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Abstract: For over twenty years, Obuasi Municipality, Ghana, has experienced land-cover change arising from gold mining and 

urbanisation. This project quantified the land-cover changes that have taken place and projected likely future land-cover. An integration 

of EO (earth observation), GIS (geographical information science) and Stochastic Modelling was examined. Post-classification 

Change Detection employed Landsat TM or ETM+ images in 1986, 2002 and 2008. Subsequently, Markov Chain Analysis projected 

the land-cover distribution for 2020. Seven broad land-use and land-cover classes were identified and mapped, namely: built-up areas, 

mine sites tailing ponds barren land forestland farmland and rangeland. The results obtained for the 2008 to 2020 projection revealed a 

continuous expansion of built-up areas (1.63%), mine sites (0.89%) and farmland (3.4%), and a reduction of forestland (4.17%) and 

rangeland (2.59%). Despite the advent of very high resolution satellite imagery, this use of EO and GIS technology focussed on 

low-cost and lower resolution satellite imagery, coupled with Markov Modelling and was found to be beneficial in describing and 

analysing land-cover change processes in the study area, and was hence potentially useful for strategic planning purposes. 

 

Key words: Ghana, TM, ETM+, GIS, change detection, tailing ponds, gold mining. 

 

1. Introduction

 

LULCC (land-use/land-cover change) is an essential 

input to global environmental change monitoring [1]; 

LULCC studies have led to a greater understanding of 

the forces driving environmental change, as evidenced 

on the 1992 United Nations Conference on 

Environment and Development [2]. The human 

population has been recognized as the dominant force 

behind LULCC change, although similar changes do 

arise naturally and gradually [3, 4] in trying to 

maximize benefits from the land, human beings put 

pressure on the land, modifying its land-cover.  

Lambin et al. [5] categorized the human influences 

on land-cover to be: socio-economic, technological, 
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institutional, demographic, cultural or related to 

globalisation. The environmental effects of LULCC 

can be positive or negative, permanent or reversible, 

short or long term, and can be grouped into: 

biodiversity change, climate change, pollution, and 

other impacts [6]. For example: converting forest to 

other uses can lead to climate change, deforestation to 

biodiversity loss, and overgrazing to pollution. 

Environmental changes affect society [2], so 

information on LULCC can support decision makers.  

It has been shown that the application of EO, with 

GIS, can produce accurate, timely information on the 

spatial distribution of land-cover change [7]. Because 

of repetitive data acquisition, synoptic views and their 

digital format, data such as Landsat, Aster, Spot and 

Avhrr have been the primary data source for change 

detection. As well as the combined use of EO and GIS, 

modelling land-cover change dynamics can also be 
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enhanced by Stochastic Modelling. 

Lu et al. [8] stated that change detection provides 

information on: area of change and change rate, spatial 

distribution of change types, change trajectories of 

land-cover types, and accuracy assessment of change 

detection results. Change detection techniques have 

been broadly categorized into: pre-classification and 

post-classification [9, 10]. This study focuses on 

post-classification-widely used when multi-image 

comparison is involved [11]. 

To be useful for planning, change detection should 

analyse the dynamics of past LULCC, and also model 

future LULCC. Consequently, in this study, two 

geo-simulation tools, namely Markov Chain Analysis 

and Cellular Automata, as reported in Benenson and 

Torrens [12], were used to model and predict future 

LULCC. Markov Chain Analyses incorporate several 

assumptions [13]: one basic assumption regards 

LULCC as a stochastic process; other assumptions are 

based on the states of a chain. Cellular Automata can be 

implemented in GIS [14], and many geographers have 

adopted it for modelling spatial dynamics. 

The aims of this study are: (1) to quantify LULCC in 

the Obuasi area of Ghana ( Fig. 1), based on Earth 

Observation data for recent decades (1986-2008); (2) 

to model and predict LULCC by 2020; and (3) to 

identify the drivers of these changes. 

2. Study Area and Data 

The study area is in Obuasi Municipality—an 

administration district in the Ashanti Region, Ghana, 

centred at 6
o
10’N and 01

o
40’W, within a 

semi-deciduous forest zone undergoing degradation 

consequent on anthropogenic action; the forest 

provides hard wood lumber [15]. This study covers a 

rectangular area of approximately 689.82 km
2
 and can 

be located on the 0602C2 and 0602C4 1:50,000 scale 

Topographic map sheets of Ghana.  

