

McIlroy, Ross and Sventek, Joseph (2010) Hera-JVM: a runtime system for
heterogeneous multi-core architectures. In: ACM international conference
on Object oriented programming systems languages and applications, 17-21
October 2010, Reno/Tahoe, NV, USA.

http://eprints.gla.ac.uk/43100/

Deposited on: 18 November 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296085882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.gla.ac.uk/43100/

Hera-JVM: A Runtime System for
Heterogeneous Multi-Core Architectures

Ross McIlroy ∗

Microsoft Research Cambridge

rmcilroy@microsoft.com

Joe Sventek

University of Glasgow

joe@dcs.gla.ac.uk

Abstract
Heterogeneous multi-core processors, such as the IBM Cell
processor, can deliver high performance. However, these
processors are notoriously difficult to program: different
cores support different instruction set architectures, and the
processor as a whole does not provide coherence between
the different cores’ local memories.

We present Hera-JVM, an implementation of the Java
Virtual Machine which operates over the Cell processor,
thereby making this platforms more readily accessible to
mainstream developers. Hera-JVM supports the full Java
language; threads from an unmodified Java application can
be simultaneously executed on both the main PowerPC-
based core and on the additional SPE accelerator cores. Mi-
gration of threads between these cores is transparent from
the point of view of the application, requiring no modifica-
tion to Java source code or bytecode. Hera-JVM supports
the existing Java Memory Model, even though the underly-
ing hardware does not provide cache coherence between the
different core types.

We examine Hera-JVM’s performance under a series
of real-world Java benchmarks from the SpecJVM, Java
Grande and Dacapo benchmark suites. These benchmarks
show a wide variation in relative performance on the dif-
ferent core types of the Cell processor, depending upon the
nature of their workload. Execution of these benchmarks on
Hera-JVM can achieve speedups of up to 2.25x by using
one of the Cell processor’s SPE accelerator cores, compared
to execution on the main PowerPC-based core. When all
six SPE cores are exploited, parallel workloads can achieve
speedups of up to 13x compared to execution on the single
PowerPC core.

Categories and Subject Descriptors C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Heterogeneous (hy-
brid) systems; D.3.4 [Programming Languages]: Proc-
essors—Run-time environments.

General Terms Design, Languages, Performances.

∗ Work performed while at the University of Glasgow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
Commodity microprocessors are providing increasing num-
bers of cores to improve their performance, as issues such as
memory access latency, energy dissipation and instruction
level parallelism limit the performance improvements that
can be gained by a single core. Current commodity multi-
core processors are symmetric, with each processing core
being identical. This kind of architecture provides a simple
platform on which to build applications, however, a Hetero-
geneous Multi-core Architecture (HMA), consisting of dif-
ferent types of processing cores, has the potential to provide
greater performance and efficiency [1, 6].

There are two primary ways in which an HMA can im-
prove performance. First, heterogeneous cores allow special-
isation of some cores to improve the performance of particu-
lar application types, while other cores can remain more gen-
eral purpose, such that the performance of other applications
does not suffer. Second, an HMA can also enable programs
to scale better in the presence of serial sections of a paral-
lel workload. Amdahl’s law [4] shows that even a relatively
small fraction of sequential code can severely limit the over-
all scalability of an algorithm. A HMA can devote silicon
area towards a complex core, on which sequential code can
be executed quickly, and use the rest of its silicon area for
a large number of simple cores, across which parallel work-
loads can be scaled. This enables an HMA to provide better
potential speedups compared with an equivalent symmetric
architecture when Amdahl’s law is taken into account [8].

However, this potential for higher performance comes at
the cost of program complexity. In order to exploit an HMA,
programmers must take into account: the different strengths
and weaknesses of each of the available processing cores;
the lack of functionality on certain cores (e.g., floating point
hardware or operating system support); potentially different
instruction sets and programming environments on each of
the core types; and (often) a non-coherent shared memory
system between cores of different types.

If mainstream application developers are to exploit HMAs,
they must be made simpler to program. High level virtual
machine based languages, such as Java, present an opportu-
nity to hide the details of a heterogeneous architecture from
the developer, behind a homogeneous virtual machine inter-
face.

205

This paper introduces Hera-JVM, a Java Virtual Machine
(JVM) which hides the heterogeneous nature of the Cell
multi-core processor behind a homogeneous virtual machine
interface. The Cell multi-core processor is a particularly
challenging environment on which to develop applications,
due to cores with different instruction set architectures and a
non-coherent memory subsystem.

Hera-JVM supports the full Java language1; unmodified
Java applications can be executed across both the Cell pro-
cessor’s main PowerPC-based core and the additional SPE
accelerator cores. Migration of threads between core types
is handled transparently from the point of view of the ap-
plication and does not require application source code to
be modified. Hera-JVM uses a Just-In-Time (JIT) compiler
to generate machine code for the disparate instruction sets
of these two core types on-demand. Threads running on ei-
ther core type can invoke native methods, dynamically allo-
cate memory, have it recovered by GC, and synchronize us-
ing shared-memory data structures (consistent with the Java
Memory Model [10]), even though the hardware does not
provide hardware cache coherency.

