecessarily scanned.

If some cells share a bucket, such a bucket will be scanned multiple times, once for each cell sharing
it. Scanned buckets can be flagged as such to avoid being re-scanned. To indicate that a bucket has been
scanned during the mapping of a node, it is flagged with the identifier of the node (i.e. its position in the
node array). When analysing a cell, its bucket’s flag is compared to the identifier of the node currently
being mapped. If they are equal it means that that bucket has already been scanned.

3.2. Method using fields of points

This method projects each node or integration point of the target mesh into the space underlying the
source mesh. The projection of a point n represents the origin a Cartesian coordinate system whose axes
are parallel to the grid’s axes. Such a coordinate system partitions a 2-dimensional grid in 4 regions and
a 3-dimensional grid in 8 regions. In each region a nearest neighbour search is performed, similarly to the
method using the nearest node. For each cell c being examined, the region containing it or the regions
overlapping it are determined. For each of these regions, let it be r, the search proceeds as follows. If the
distance between c and n is less than the distance between n and the current nearest node in r, then c is
searched for the nearest node in r.

10



Function FindNearestNode (grid , n)
i← FindGridCoord (x-scale, n)
j ← FindGridCoord (y-scale, n)
search cell (i, j)
x-lower-bound = FindInitialPoint (x-scale, i)
x-upper-bound = FindInitialPoint (x-scale, i+ 1)
y-lower-bound = FindInitialPoint (y-scale, j)
y-upper-bound = FindInitialPoint (y-scale, j + 1)
k = 1,min =∞
while EndSearch (k, n, min, x-lower-bound, x-upper-bound, y-lower-bound, y-upper-bound) = false do

if i+ k < x-size(grid) ∧ d(n, x-upper-bound) < min then
search all cells (i+ k, j′) such that max(j − k, 0) ≤ j′ ≤ min(j + k, y-size(grid)− 1)

if i− k ≥ 0 ∧ d(n, x-lower-bound) < min then
search all cells (i− k, j′) such that max(j − k, 0) ≤ j′ ≤ min(j + k, y-size(grid)− 1)

if j + k < y-size(grid) ∧ d(n, y-upper-bound) < min then
search all cells (i′, j + k) such that max(i− k, 0) ≤ i′ ≤ min(i+ k, x-size(grid)− 1)

if j − k ≥ 0 ∧ d(n, y-lower-bound) < min then
search all cells (i′, j − k) such that max(i− k, 0) ≤ i′ ≤ min(i+ k, x-size(grid)− 1)

x-lower-bound = FindInitialPoint (x-scale, i− k)
x-upper-bound = FindInitialPoint (x-scale, i+ 1 + k)
y-lower-bound = FindInitialPoint (y-scale, j − k)
y-upper-bound = FindInitialPoint (y-scale, j + 1 + k)
k = k + 1

Figure 11: Nearest node search.

The value of an FE variable to transfer to n is obtained by calculating a weighted mean of the values of
the variable for the neighbours found. The weight associated with each neighbour is inversely proportional
to the distance between it and n. If n coincides with a node of the source mesh, the value of this node is
copied. If n does not fall in the source mesh or is close to its surface, there may be regions without any node.
In this case the mean is calculated only on the neighbours found. To avoid empty regions being searched,
a limit on the offset can be set. This way, the search in a region stops if no node has been found and the
limit has been reached.

The weight wi assigned to neighbour i (1 ≤ i ≤ k) is

wi =

∑k
j=1 dj

di
(1)

where di is the distance between i and n. Let xi, . . . , xk be the values of an FE variable for the nearest
neighbours. The value y to transfer to n is

y =

∑k
j=1 wjxj∑k
j=1 wj

(2)

3.3. Method using elements

This method projects each node or integration point n of the target mesh into the space underlying the
source mesh and finds the nearest element to n. The distance between an element and a point is defined as
the average distance between the nodes of the element and the point.

The application of this method without a spatial index requires that each element of the source mesh
be scanned, the distance between it and n be calculated, and the nearest element be identified. With the
proposed index, the cell c containing n is located using the scales. Only the elements indexed in c and in

11



neighbouring cells are examined, thereby considerably reducing the search space. The elements indexed in
a cell are those of the nodes indexed in the cell and are contained in the cell’s bucket.