The topography of the Obuasi area is undulating 

 
 

 
Fig. 1  Map of study area (Source: Wikipedia). 

Map a: Ghana and Map b: administrative districts of Ashanti Region.  

(a) 

(b) 
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with a number of rivers; its gold deposits are part of the 

Proterozoic (Birimian) volcano-sedimentary and 

igneous formations that extend for a distance of 

approximately 300 kilometres trending 

north-east/south-west in south-western Ghana. Obuasi 

mineralisation is comprised of quartz veins containing 

free gold and the main sulphide ore in which narrow 

veins contain gold trapped within arsenopyrite [16].  

This study is based on the data sources listed in the 

Table 1, grouped into EO (earth observation) and 

reference data, and uses a time series of Landsat, TM 

(thematic mapper) and ETM+(enhanced thematic 

mapper plus) images of scene 194/56 acquired in the 

years 1986, 2002 and 2008. These data were 

downloaded from the USGS (U.S. Geological Survey) 

database using its Glovis facility, selected on the basis 

of availability, season and cloud. Unfortunately all the 

available 1990s images have unacceptable cloud cover. 

The reference data include topographical maps and 

aerial photographs of the study area. 

3. Methodology 

The steps undertaken in this project include image 

pre-processing, image classification, change detection 

and modelling, predicting change and validation. 

3.1 Pre-processing 

Pre-processing corrected errors that arose from 

imaging sensors, atmospheric effects and curvature of 

the Earth, all of which can lead to false results. The 

individual bands (excluding the 120 m pixel resolution 

thermal IR band 6) of each of the three images (1986 

TM, 2002 ETM+ and 2008 ETM+) were combined 

into three single images. A subset of the resulting 

images, containing only the study area, was extracted. 

The 1986 image was corrected for haze. Upon careful 

examination, band combination 5, 3, 2 was found to 

clearly identify road intersections and the intended 

land-cover categories were distinguishable. The 

images were subsequently enhanced using Histogram 

Equalization.  

The three resultant images were originally on the 

UTM/WGS84 projection but were re-projected, still 

using the Transverse Mercator Projection but on the 

Ghana (Accra) datum (using the ‘War Office’ 

spheroid). Fifteen GCPs (ground control points) were 

extracted at road intersections from the digital 

topographic maps of the study area and used to 

geo-reference the 2008 ETM+ image; a highly 

satisfactory 0.375 pixel Root Mean Square Error was 

obtained. A Nearest Neighbour re-sampling technique 

was employed during geo-referencing—chosen as it 

honours the original pixel values. This 2008 

geo-referenced image was later use to co-register the 

two other images, 1986 TM and 2002 ETM+. All the 

images were re-sampled to a 30 by 30 meters pixel 

resolution. 

3.2 Image Classification 

A supervised classification was employed to classify 

seven land-cover categories: (1) built-up areas; (2) 

mine sites; (3) tailing ponds; (4) barren (i.e. bare) land; 

(5) forestland; (6) farmland; and, (7) rangeland, based 

on the Anderson classification scheme [17]. To ensure 
 

Table 1  Data used in this study. 

EO data Acquisition date Resolution Sources 

Landsat TM January, 1986 30 m USGS EROS Centre 

Landsat ETM+ January, 2002 30 m USGS EROS Centre 

Landsat ETM+ February, 2008 30 m USGS EROS Centre 

Reference data Acquisition Date Scale Sources 

Topographical Map 2008 1:50,000 Govt. Survey Dept., Ghana 

Aerial Photograph 2004 1:10,000 Govt. Survey Dept., Ghana 

Digitized Topographical Map 2002 1:50,000 
Geomatic Engineering Dept., Kwame Nkrumah Univ. 

Science & Technology, Ghana 
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the quality of change-detection results [18], a total of 

sixty check sites were extracted, from a random 

selection, from the 2004 aerial photography to perform 

the accuracy assessment of the 2002 and 2008 images. 

One might challenge the use of 2004 “ground truth” to 

check 2002 and 2008 scenes, but the sixty check sites 

were selected, from the random selection, using “local 

knowledge”, being locations believed to have 

undergone no change in the period 2002-2008. The 

accuracy of the 1986 classified image could not be 

assessed since suitable check data was not available. 