This paper builds upon the work presented in [13], but
describes a much more complete runtime system that can
support real-world Java applications as well as providing a
much more thorough evaluation of this runtime system.

The main contributions of this work are:

• The creation of the first JVM implementation to support
execution of real-world Java applications across hetero-
geneous processing core types with different instruction
sets architectures (ISAs) and provide transparent migra-
tion of threads between these core types.

• A software caching mechanism that provides efficient
access to the non-coherent memory subsystem of the
Cell processor by employing high-level type information
embedded in Java bytecode.

• Demonstration of real-world Java workloads that exhibit
up to a 2.25x speedup when executed on one of the Cell
processor’s SPE accelerator cores, compared to execution
on its main PPE core, and up to a 13x speedup if scaled
across all 6 SPE cores.

Section 2 introduces the Cell processor in more detail,
outlining the main features of its architecture that make ap-
plication development difficult. Section 3 presents the de-
sign principles around which Hera-JVM is based and dis-
cusses the problems that the Cell processor’s unusual ar-
chitecture presents in achieving these principles. Section 4
describes the implementation of these design principles in
Hera-JVM for the Cell processor. Section 5 expands upon
this implementation overview to provide more in-depth de-
tails of the features which are required for Hera-JVM to

1 The only deviation from the Java Runtime Specification is that it uses
a different floating point rounding mode (rounding towards zero instead
of rounding to nearest). This is due to lack of hardware support on one
of the Cell processor’s cores types. It only affects the least significant bit
of single precision flotation point calculations; the more commonly used
double precision format is unaffected.

SPE SPE SPE SPE

SPE SPE SPE SPE

PowerPC

(PPE)
Element Interconnect Bus Memory

(a) The architecture of the Cell processor.

DMA
Transfer
Engine
(MFC)

SPE
Core
(SPU)

SPE

Main Memory

Control Flow

Data Flow

Private
Local

Memory

(b) An SPE core’s memory subsystem.

Figure 1. The Cell Processor.

support real-world Java applications on the Cell processor.
Hera-JVM’s performance under both synthetic and real-
world Java benchmarks is presented in Section 6. Section 7
contrasts Hera-JVM with relevant related work. Finally, Sec-
tion 8 concludes and discusses possible future directions for
this work.

2. Background: The Cell Processor
The Cell processor [6, 9, 17] was developed primarily
for multimedia applications, specifically the game market,
where it is the main processor used by the Sony Playsta-
tion 3. It is also being actively employed in a variety of other
areas, such as scientific and high performance computing.

The Cell processor contains two different processing
core types: a single Power Processing Element (PPE) core;
and eight Synergistic Processing Engine (SPE) cores (Fig-
ure 1(a)). Both core types are dual issue, in-order architec-
tures, running at 3.2 GHz, however, they have substantially
different architectures. The PPE is a conventional 64-bit
PowerPC-based core, supporting the Linux operating system
and any applications compiled for the PowerPC architecture.
The SPEs are designed to perform the bulk of the computa-
tion on the Cell processor. They have a unique instruction-
set, highly tuned for floating point, data-parallel workloads.
The SPEs do not run any operating system code, relying on
the PPE to perform operations such as page table updates or
file I/O.

The processing cores share access to external DRAM
memory through a circular ring-based Element Interconnect
Bus [2]. The PPE core has a two-level cache to reduce
data access latencies, with a 64KB L1 cache (split evenly
between data and instruction caches) and a 512KB L2 cache.

Unlike the PPE, the SPE cores do not have transparent
hardware caches for accessing main memory; instead, each
SPE contains 256KB of non-coherent, private, local mem-
ory. The processing elements of the SPEs can access only

206

this local memory directly. To access data in main memory,
an SPE must initiate a Direct Memory Access (DMA) trans-
fer to copy the data from main memory to its local memory.
It can then modify this data in local memory, but must initi-
ate another DMA transfer to write the results back into main
memory. Each SPE has an associated DMA engine, called a
Memory Flow Controller (MFC), that performs these data
transfers (Figure 1(b)). These DMA engines have virtual
memory support, therefore different threads of a single pro-
cess share a consistent view of the process’s virtual memory
address space whether running on the SPE or PPE cores.
However, data which has been copied to an SPE’s local
memory is not automatically kept consistent with the orig-
inal copy in main memory or any copies made by other SPE
cores, meaning cores do not automatically share a coherent
view of data.

These features, of heterogeneous core types and an un-
usual memory architecture, make developing efficient, or
even correct, applications for the Cell processor a challenge.

3. Two Architectures, One JVM
The aim of Hera-JVM is to abstract the Cell processor’s
challenging architectural features behind a more typical
symmetric multi-core virtual machine abstraction, whilst
still preserving the performance benefits provided by the
Cell processor’s heterogeneous cores. Hera-JVM provides a
conventional JVM interface to applications: the runtime sys-
tem can then schedule and migrate Java threads across the
heterogeneous core types of the Cell processor in a manner
that is completely transparent from the point of view of the
application.