The search starts from c. If there are elements in c’s bucket, the nearest is identified. Whether or
not elements have been found, the search continues in neighbouring cells, with increasing offsets from c, as
described for the method using the nearest node in Section 3.1. This is necessary because, if an element
overlaps c without having nodes in it, it has to be found in neighbouring cells.

Usually elements are found at very small offsets, unless the grid is very refined and the difference in
density between source and target mesh is relatively big. The search stops at the lowest offset, greater than
a fixed lower bound, where at least one element has been found. To achieve the best accuracy with this
method, the lower bound should be such that the corresponding area encloses all the elements overlapping
c. This value depends on the level of refinement of the grid and the difference in density between source and
target mesh. The more refined the grid is and the higher the difference in density is, the higher the lower
bound should be.

An element can be processed multiple times during the same search if it has nodes in different cells. This
can be avoided by flagging the examined elements, similarly to buckets (as described in Section 3.1).

The value of an FE variable to transfer to n is obtained by calculating a weighted mean of the values of
the variable for the nodes of the nearest element. If n coincides with a node of the source mesh, the value
of this node is copied. The weights are inversely proportional to the distances and are calculated using (1),
with the nearest element’s nodes as neighbours. The weighted mean is calculated using (2), with x1, . . . , xk
being the values of the nearest element’s nodes.

3.4. Method using the element shape function

This method projects each node or integration point n of the target mesh into the space underlying
the source mesh and finds the element that contains n. The shape function of the element type is used to
interpolate FE data at n. The search in the index is performed similarly to the method using elements.
That is, the cell c containing n is located using the scales. Neighbouring cells are then examined going
outwards from c.

Shape functions are used for interpolating from nodes to integration points or, in general, any point
within an element. Let Di be the value of an FE variable at node i and ηi be the shape function at node i,
for 0 ≤ i ≤ k. The interpolated value at n is:

Dn =

k∑
i=1

ηiDi (3)

For applying (3), the local coordinates of n with respect to the element containing it must be determined.
The systems of equations to solve to find the local coordinates for linear triangular, linear quadrilateral,
linear tetrahedron, linear hexahedron and linear wedge elements can be found in [6]. When searching, n
may not be located in any element, as the geometries of the two meshes may be slightly different. In this
case, the ranges of the local coordinates are updated by incrementing a tolerance parameter and the search
restarts.

4. Performance evaluation

The performance of the proposed indexing technique was evaluated in the simulation of two manu-
facturing process chains. We analysed one mapping in each of them. The FE variables to transfer were
displacement and stress. The first chain was relative to an aero-engine vane component. The mapping
was performed from heat treatment to machining. Source and target meshes had, respectively, 83,316 and
154,407 tetrahedron elements. Fig. 12 shows the mapping of displacements. The second chain was relative
to a piston. Source and target meshes had, respectively, 9,387 hexahedron elements and 28,635 tetrahedron
elements. Fig. 13 shows the mapping of stresses.

Let A and A′ be, respectively, the source and target meshes of the former mapping and let B and B′

be, respectively, the source and target meshes of the latter mapping. Table 1 reports the times taken for

12



Figure 12: Mapping of displacements (using the element shape function). The source mesh (left) has 83,316 tetrahedron
elements, while the target mesh (right) has 154,407 tetrahedron elements.

Figure 13: Mapping of stresses (using the element shape function). The source mesh (left) has 9,387 hexahedron elements,
while the target mesh (right) has 28,635 tetrahedron elements.

13



Index Mesh Type Initial grid size Bucket Construction Final grid size Buckets Splits
size time (s)

1 A nodes 25× 25× 25 15 0.16 50× 49× 49 16,965 1,340
2 A elements 50× 50× 50 60 2.951 105× 105× 105 127,454 2,454
3 B nodes 15× 15× 15 10 0.018 25× 25× 25 4,176 801
4 B elements 25× 25× 25 20 0.129 46× 45× 45 17,564 1,939

Index Non-empty Avg. bucket
buckets (%) occupancy (%)

1 21 46
2 8.9 48.8
3 52.7 55
4 40.5 52.5

Table 1: Construction of the indexes.