3.3 Change Detection with Land-Cover Modeler (Idrisi 

Andes
®

) 

A Post-Classification approach to Change Detection 

was used to assess LULCC over the twenty-two 

(1986-2008) years. This was achieved using the LCM 

(land-cover modeler) module of Idrisi Andes
®
, which 

cross-tabulates two thematic maps of the same 

dimensions, at a time. With the 1986, 2002 and 2008 

thematic maps as input to LCM, the following outputs 

were obtained for the three time periods (1986-2002, 

2002-2008 and 1986-2008): (1) net gains or losses in 

hectares (ha) and percentages (%) for each land-cover 

category; (2) contributors to the net change by each 

land-cover type; (3) change maps; (4) change matrices; 

and, (5) matrices of transition probabilities to provide 

information on the probability associated with a 

land-cover class either remaining unchanged or 

changing to one of the other classes. 

3.4 Modelling and Predicting Change 

3.4.1 Markov Chain Modelling 

This study adopted Markov Chain analysis and 

Cellular Automata (CA-Markov) to predict land-cover 

change. Markov Chain analysis determines the 

probability of land-cover change from one period to 

another by developing a transition matrix between time 

t1 and time t2. Markov Chain analysis does not consider 

spatial distribution so, to overcome this, CA (Cellular 

Automata) is integrated with Markov Chain analysis. 

The CA component of the CA-Markov model allows 

the transition probabilities of one pixel to be a function 

of its neighbouring pixels. CA-Markov models the 

change of several classes of cells by using: a Markov 

transition matrix, a “suitability” map, and a 

neighbourhood filter [19].  

Markov Chain analysis was implemented using the 

Idrisi Andes
® 

Markov module. The 1986-2002 

land-cover maps were first used as input to generate a 

transition matrix and a set of conditional probability 

images between the two dates of the thematic maps. 

These outputs from the Markov module were later 

loaded in the CA-Markov module in the software and a 

5 × 5 (five by five) filter were applied to generate the 

2008 predicted map. Afterwards, the predicted 2008 

land-cover map was compared with actual land-cover 

map of 2008 for validation. Following validation the 

1986-2008 land-cover maps were used to predict the 

2020 land-cover map. 

3.4.2 Validation 

Observed land-cover changes between sequences 

can be represented as hectares in a contingency matrix. 

The validity of predicted land-cover changes, between 

sequences, based on Markov Chain analysis can be 

examined by considering three requirements: (1) their 

statistical independence; (2) their Markovian 

compatibility; and (3) their stationarity [20]. 

Considering the first of these, a way of testing for 

statistical independence is to use the chi-squared (χ
2
) 

test and compare the observed and the expected events. 

This (χ
2
) can be given by: 

 
2

2
N

ij ij

ij ij

n e

e


  
  

  

           (1) 

where nij is from the observed values in the 

contingency matrix and eij is from the expected values 

assuming: 

 i j

ij

n n
e

N


               (2) 

where ni and nj represent the row and column totals of 

the contingency matrix respectively, and N is the grand 
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total of observations in that matrix. The chi-squared 

(χ
2
) statistic can be computed and the variable, ρ, 

obtained from a chi-squared distribution table 

assuming (C-1)
2
 degrees of freedom, where C is the 

number of classes in the contingency matrix. Any 

computed value of ρ less than the selected critical value 

(e.g. 5%) will lead to the conclusion that the null 

hypothesis can be rejected and that the data do exhibit 

statistical independence. 

If a Markov Chain process is performed next, the 

resulting (i.e. expected) values can be compared with 

the observed ones to test for Markovian compatability, 

using the Chapman-Kolmogorov equation [21], thus:  

 
2

2
N

ijk ijk

ijk ijk

n e

e


  
  

  

          (3) 

with 

 ij jk

ijk

j

n n
e
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             (4) 

and 

nij.  number of transitions from category i to j 

during the period 1986-2002; 

n.jk number of transitions from category j to k 

during the period 2002-2008; and,  

n.j. number of units in category j in the year 

2002. 

Based on the above mentioned equations and using 

the three matrices of transition probabilities 

(1986-2002, 2002-2008 and 1986-2008), the presence 

of the three statistical requirements was determined, as 

will be described in Section 4.4. 