The two core types provided by the Cell processor have
different instruction set architectures, and therefore require
different compiled machine code to execute the same Java
code. Hera-JVM exploits the fact that Java code is dis-
tributed in architecturally-neutral Java bytecode. This byte-
code is just-in-time compiled to a particular core-type’s ma-
chine code only if it is to be executed on that core type.

Hera-JVM allows transparent migration of Java threads
between these different core types. Whenever a method is
invoked, Hera-JVM can migrate the current thread’s execu-
tion to another core type for the duration of this method and
any methods which it calls. By only allowing migrations at
method invocations, there is a well defined point at which the
thread’s execution transfers from one core type to another.
This enables Hera-JVM to tailor a thread’s execution for the
core type on which it is executing, by for example, struc-
turing stack-frames differently for each of the core types
or performing inter-bytecode optimizations. Consequently,
Hera-JVM can exploit heterogeneous cores without having
to execute in a sub-optimal manner on one or more of the
core types; however, this does mean that a thread must mi-
grate back to its original core type once a migrated method
returns, since the method to which it will return is part-way
through its execution on the original core type.

To enable this form of seamless migration of threads be-
tween the different core types of the Cell processor, Hera-

JVM supports the full Java specification on both core types.
If an operation cannot be supported by a particular core type,
this limitation is hidden from the application by automati-
cally migrating the thread to a more capable core type for
the duration of the operation. Since migration is a relatively
expensive operation, Hera-JVM supports all of the core Java
operations (e.g., arithmetic, method invocation, object al-
location, thread synchronization and reflection) natively on
both core types. Only heavy-weight operations, such as file
opening and process creation, are limited to a particular core
type.

Hera-JVM must also hide the fact that the SPE cores
can only directly access their 256KB of private local mem-
ory, and must perform DMA transfers to access any data
in main memory. An SPE core can only execute machine
code that is resident in its local memory. Since most appli-
cations are likely to require more than 256KB of machine
code, Hera-JVM provides an efficient mechanism to auto-
matically cache code in an SPE core’s local memory as it is
required.

Similarly, data must reside in local memory before it can
be accessed by a thread executing on an SPE core. Hera-
JVM provides a software cache of recently accessed data
in each SPE’s local memory to limit the overhead of DMA
transfers of data between main memory and local memory.
However, since this local memory is private to the SPE core,
any changes made to this cached data will not be visible
to threads running on other cores. For Hera-JVM to sup-
port multi-threaded Java applications correctly, this software
cache must conform to the Java Memory Model [10], by
performing coherency operations at thread synchronization
points.

Section 4 describes how these design decisions were im-
plemented in Hera-JVM for the Cell processor. Section 5
expands upon this overview to provide more in-depth imple-
mentation details of features which are required for Hera-
JVM to support real-world Java applications on the Cell pro-
cessor.

4. Hera-JVM
Hera-JVM is based upon Version 3.0 of the JikesRVM [3]
JVM. JikesRVM is a full implementation of the JVM with
performance comparable to production JVMs (however,
Hera-JVM only supports the slower, non-optimizing base-
line compiler backend). It supports execution on the Pow-
erPC processor architecture, and can therefore execute Java
code on the PowerPC-based PPE core of the Cell processor
without any modification. Hera-JVM extends JikesRVM in
three main ways: (i) runtime system and compiler support
for the SPE cores; (ii) changes to the overall runtime sys-
tem to support simultaneous execution of a Java application
across two different architectures; (iii) support for migration
between the different core types of the Cell processor.

JikesRVM (and thus Hera-JVM) is a Java in Java virtual
machine, with the majority of the runtime system written in
Java. This confers a number of advantages in the design of
Hera-JVM. Given Java’s write once, run anywhere philoso-

207

Application

Java Library

Runtime System

Low Level

Assembly

PPC

Compiler

PPE Core

Low Level

Assembly

SPE

Compiler

SPE Core

Java Code

Assembly Code

Processing Core

Key

Figure 2. The structure of Hera-JVM. Much of Hera-JVM’s
runtime can be shared by both cores, given its Java in Java
design.

phy, this code is largely portable. Thus, other than a small
number of architecture-specific routines, the same runtime
system code is shared by both core types (Figure 2). This
approach extends the philosophy of hiding the architecture’s
heterogeneity right through application code, the Java Lib-
rary code and the majority of the runtime system’s code,
simplifying the runtime system’s design. This also improves
the runtime system’s maintainability; the fact that the same
code is shared by both core types reduces the likelihood of
introducing integration bugs and inconsistencies in shared
data structures.