Mesh A → Mesh A′ Mesh B → Mesh B′

Threads Sequential With index
Seq.
Index

Sequential With index
Seq.
Index

search search

1 57.05 3.91 14.59 5.11 0.57 8.96
2 33.86 2.51 13.44 3.1 0.39 7.95
4 24.42 1.82 13.42 2.21 0.27 8.19
8 24.22 1.62 14.95 2.2 0.24 9.17

Table 2: Execution times (s) of mapping with the method using the nearest node.

creating a node index and an element index on meshes A and B, and some statistics. Tables 2 to 5 report
the time taken for mapping displacements and stresses from A to A′ and from B to B′ with each of the
described mapping methods, comparing a search using the index with a sequential search. The mapping
times do not include the construction times of the indexes. Each mapping was executed with 1, 2, 4 and 8
threads.

The experiments were conducted on a machine equipped with an Intel i7 CPU at 1.73 GHz and 8 GB of
RAM, running GNU/Linux. The indexing and mapping code was written, as the rest of FEDES, in Pascal
and compiled with the Free Pascal Compiler (version 2.6.0) with default optimizations. The reported times
are wall-clock times, each calculated as the mean of three runs, measured using the Pascal library function
Now().

The initial grid size and the bucket size of the indexes were arbitrarily chosen based on the size of the
mesh and are indicated in Table 1. The construction of the index took about 3 seconds for the largest (i.e.
the element index of mesh A) and less than 0.2 seconds for the others. Such short times suggest that there
is no need to save on the disk indexes of those dimensions if they are needed for future mappings, as they

Mesh A → Mesh A′ Mesh B → Mesh B′

Threads Sequential With index
Seq.
Index

Sequential With index
Seq.
Index

search search

1 157.04 37.98 4.13 15.37 3.74 4.11
2 97.53 23.9 4.08 9.36 2.32 4.03
4 68.2 16.2 4.21 6.64 1.62 4.1
8 64.04 15.38 4.16 6.18 1.45 4.26

Table 3: Execution times (s) of mapping with the method using fields of points.

14



Mesh A → Mesh A′ Mesh B → Mesh B′

Threads Sequential With index
Seq.
Index

Sequential With index
Seq.
Index

search search

1 1880.34 21.83 86.14 45.28 2.32 19.52
2 1057.16 14.57 72.56 26.94 1.53 17.61
4 677.83 9.14 74.16 19.01 1.06 17.93
8 601.35 8.09 74.33 18.65 0.92 20.27

Table 4: Execution times (s) of mapping with the method using elements.

Mesh A → Mesh A′ Mesh B → Mesh B′

Threads Sequential With index
Seq.
Index

Sequential With index
Seq.
Index

search search

1 1056.75 78.46 13.47 28.69 2.82 10.17
2 703.76 73.95 9.52 17.3 2.24 7.72
4 481.12 46.73 10.3 12.47 1.62 7.7
8 367.68 36.78 10 11.35 1.31 8.66

Table 5: Execution times (s) of mapping with the method using the element shape function.

can be quickly recreated. By comparing the final grid size with the initial one, it can be observed that, for
mesh A, the node index’s grid and the element index’s grid were refined, respectively, 73 and 165 times.
While for mesh B, the node index’s grid and the element index’s grid were refined, respectively, 30 and 61
times. The number of splits in the table includes splits of both shared and non-shared buckets.

The average bucket occupancy of the indexes is roughly 50%. This is calculated on the non-empty
buckets only, because for empty buckets no memory is actually allocated. In fact, a bucket is allocated
when the first node is inserted in it. Note that reducing the bucket size does not necessarily increase bucket
occupancy because more splits may occur, thereby resulting in a larger number of buckets. To save space,
another approach to memory management could be followed. That is, one bucket’s space would be allocated
incrementally as nodes are indexed in it, up to a certain limit. When the limit is reached a split would take
place.

It can be observed that mapping with an index was much faster than mapping with sequential searches
in all the examined cases. In the worst case (i.e. with the method using fields of points), mapping with the
index was still 4 times faster. Even if the index build time is included, mapping times with the proposed
methods are still very short compared to the linear approach.

The difference in performance between running 4 and 8 threads is not always significant. This is due to
the hardware architecture of the machine used for the experimentation, which has 4 cores but can handle
up to 8 threads (2 per core). Although at most 4 threads can be run simultaneously, the switch between
threads on the same core is fast.