4. Results 

Results will be considered on the basis of Image 

Classification, the extent of the land-cover classes, 

quantification of change, causes of change, hypothesis 

testing, Markov chain analysis and the predicted 2020 

land-cover map. 

4.1 Image Classification  

Excluding the unclassified class, seven 

land-use/land-cover classes were produced using 

supervised classification, in the study area. Three 

land-cover maps (1986, 2002 and 2008) were 

generated as shown in Fig. 2.  

Accuracy assessment is essential, and particularly 

when using post-classification change detection 

methods [18, 22]. As mentioned, the overall accuracy 

of two land-cover maps, 2002 and 2008, was 

determined using aerial photography, and found to be 

88.3% and 80.0% correct. (As mentioned, there was no 

reference material considered suitable to check the 

1986 map). The 2002 data met the minimum standard 

of 85% as recommended by the USGS classification 

scheme [17]. The 2008 data fell below the standard but 

this could be attributed to the age of the 2004 

photography (unfortunately the best available) used in 

assessing the accuracy of the 2008 land-cover map. 

Ashanti [16, 23] reported successive flooding and 

spilling from tailing ponds (a small land-cover class) 

and “local knowledge” [24] reported frequent spills 

from ore trucks both of which led to rapid change in 

nearby land-cover; thus check data from a 2004 aerial 

photograph might not, despite our best intentions, have 

yielded reliable accuracy results in all areas of the 2008 

land-cover map. Of course the quality of the check data 

is important in determining the accuracy of the image 

classification [25].  

4.2 Extent of Land-Cover Categories 

Table 2 reveals that the most extensive land-cover 

category in Obuasi in the years 1986, 2002 and 2008 

was rangeland which covers about 54% of the area, 

followed by farmland (20%), forestland (14%), 

built-up areas (4.5%), barren land (4.3%), mine sites 

(1%) and tailing ponds (0.6%). This is not unexpected 

as Ghana’s land-cover is dominated by vegetation and 

it also confirms the World Bank’s 1992 report that 

rangeland covered about 66% of Ghana’s land area 

[26].  

Table 2 reveals that the built-up areas and mine sites 

categories showed an increase over the past two 
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Fig. 2  The three land-cover maps of the years 1986, 2002 and 2008.  
 

Table 2  Extent of land-cover categories expressed in hectares (ha) and percentages (%). 

Land cover class 1986 area (ha) 1986 area (%) 2002 area (ha) 2002 area (%) 2008 area (ha) 2008 area (%) 

Built-up areas 1,428.93 2.07 3,241.17 4.70 4,357.71 6.32 

Mine sites 333.9 0.48 620.01 0.90 1,045.98 1.52 

Tailing ponds 0 0.00 980.82 1.42 359.82 0.52 

Barren land 4,527.27 6.56 1,479.42 2.14 2,960.73 4.29 

Forestland 12,972.6 18.81 8,128.35 11.78 8,038.53 11.65 

Farmland 13,287.78 19.26 15,047.73 21.81 14,749.11 21.38 

Rangeland 36,431.46 52.81 39,484.44 57.24 37,470.46 54.32 

Totals 68,981.94 100.00 68,981.94 100.00 68,981.94 100.00 

Scale: 0              10,000 m 
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decades while other categories (rangeland, farmland 

and tailing ponds) showed an increase in the period 

1986-2002 and a slight decrease in the period 

2002-2008. Barren land decreased in the period 

1986-2002 by 4.42% and increased slightly in the 

period 2002-2008. Forestland showed a continuous 

decrease over the review period.  

4.3 Quantification of Land-Use Land-Cover Changes 

In order to understand the trends in LULCC in the 

study area, over the twenty-two year periods, two 

change matrices (1986-2002 and 2002-2008) were 

developed from the three (1986, 2002 and 2008) 

land-cover maps (Tables 3 and 4).  

Values in the tables’ diagonals represent unchanged 

land-cover classes and those in the off-diagonal 

represent changed land-cover classes, in the period of 

concern. The tables show that, in 1986-2002, 56.41% 

(38,914.02 ha) of the total land-cover of the area 

remain unchanged, with an 2.7% annual rate of 

land-cover change, whereas 67.58% (46,616.67 ha) of 

the land-cover remain unchanged within the next six 

years (2002-2008) with an annual rate of land-cover 

change of 5.4%. Thus, more abrupt changes occurred 

in the period 2002-2008.  