Hera-JVM is a non-interpreting JVM; all application, lib-
rary and runtime Java methods are compiled to machine
code before being executed. Other than the subset of the run-
time system methods which are pre-compiled into the boot-
image, all Java methods are compiled just in time. Thus Java
code is distributed in architecturally-neutral Java Bytecode,
which will only be compiled for a particular core architec-
ture if it is to be executed by a thread running on that core
type. Since it is expected that most applications will exhibit
a partitioning between code which is best run on the PPE or
the SPEs, most methods will only ever be compiled for one
of the two core’s architectures. Thus, the compilation over-
head (both in time and memory requirements) of running an
application on an HMA, such as the Cell, need be little more
than running on a single architecture processor.

4.1 Compiling Java Bytecode for the SPE Cores
To execute Java code on the SPE cores of the Cell processor,
Hera-JVM requires a Java bytecode to SPE machine code
compiler and some low-level runtime system support code.
The low-level runtime system support code is the only part of
the Java runtime system which is kept permanently resident
in the SPE’s local memory (taking up less than 4KB of each
SPE’s 256KB of local memory). This low-level support code
deals with caching of data and code, and the lowest levels of
inter-thread synchronization and interrupt handling. The rest
of the Hera-JVM runtime system is written in Java and can
be cached into the SPE’s local memory as required like any
other Java method.

The remainder of this section describes the process by
which this compiler and runtime system support code en-
ables the SPE cores to execute Java code. A running example
of a simple Java method “sum()”, that calculates the total
of all the elements in a linked list, will be used to illustrate

i n t sum (Lis tNode n) {
i n t t o t a l = 0 ;

whi le (n != n u l l) {

t o t a l += n . v a l ;

n = n . n e x t () ;

}
re turn t o t a l ;

}
(a) Java Code

0 : i c o n s t 0
1 : i s t o r e 1
2 : a l o a d 0
3 : i f n u l l <21>
6 : i l o a d 1
7 : a l o a d 0
8 : g e t f i e l d <va l>
1 1 : i a d d
1 2 : i s t o r e 1
1 3 : a l o a d 0
1 4 : i n v o k e v i r t <next>
1 7 : a s t o r e 0
1 8 : go to <2>
2 1 : i l o a d 1
2 2 : i r e t u r n

(b) Resulting Bytecode

Figure 3. Example Java method - summing a linked list.

different aspects of this process. Figure 3 shows the source
code for this method (left), and the resulting Java bytecode
(right). Hera-JVM does not require any changes to the Java
source-to-bytecode compiler or to the bytecode format.

A Java method, such as sum() in Figure 3, is compiled
into a block of machine code that can be executed natively
by an SPE core. Fundamental bytecodes, such as arithmetic
and branch operations, can be translated directly into one
or more SPE machine instructions by the compiler. More
complex bytecodes, such as the new bytecode used for ob-
ject allocation, are translated into calls to special runtime
system entry points. These runtime system entry points are
special Java methods that perform the required operation,
then return execution to the original method. Since this run-
time system code is shared by both the PPE and SPE cores,
these complex bytecode operations can essentially be lever-
aged from the existing JikesRVM implementation. Similarly,
complex runtime system components, such as file handling,
class loading or thread scheduling, can be supported on ei-
ther core type with little modification.

As a stack-oriented language, Java bytecodes implicitly
operate on variables located on an operand stack. For exam-
ple, the iadd bytecode in Figure 3 pops two integer values
off the operand stack, adds them, and pushes the result back
onto the operand stack. Since almost every bytecode pushes
or pops values from the stack, it is important that these op-
erations are efficient.

A thread’s stack resides in main memory (so that it can
be accessed by any core upon which it is scheduled), how-
ever, having SPE cores operate directly on this stack in main
memory would be incredibly inefficient, due to their DMA-
based access to main memory. Therefore, the top portion of
the currently executing thread’s stack is held in the SPE’s lo-
cal memory to provide efficient stack access. Upon a thread
switch, a 16KB block at the top of the thread’s stack is
copied into a reserved portion of the SPE’s local memory.
Stack updates are performed on this local copy, which is
then written back to main memory when the thread is context
switched from this core.

208

Stack overflow checks are required when a method is
invoked to ensure that this method’s stack frame will not
cross the 16KB limit of the block held in SPE local memory.
If the stack does grow beyond this limit, the stack overflow
routine pages this block out to main memory, and pages in
the next 16KB of the thread’s stack.

Whilst accessing local memory on the SPE cores is much
more efficient than accessing main memory, it is compli-
cated by the SPE’s unusual instruction set. SPE registers are
128 bits wide, with instructions treating these 128 bits as a
vector of sixteen 8-bit, eight 16-bit, four 32-bit or two 64-
bit values, depending upon the operation. Hera-JVM only
ever uses the first vector slot, since Java has no in-built vec-
torization support. However, the SPE’s instruction set re-
quires that loads and stores from local memory are 128bit
aligned. Therefore, either each stack variable must be 128bit
aligned, wasting a considerable proportion of the valuable
local memory, or stack push and pop operations must shuffle
variables between the first vector slot and the variable’s orig-
inal alignment, making stack access inefficient. Hera-JVM
uses the second approach, of shuffling variables, however,
an optimization is employed to reduce its overhead. One of
the SPE’s registers is reserved to hold the 128-bits currently
at the top of the stack. Variables are shuffled in and out of
this register as required, but the values are only written to
the local memory stack when the stack pointer passes a 128-
bit boundary. This optimization reduces the overhead of pop
operations from two machine instructions to one instruction,
and the overhead of push operations from four instructions
to two.