5. Conclusions

An in-core grid index for transferring FE data between meshes in a manufacturing process chain has
been presented. A grid decomposes the embedding space of a mesh into cells which can have different sizes.
A scale for each dimension allows the cell containing a given node to be located. Scales are represented by
binary search trees. The splitting mechanism enables the grid to reflect the level of refinement of the mesh.
Four mapping methods employing the index have been described, namely, the method using the nearest
node, the method using fields of points, the method using elements and the method using element shape
functions.

15



An evaluation of the performance of index creation and mapping has been conducted. The results indicate
that, in the examined cases, mapping with the proposed index is much faster than mapping with sequential
searches for all the mapping methods, even including index build time. The creation of the largest index
took about 3 seconds, whereas it took a fraction of second in the other cases. The use of the index structure
involves a little memory overhead that, we believe, is not an issue in most applications. In addition, it can
be reduced with an incremental allocation of a bucket’s memory. Future work includes a comparison with
other indexing techniques (based on, for instance, octrees or other grid structures) and an evaluation with
meshes of larger sizes (of the order of millions of elements).

Acknowledgments

We would like to thank Jonathon Shaw for his comments on a draft of this paper.

[1] S. Hyun, L. Lindgren, Simulating a chain of manufacturing processes using a geometry-based finite element code with
adaptive meshing, Finite Elements in Analysis and Design 40 (2004) 511–528.

[2] M. Pietrzyk, L. Madej, S. Weglarczyk, Tool for optimal design of manufacturing chain based on metal forming, CIRP
Annals - Manufacturing Technology 57 (2008) 309–312.

[3] M. Zaeh, L. Papadakis, M. Langhorst, Simulation of the manufacturing process chain of welded frame structures, Produc-
tion Engineering 2 (2008) 385–393.

[4] M. Zaeh, A. Tekkaya, M. Langhorst, M. Ruhstorfer, A. Schober, D. Pietzka, Experimental and numerical investigation of
the process chain from composite extrusion to friction stir welding regarding the residual stresses in composite extruded
profiles, Production Engineering 3 (2009) 353–360.

[5] A. Govik, L. Nilsson, R. Moshfegh, Finite element simulation of the manufacturing process chain of a sheet metal assembly,
Journal of Materials Processing Technology 212 (7) (2012) 1453–1462.

[6] S. Afazov, A. Becker, T. Hyde, Development of a finite element data exchange system for chain simulation of manufacturing
processes, Advances in Engineering Software 47 (1) (2012) 104–113.

[7] S. Afazov, Modelling and simulation of manufacturing process chains, CIRP Journal of Manufacturing Science and Tech-
nology 6 (1) (2013) 70–77.

[8] H. Tersing, J. Lorentzon, A. Francois, A. Lundbäck, B. Babu, J. Barboza, V. Bäcker, L.-E. Lindgren, Simulation of
manufacturing chain of a titanium aerospace component with experimental validation, Finite Elements in Analysis and
Design 51 (2012) 10–21.

[9] P. Iványi, Finite element mesh conversion based on regular expressions, Advances in Engineering Software 51 (2012) 20–39.
[10] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, C. Ernst, MOAB: a mesh-oriented database, Technical report

SAND2004-1592, Sandia National Laboratories (2004).
[11] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006.
[12] T. Tu, D. O’Hallaron, J. Loopez, Etree: a database-oriented method for generating large octree meshes, Engineering with

Computers 20 (2004) 117–128.
[13] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries, Journal of

Computational Physics 190 (2003) 572–600.
[14] P. Wriggers, G. Zavarise, Computational contact mechanics, in: Encyclopedia of Computational Mechanics, John Wiley

& Sons, Ltd, 2004.
[15] J. Nievergelt, H. Hinterberger, K. C. Sevcik, The grid file: An adaptable, symmetric multikey file structure, ACM

Transactions on Database Systems 9 (1) (1984) 38–71.
[16] M. Tamminen, R. Sulonen, The excell method for efficient geometric access to data, in: Proceedings of the Nineteenth

Design Automation Conference, 1982, pp. 345–351.
[17] D. Scrimieri, S. Afazov, A. Becker, S. Ratchev, Fast mapping of finite element field variables between meshes with different

densities and element types, Advances in Engineering Software 67 (2014) 90–98.
[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 2009.
[19] B. Pfaff, Performance analysis of BSTs in system software, SIGMETRICS Perform. Eval. Rev. 32 (1) (2004) 410–411.

16