As an example, Table 3 values in bold italics 

summarize the changes (Gains + and Losses -) in 

hectares (ha) and percentages (%) resulting from the 

various land-cover conversions for the period of 

1986-2002. It can be seen from the table that rangeland, 

farmland, tailing ponds, mine sites and built-up areas 

land-cover categories experienced some expansion 

with the rangeland land-cover category gaining most 

(4.43%) within the sixteen year period. Forestland and 

barren land are seen to have experienced losses at the 

expense of other land-cover classes with forestland 

experiencing a net loss of 7.02%. 

Further analysis (Fig. 3) of the contributions to the 
 

Table 3  1986-2002 land-use/land-cover change matrix (units are hectares). 

Class 
1986  

built-up areas 

1986  

mine-sites 

1986  

tailing ponds 

1986  

barren land 

1986  

forest-land 

1986  

farmland 

1986  

range-land 

2002  

totals 

2002 built-up areas 895.23 73.53 0 1,091.07 7.74 494.46 679.14 3,241.17 

2002 mine sites 120.42 145.53 0 157.95 4.14 46.71 145.26 620.01 

2002 tailing ponds 66.42 66.42 0 212.85 41.49 109.8 483.84 980.82 

2002 barren land 50.67 26.46 0 664.02 23.49 232.56 482.22 1,479.42 

2002 forestland 3.87 0.18 0 57.6 6,607.35 123.75 1,335.6 8,128.35 

2002 farmland 182.25 4.14 0 1,066.86 724.05 5,183.46 7,886.97 15,047.73 

2002 rangeland 110.07 17.64 0 1,276.92 5,564.34 7,097.04 25,418.43 39,484.44 

1986 totals 1,428.93 333.9 0 4,527.27 12,972.6 13,287.78 36,431.46 68,981.94 

Net change (ha) +1,812.24 +286.11 +980.82 -3,047.85 -4,844.25 +1,759.95 +3,052.98  

Net change (%) +2.63 +0.41 +1.42 -4.42 -7.02 +2.55 +4.43  

 

Table 4  2002-2008 land-use/land-cover change matrix (units are hectares). 

Class 
2002  

built-up areas 

2002 

mine-sites 

2002  

tailing ponds 

2002  

barren land 

2002 

forest-land 

2002 

farmland 

2002 

range-land 

2008 

TOTALS 

2008 built-up areas 2,580.93 143.91 76.95 293.49 1.62 1,063.8 197.01 4,357.71 

2008 mine sites 169.11 320.58 414.45 98.28 0.554 14.58 28.44 1,045.98 

2008 tailing ponds 1.08 6.84 305.37 17.64 23.58 0.45 4.86 359.82 

2008 barren land 290.88 106.29 147.33 850.05 37.26 949.86 579.06 2,960.73 

2008 forestland 0.18 2.88 2.61 3.6 6,335.1 65.34 1,628.82 8,038.53 

2008 farmland 136.98 2.07 6.57 150.93 82.17 6,774.39 7,596 14,749.11 

2008 rangeland 62.01 37.44 27.54 65.43 1,648.08 6,179.31 29,450.25 37,470.06 

2002 totals 3,241.17 620.01 980.82 1,479.42 8,128.35 15,047.73 39,484.44 68,981.94 

Net change (%) +1,116.54 +425.97 -621.00 +1,481.31 -89.82 -298.62 -2,014.38  
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Net change (%) +1.62 +0.62 -0.90 +2.15 -0.13 -0.43 -2.92  

Contribution to net change in built-up land               Contribution to net change in mine sites 

   
-1000                     500                  1000               -60           0            60           120 

 

Contribution to net change in forestland                  Contribution to net change in farmland 

   
               -4000                  -2000                  0             -300           0          300        600 

Fig. 3  Contribution to net change of the selected land-cover classes between 1986 and 2002 (units are in hectares). 
 

land-cover change shows the contributions in four 

selected land-cover classes (built-up areas, mine sites, 

forestland and farmland). Within the period under 

review, forestland, rangeland and barren land have 

experienced huge losses as a result of farmland, 

built-up areas and mine sites expansion. Subsidies and 

incentives given to cocoa farmers by the government 

since the year 2000 and the establishment of fruit 

processing companies are considered reasons for the 

increase in farmland in the area.  