A Java method can also store method arguments and
intermediate values in an array of variables known as locals.
For example, in Figure 3, the total variable is stored in
local number 1, and is accessed using the iload 1 and
istore 1 bytecodes.

Hera-JVM exploits the large register file provided by the
SPEs (each SPE core has 128 registers) to hold each local
variable in its own register. If a method has too many local
variables to fit in the available SPE registers, the additional
local variables are spilled to the method’s stack frame. The
registers holding local variables must be non-volatile across
method invocations, therefore code in each method’s pro-
logue saves the previous value of any local variable registers
the method might overwrite and then restores these values
when it returns.

4.2 Software Caching of Heap Objects
In addition to stack and local variables, which are private to a
method, Java bytecode can also access data in a shared heap
of object instances and arrays. In Figure 3 the sum method
accesses the val field of a ListNode object in the heap,
using the getfield bytecode.

Since the heap is shared between cores, it is located in
main memory. Therefore, before accessing data from the
heap (e.g., the getfield bytecode in Figure 3), an SPE core
must perform a DMA transfer of the data it wishes to access
from main memory into its private local memory. To reduce

heap data access latencies and limit the number of DMA
transfers required, Hera-JVM provides a software data cache
for SPE heap access.

Setting up a DMA operation to transfer data to and from
local memory is an expensive operation (about 30-50 cycles,
not including the data transfer itself). Therefore, an early
design decision of the software data cache was to transfer
large blocks of memory wherever possible. However, to limit
cache pollution, only data which is likely to be used in the
future should be cached. The high-level type information
preserved in Java bytecode provides the opportunity to meet
these two conflicting demands.

The getfield and setfield bytecodes access a single
field of an object. However, rather than caching just the field
that is being accessed, or a fixed size block around that field,
Hera-JVM exploits the fact that high level type information
is encoded in these bytecodes to cache the full object in-
stance. Subsequent accesses to any of the fields of this ob-
ject instance will result in a cache hit, and can be read di-
rectly from the cached local memory copy without requiring
further DMA transfers. This approach exploits object-based
locality of reference - i.e., the thread is likely to access other
fields in the same object instance.

Arrays are accessed using a different set of bytecodes
(iaload, iastore, etc). Array accesses can therefore be
cached in a different manner to object accesses. Array in-
stances are generally much larger than object instances, and
may be too large to fit in their entirety into the local memory
cache. Therefore, rather than attempting to cache entire ar-
ray instances, Hera-JVM caches arrays in 1KB blocks. Spa-
cial locality of reference is exploited by this scheme, with
neighbouring elements cached alongside the element being
accessed, on the assumption that they are likely to be ac-
cessed shortly.

When the SPE compiler encounters a bytecode that re-
quires accesses to data in the heap (e.g., getfield, iaload,
etc.) it generates inline machine code that checks if this ac-
cess hits the local memory cache and then performs the oper-
ation on this cached copy. In the case of a cache miss, execu-
tion traps to a cache miss handler, which is part of the SPE’s
permanently resident runtime system support code. Thus, the
fast path cache hit code is performed inline to reduce perfor-
mance overheads, whilst the more complex, but less used
cache miss code is kept out-of-line to reduce code bloat.

The data cache is structured as a small 1024-entry hash-
table resident in the core’s private memory (see Figure 4).
Each entry is either blank, or holds the main memory address
of an object instance or array block as a key, and the local
memory address of its cached copy as a value. A cache
lookup involves hashing the main memory address of the
object or array block which is being accessed using a simple
XOR folding hash (chosen due to its simplicity), which
provides an index into this hash table. If the entry at this
index is the same as the main memory address requested,
this access has hit the cache and the bytecode operation is
performed directly on the cached copy pointed to by this
entry. A cache lookup that results in a cache hit requires

209

0x3f42a58

0x41f26b0

0x27a980

...

0x02004640

0x40004240

0x1204980

...

Hash Index

Main Memory

Address

Local Memory

Address / Size

0

1

2

3

1022

1023
0x04000

Cache Data StoreCache Lookup Hash Table

Size Location

0x06000

...

...

Figure 4. Outline of the SPE data cache.

only 12 fast SPE machine instructions. Otherwise, a cache
miss has occurred and the data must first be pulled into local
memory.

On a cache miss, space is reserved for this object instance
in local memory, a DMA operation is set up to copy its data
into local memory, the hash table is updated with this cached
entry, and the thread blocks until the DMA copy completes.
No collision resolution is performed by this software cache
hash-table. A cache miss simply overwrites the hash-table
entry to reflect this newly cached element, thereby evicting
the previous element from the cache.

Operations which write to the heap (setfield, iastore,
etc.) must update both the cached data in local memory and
the original copy in main memory. Write operations update
the data in the local memory cache directly, then immedi-
ately initiate a DMA transfer to copy the object field or ar-
ray element which was modified to its original main memory
location (i.e., this software cache uses a write-through pol-
icy). Unlike the cache read operations, the DMA transfers
initiated by write operations are non-blocking; the thread
can continue executing while the DMA engine performs this
write to main memory concurrently. Threads do, however,
block on these write operations before reading data from
main memory to service a cache miss and when perform-
ing thread synchronization operations, to maintain memory
consistency. The process of maintaining a coherent heap
across multiple SPE’s software caches, as required by the
Java Memory Model [10], is discussed in Section 5.3.

4.3 Invocation and Caching of Methods
Code must also reside on the SPE’s local memory before it
can be executed. Since a Java thread is likely to execute more
code than can fit in an SPE’s local memory, a software-based
code caching scheme is used so that code can be transfered
into the SPE’s local memory, as required, on-demand.

In keeping with Hera-JVM’s approach of using DMA
to transfer large blocks of data wherever possible, Java
methods are cached in their entirety. When the SPE com-
piler encounters a method invocation bytecode, such as the
invokevirtual bytecode which calls the next() method
in Figure 3, this will be compiled into SPE machine code
which checks if this method is cached in local memory and,
if so, jump to the address of this cached copy. As with the
data cache, a cache miss will result in the thread’s execu-

tion trapping to a cache miss handler, located in the SPE’s
low-level runtime system support code.

Unlike the data cache, the code cache does not use a hash-
table to perform look-ups. A hash-table is not suitable as a
means of looking up a method because of the need to support
virtual method invocation for Java instance methods.

When an instance (as opposed to a static) method is
called, the actual method which is invoked depends upon
the type of the instance object upon which this method was
called. For example, if the object n in Figure 3 is a sub-
class of ListNode, then n.next() must invoke the sub-
classes implemention of the next() method, not ListNode’s
implementation. Therefore, the actual code that should be
invoked by the invokevirtual bytecode is unknown at
compile time; it must be inferred at runtime, based upon the
object instance’s type.

The standard method of supporting virtual method invo-
cation in a JVM is to include a pointer to a type informa-
tion block (TIB) in each object instance’s header. A single
TIB exists for every class loaded into the runtime system.
Each TIB contains an entry for each method declared by the
class, with each entry pointing to the code that implements
the method. The TIB is laid out such that inherited methods
are located at the same index in the sub-class’s TIB as in
the super-class’s TIB. By looking up the index of the virtual
method being invoked in the TIB of the object upon which
it is being invoked, the runtime system can find the actual
instance method which it should run for this virtual method
invocation.

Since TIB entries point to the machine code implement-
ing a method, Hera-JVM requires two TIBs for every class
– one which points to the PPE machine code and one which
points to the SPE machine code. To limit memory overheads,
Hera-JVM uses a two stage class-loading system. A class is
initially resolved for the PPE core, with only the PPE TIB
being created. If the class is referenced by code running on
the SPE core, it will then be resolved for the SPE core, which
will create the SPE TIB.

Hera-JVM exploits the fact that only a limited number of
classes will be resolved for the SPE core to simplify TIB
and method caching. A small (4KB) class table of contents
(TOC) resides in SPE local memory, with an entry for each
class that has been resolved for the SPE. Rather than a direct
pointer to the SPE TIB’s main memory address, each object
instance has an index to its class’s entry of this TOC in
its header (see Figure 5). Each TOC entry initially points
to the location of that class’s SPE TIB in main memory.
When a method is invoked on an SPE core, the appropriate
class’s TOC entry is read to locate the class’s TIB, which is
cached if necessary. When a TIB is cached, its TOC entry is
updated to point to this local memory copy, thus, subsequent
look-ups immediately know the location of the cached copy.
The required method is then looked up in the TIB, and if
necessary, cached in local memory, with the TIB entry being
updated to point to the cached method’s address.

An added benefit of this approach is that, while a direct
pointer to a class’s SPE TIB would require a full word to

210

0x31562350

0x4120

0x31562670

0x31528910

0x32595800

...
Class TOC

Object

ListNode

Person

Employee

Manager

Metadata ...

0x45563300

1290

0x6120

2314

...
ListNode TIB

getNext() Machine Code

Addr

Size

Addr

Size
getNext()

setNext()

Cached MethodsMethod Cache Meta-Data

Heap

0x31562350

1

21

PPE TIB Addr

SPE TOC Index

val field

ListNode objects

other fields ...

0x31562350

1

414

...

0x24546500

3

Tom

PPE TIB Addr

SPE TOC Index

name field

Employee object

other fields ...