For the six-year period (2002-2008), Table 4 reveals 

that only barren land, mine sites and built-up areas 

gained. Barren land is the land-cover class that has 

gained most (2.15%). The four classes rangeland, 

farmland, forestland and tailing ponds decreased, with 

rangeland decreasing by the most (2,014.38 ha). 

Fig. 4 shows the net contribution to four selected 

land-cover classes over the whole period under review 

(1986-2008) and that forestland, rangeland, barren land 

had experienced losses as a result of farmland, built-up 

areas and mine sites expansion. Built-up areas and 

mine sites are seen to have expanded more at the 

expense of rangeland, barren land and farmland. 

Forestland is seen, noticeably, to have given way to 

rangeland. 

4.4 Causes of LULCC (Land-Use/Land-Cover 

Changes)     

Mining operations going on in the study area have 

been identified as one of the major driving forces 

causing rapid land-cover changes (the other is 

urbanisation). Mine sites in the area have increased 

from 333.9 ha (0.48% of the study area) in 1986 to 

1,045.98 ha (1.52% of the study area) in 2008. The 

Tables 3, 4 and Figs. 3 and 4 reveal that mine sites 

increased at the expense of rangeland, farmland and 

barren land. This confirms a report that the upsurge of 

gold mining between 1986 and 1996 led to the increase 

in gold production from an annual total of 400,000 troy 

ounces in 1987 to 1.2million troy ounces by 1996, 

which established Ghana as Africa’s second largest 

gold producer, after South Africa [27, 28]. Moreover, 

the Anglo-Gold Ashanti Company also confirms that 

mining in the area has grown over the time and is 

Barren land 834 

Rangeland 

Farmland 

Barren Land 

 

Forestland 

 
Tailing Pond 

 Minesite 

Built-Up 

Range land -4229 

 

Rangeland 

Farmland 

Barren Land 

 

Forestland 

 
Tailing Pond 

 Minesite 

Built-Up 

Barren land 131 

Rangeland 

Farmland 

Barren Land 

 

Forestland 

 
Tailing Pond 

 Minesite 

Built-Up 

Barren land 1040 

Rangeland 

Farmland 

Forestland 

 
Barren Land 

 Tailing Pond 

 
Minesite 

Built-Up 
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encroaching into farmland [23]. The company has also 

complained about the presence of large numbers of  

 

 

 
Fig. 4  Contribution to net change of the selected land-cover between 1986 and 2008 (units are in hectares). 
 

artisanal and small-scale miners who encroach illegally 

onto the company-owned land in their search for 

minerals. Thus the barren land is seen to have increased 

from 1,479.42 ha (2.14%) in 2002 to 2,960.73 ha 

(4.29%) in 2008, while farmland in this period is found 

to have lost 799 ha to barren land, because illegal 

miners, in their search for gold, leave the land surface 

bare after exploiting it.    

Considering urbanisation, the population of Obuasi 

in 1986 was 60,617 and rose to 115,564 in 2000, an 

annual growth rate of 4% (Ghana Statistical Service, 

2002 [29]) and an increase of about 90%. The high 

population growth can be attributed to the booming 

mining activities as many people came to live in 

Obuasi, seeking employment. The effect of this is 

clearly seen in the sharp increase in built-up areas 

between the period of 1986 and 2008. In Figures 3, 4 

and Tables 3, 4, a 2,929 ha increase in built-up areas 

(4.25%) was revealed, at the expense of rangeland, 

farmland and barren land. Forestland has declined by 

7.15% within the study area giving way to rangeland 

and farmland. These land-cover conversions are an 

indication of the influx of people who claim farmland 

and rangeland close to built-up areas for development 

purposes. The dislocated farmers, searching for new 

space to farm, turn to the available forestland and 

rangeland. Deforestation caused by timber and mining 

companies, illegal chainsaw operators and bushfires 

further contribute to the conversion of forestland to 

rangeland. The rate at which the forestland decrease 

slowed within the period between 2002 and 2008 

indicates institutional intervention to salvage this 

situation. 

4.5 Hypothesis Testing 

To help interpret the conversion of each land-cover 

class, a chi-squared test of independence was carried 

out using the Eqs. (1) and (2) (see Section 3.4) and 

yielding the results shown in Table 5 (with 36 degrees 

of freedom). 