Figure 5. The code cache data structures.

specify, a class’s TOC index only requires 10 bits in Hera-
JVM. Therefore, it can be accommodated in spare bits of
the object instance’s header, rather than having to reserve an
additional word in every object instance’s header. The object
instance headers do still contain a pointer to their PPE TIB,
so that the PPE code can perform virtual method invocation
in the usual manner; however, since the TOC index is hidden
in spare bits of the header, object instances are the same size
in Hera-JVM as they are in JikesRVM.

Static method invocations always invoke the same class’s
method (they are statically associated with the class, not a
particular object instance). These method invocations are
cached in the same manner as instance methods, the only
difference being that the class TOC index is supplied stat-
ically by the compiler, rather than being read dynamically
from an object instance’s header at runtime.

5. Implementation Details
A number of complexities arise when real-world applica-
tions are executed on the Cell Processor under Hera-JVM.
This section details some of the implementation choices
made in the creation of Hera-JVM to deal with these chal-
lenges.

5.1 Variable Sized Cache Elements
Both the data and code software caching schemes used by
the SPE cores are unusual in that the elements being cached
are not of a fixed size. In order to service a cache miss, Hera-
JVM’s runtime system must be made aware of the size of the
cache element which is to be cached, so that it can transfer
it in its entirety the SPE’s local memory. For object instance
accesses, type information embedded in the getField and
setField bytecodes enables the runtime system to infer,
at compile time, the type, and thus the size of the object
instance being accessed. Hera-JVM embeds this information
into the machine code that it compiled for the SPE cores,
such that the object’s size can be passed automatically to
the cache miss handling routing. Array accesses cache either
a full block, of 1KB in size, or, if accessing the last block

in the array, a block sized to fit the remainder of the array.
The length of an array is held in its header. The cache miss
handling code checks this length when caching a block to
discover if this is the last block of the array and, if so, what
size this last block should be. Finally, the size of a method’s
machine code is known once it has been compiled. This
size is included in the class’s TIB, next to the pointer to the
method’s machine code (see Figure 5), where it can be easily
accessed by the code cache miss handler.

One issue with this approach relates to Java’s subtyp-
ing inheritance abilities. An object access bytecode (e.g.
getfield or setfield) has a particular type associated
with the operation. However, the actual instance object ac-
cessed at runtime may be a subtype of the type associated
with the bytecode. This subtype may have more fields than
the supertype referred to by the bytecode, resulting in its in-
stance objects being larger. Since the caching system uses
the type associated with the bytecode to infer the size of the
object being cached, it will not cache the full subtype ob-
ject instance, only those fields associated with its supertype.
This is not a problem for the execution of this specific byte-
code, since it is accessing one of the fields associated with
the supertype. However, subsequent accesses to this object
instance will hit this cached copy directly. If they are trying
to access one of the subtype fields, invalid data will result
from reading from this cached copy, since it does not con-
tain any of the subclass data. To avoid this, Hera-JVM stores
the size of the data it has cached alongside the local memory
address of the cached object in the data cache’s hash table.
Since the local memory has a small address space (18 bit
address width), the object’s size and cached local memory
address can fit in a single 32 bit word entry of the hash ta-
ble. When a cache hit occurs, the size of the cached data is
compared to the expected size of the object type being ac-
cessed. If the cached data is not large enough, the object is
re-cached.

5.2 Returning from a Method
When a method returns, execution should return to the point
in the caller method immediately after the callee method
was called. Typically, this is supported by placing a return
address on the stack; a return statement will branch to this
return address to resume execution of the caller method.
However, code executed by an SPE core is dynamically
cached in local memory. Therefore, a simple return address
is not sufficient; the caller method may no longer be at the
same location in local memory when execution returns to it
(it could have been evicted from the cache or re-cached at a
different location).

Instead, Hera-JVM places a return offset on the stack
when code running on an SPE core invokes another method.
The value of this return offset is the distance of the invoking
instruction from the start of the caller method. Alongside
this return offset, the caller’s stack-frame also contains a
method ID, which specifies both the TOC and TIB indexes
necessary to look up this method in the code cache. When
the callee method returns, it ensures the caller method is

211

cached by performing the same look up process as if it
were invoking the method, using the indices specified in
the method ID in its caller’s stack-frame. Adding the return
offset on the caller’s stack-frame to the start address of this
cached method provides the callee method with an absolute
return address, to which it can jump in order to resume
execution of the caller method.

5.3 Synchronization and Coherence
In a multi-threaded Java application, the same object could
be accessed by multiple threads simultaneously. Conse-
quently, as well as residing in the main memory heap, mul-
tiple copies of this object could reside in different SPE local
memory caches. In order to correctly execute multi-threaded
Java applications, some form of synchronization is required
to keep the data in these cached copies consistent with main
memory. This is usually performed by a hardware cache
coherence system, however, the Cell processor does not pro-
vide hardware cache coherency for SPE local memory, and
providing a software coherence protocol which broadcasts
every object update to all copies of the object’s data would
cripple the SPEs’ performance. Fortunately, it is not neces-
sary to keep all of the replicas of a given object consistent
all the time. This is because the Java Memory Model [10]
allows data to be cached in a non-coherent manner, as long
as these inconsistencies are resolved before thread synchro-
nization points.