From the Table 5, it can be seen that for the 

computed χ
2
 values of each of the three matrices of 

transition probabilities the critical ρ-value of 0.05 is 

exceeded. These results therefore reveal that the 
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land-cover classes are statistically dependent and hence 

the null hypothesis of independence can be rejected. 

Practically,  

Table 5  Chi-square χ2 values computed from the three 

transition matrices. 

Period χ2-value ρ-value 

1986-2002 55,980.78 0.975 < ρ < 0.99 

2002-2008 51,161.81 0.95 < ρ < 0.975 

1986-2008 13,251.00 ρ < 0.995 
 

this means that the probability of conversion to other 

classes depends on the current land-cover [30].  

The next consideration is whether the conversions 

between the land-cover classes are Markovian. Using 

Eqs. (3) and (4) from section 3.4, this was tested. The χ
2
 

value of 34,302.24 (0.05 < ρ < 0.95) was obtained by 

comparing the observed transition matrix of 1986-2008 

and the estimated transition matrix of 1986-2008 

computed from the two matrices of transition 

probabilities of 1986-2002 and 2002-2008. This value 

was found to be greater than the critical ρ-value of 0.05 

with 36 degrees of freedom, thus the null hypothesis 

can be rejected and it can be, initially, concluded that 

land-cover changes in the study area are not 

Markovian. 

In order to predict future land-cover change, a 

Markov chain process requires stationarity (the 

statistical evidence of no changed) to model the 

transition mechanisms [20, 31]. To seek evidence of 

stationarity, the magnitude of unchanged land in each 

of the land-cover classes (diagonal elements) in the 

three different change matrices was extracted and 

compared, as seen in Fig. 5. 

 
Fig. 5  Investigating stationarity (i.e. unchanged classes) 

using the three transition matrices 1986-2002, 2002-2008 

and 1986-2008 (Units are hectares). 
 

The figure 5 above reveals that stationarity can be 

discounted since it shows divergent distributions of 

land-cover change over the three different periods. 

Hence, it can be deduced that the transition 

mechanisms (driving forces) implementing land-cover 

changes are different. 

4.6 Modelling Using Markov Chain Analysis 

Despite the initial conclusion that land-cover 

changes in the study area are not Markovian and the 

lack of stationarity, both alluded to in the previous 

section, Markov Chain Analysis was used to predict the 

future land-cover map of 2008, using the land-cover 

maps of the years 1986-2002. This predicted map was 

subsequently compared with the reference land-cover 

map of 2008 for validation (Fig. 6). 

The predicted land-cover map of 2008 was evaluated 

using the kappa statistics: Kstandard (46%), Kno 

(61%), Klocation (51%) and Klocationstrata (51%) 
 

 

0     5000m 
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Fig. 6  Predicted (left) and reference (right) land-cover maps of 2008. 
 

generated from the Validate module in Idrisi Andes®. 

These values are found to fall within the standard 

values suggested by Monserud and Leamans [32] in 

that kappa statistics of 75% or greater show a very 

good to excellent classifier performance (including 

prediction), while a values less than 40% are poor (40% 

to 75% being standard).  

Based on the above suggestions of Monserud and 

Leamans [32], the model can be said to be an 

acceptable (although not excellent) prediction; it has 

already been explained that the land-cover changes do 

not exhibit stationarity. Reasons for the failure to 

achieve an excellent prediction can also be attributed to 

inadequate sources used for classification during the 

modelling process and also the contiguity filter applied. 

The maps and the contiguity filter have a great 

influence on the results of the model.  Markov chain 

analysis predicts the future land-cover patterns only on 

the basis of known land-cover patterns of the past [19, 

33]. Logically Markov chain analysis used to predict 

the 2008 land-cover map based on 1986-2002 

land-cover maps could not incorporate new factors, 

such as the unexpected flooding of and spilling from 

tailing ponds in 2006 and 2007 which influenced land 

cover change between 2002 and 2008. Thus the 

discrepancies between the predicted and reference 

land-cover maps of 2008 revealed a less than excellent 

outcome.  

4.7 Predicted Land-cover Map 

The land-cover map for 2020 was predicted using 

the 1986 and 2008 land-cover maps in the same way 

and assumed that the transmission mechanisms stayed 

the same. The transition probability matrix generated is 

shown in Table 6 and the resulting 2020 predicted 

land-cover map is shown in Fig. 7. The diagonal values 

in bold represent the probability each of the land-cover 

classes has of remaining unchanged for the twelve 

years (2008-2020).  

Table 6 reveals that in the twelve years (2008-2020), 

built-up areas will increase at the expense of farmland 

by 6.7% and farmland in turn, will increase at the 

expense of rangeland and forestland by 45.0% and 

2.1%, respectively. In addition, mine sites and barren 

land are expected to increase at the expense of both 

each other and other classes. Mine sites are expected to 

gain by 22.7% from barren land, and barren land to 

gain by 7.2% from mine sites over the twelve year 

period.  

Land-cover change that is expected in the next 

twelve years (2008-2020) is shown in Table 7. It is 

evident from the table that all the land-cover classes 

except rangeland and forestland are expected to be 

expanding, with farmland and built-up areas 

experiencing a gain of about 3.4% and 1.6%, 

respectively.  

5. Conclusions 

This study used the integration of earth observation, 

GIS and Stochastic Modelling to analyse and quantify 

land-cover changes (in terms of the amount, rate, trend 

and location) that have occurred between 1986 and 

2008, in Obuasi. The area has witnessed extensive 

land-cover change, with a 2% annual rate of change.  
 

Table 6  Transition probability matrix between 2008 and predicted 2020. 

Class 
2008  

built-up areas 

2008  

mine-sites 

2008  

tailing ponds 

2008  

barren land 

2008  

forest-land 

2008  

farmland 

2008  

range-land 

2020 built-up areas 0.6746 0.1434 0.0077 0.0813 0.0023 0.0668 0.024 

2020 mine sites 0.2625 0.5105 0 0.227 0 0 0 

2020 tailing ponds 0.1667 0.1667 0 0.1667 0.1667 0.1667 0.1667 

2020 barren land 0.2515 0.0724 0.0267 0.2909 0.0216 0.13 0.207 

2020 forestland 0 0 0 0 0.5302 0.0637 0.406 

2020 farmland 0.0606 0 0.0016 0.033 0.0207 0.4345 0.4496 
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2020 rangeland 0.0152 0.006 0.0093 0.0379 0.0414 0.2519 0.6383 

 

 
Fig. 7  2020 predicted land-cover map. 
 

Table 7  Table showing the predicted change between 2008 and 2020. 

 2008 Area (ha) 2008 Area (%) 2020 Area (ha) 2008 Area (%) Net change (%) Annual rate of change 

Built-up areas 4,357.71 6.32 5,483.88 7.95 1.63 0.14 

Mine sites 1,045.98 1.52 1,659.42 2.41 0.89 0.07 

Tailing ponds 359.82 0.52 481.86 0.70 0.18 0.01 

Barren land 2,960.73 4.29 3,420.81 4.96 0.67 0.06 

Forestland 8,038.53 11.65 6,252.21 9.06 -2.59 -0.22 

Farmland 14,749.11 21.38 17,093.43 24.78 3.40 0.28 

Rangeland 37,470.06 54.32 34,590.33 50.14 -4.17 -0.35 

Total 68,981.94 100.00 68,981.94 100.00   
 

The period 2002-2008 supported most rapid change, 

with an annual rate of change of 5.4%. The extent of 

the built-up areas and mine sites has increased, 

indicating increasing human pressure on the land. 

Forestland has decreased considerably (7%) within the 

twenty-two year period, but, the rate at which it 

decreased, stabilized within the period of 2002-2008. 

The application of Landsat multi-temporal images to 

identify land-cover types in the study area was 

executed successfully and provided an inexpensive 

means to detect land-cover changes, though the 

accuracy assessment for the 2008 image indicated 

slightly sub-standard results-attributed to the use of 

2004 aerial photographs for ground truth.  
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The Markov Chain analysis used in this study 

predicted a likely land-cover map for 2020. The 

prediction revealed a continuous increase of built-up 

areas, mine sites and farmland at the expense of 

forestland and rangeland. Our next task is expected to 

involve a 2012 check on the predictions, and if this 

validates our Markov Chain analysis, the predicted 

map produced in this study, for 2020, can be used, with 

greater confidence, by decision-makers protecting 

fragile areas (forest land) and strategic planners 

managing access to such areas. 
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