Java’s memory model is based upon a notion of happens-
before relationships. Synchronization operations, such as
lock acquire/release operations and volatile field accesses,
impose a happens-before order on program execution. A
read operation is not allowed to observe a write which hap-
pens after this read in the happens-before partial order (i.e.,
it should not see any writes which happen after a subsequent
synchronization point). Similarly, the read can observe a
write w, as long as there was no intervening write w′, where
w happened before w′ in the happens-before partial order
(i.e., the thread does not see a value which was overwritten
before the previous synchronization point).

In virtual machine implementation terms, the effect of
this model is to allow heap data to be cached by a thread
(i.e., be inconsistent with the globally accessible original
copy in main memory), as long as these cached copies are re-
synchronized with main memory at thread synchronization
points. After performing a lock acquire operation, a thread
must see all heap updates which happened-before this lock.
Before releasing this lock, the thread must ensure that any
updates it has made to heap variables are visible to any
thread which later synchronizes on this same lock object.

In a traditional JVM implementation, this model requires
that (for instance) writes to a field do not remain in a pro-
cessor’s registers when releasing a lock: the writes must be
made back to memory and, on some architectures, a low-
level memory fence operation must be performed before re-
leasing the lock. In the case of the SPE core this means fully
propagating all that thread’s writes to main memory before
releasing the lock, due to the lack of cache coherence on the

SPE cores. This state is also flushed to main memory when-
ever a thread is context switched or migrated off of the SPE
core, to ensure the changes it has made are visible to the core
on which it will next be executed.

Hera-JVM ensures this by completely purging an SPE’s
data cache whenever the thread it is executing locks an
object or reads a volatile field. Before unlocking an object
or writing to a volatile field, the thread is blocked until all of
its DMA write transfers have been completed.

The Java memory model also requires synchronization
order consistency, where the order of synchronization op-
erations and volatile variable accesses is sequentially con-
sistent across threads. These operations must, therefore, be
performed atomically.

Volatile field accesses are restricted to reading or writ-
ing from a single field, which can have a maximum size of
8-bytes. DMA transfers, performed by an SPE core’s mem-
ory flow controller (MFC), that are less than 16-bytes op-
erate atomically on the Cell processor. Therefore, volatile
field accesses can be treated like normal field accesses by
Hera-JVM, with the additional constraint that: the SPE local
memory cache is flushed before a volatile read is performed
(which is also required for happens-before consistency); and
the thread blocks on volatile writes to ensure they have been
written to memory before continuing (unlike non-volatile
field write operations, which are non-blocking).

To perform lock and unlock operations atomically, a
compare-and-swap type of operation must be used. The
SPE MFCs provide two blocking DMA operations, called
GETLLAR and PUTLLC, which can be used to build an atomic
compare-and-swap operation. The GETLLAR operation per-
forms a blocking read from a memory address, whilst simul-
taneously setting a reservation on this address. The PUTLLC
operation conditionally writes to a memory address, if the
processor still holds a reservation on this address, and re-
turns a success or failure notification. If another core writes
to the memory address between the GETLLAR and PUTLLC
operations, the reservation will be lost and the PUTLLC op-
eration will fail. Thus, an SPE core can use these operations
to perform an atomic (from the point of view of other cores)
compare-and-swap operation to lock or unlock objects.

By conforming to the Java Memory Model, any cor-
rectly synchronized multi-threaded application will exhibit
sequentially consistent behaviour and run correctly under
Hera-JVM. Hera-JVM sizes DMA write operations such
that only the single field or data element being operated upon
is overwritten. Therefore, even if neighbouring elements are
protected by different locks, Hera-JVM will provide sequen-
tially consistent behaviour. Finally, since all writes are per-
formed in-order by code on the SPE cores, Hera-JVM con-
forms to the no out of thin air values property in the presence
of data races, as required by the Java Memory Model.

5.4 Scheduling and Thread Switching
To support multi-threaded Java applications, Hera-JVM
must schedule the execution of multiple Java threads onto
each of the available processing cores. The version of

212

JikesRVM upon which Hera-JVM is based (version 3.0) uses
a green thread model to schedule Java Threads. This model
maps multiple Java threads to a single OS thread, with the
runtime system performing user level scheduling of the Java
threads, rather than the underlying operating system.

JikesRVM uses an m-to-n threading model, with the run-
time system starting an OS thread for each processing core
and pinning its execution to this core. Thus only a single OS
thread (known as a virtual processor) executes Java code
on a particular processing core, on behalf of different Java
threads. When a Java thread performs a blocking operation
or a timer tick event occurs, the virtual processor’s execu-
tion traps to runtime system scheduling code. The runtime
system scheduler selects another Java thread from the virtual
processor’s run-queue and morphs its identity from the pre-
vious Java thread to this new Java thread. Thus, the operat-
ing system is not involved in the scheduling of Java threads
at all; it is only involved in sharing the processing core’s
execution between the JikesRVM virtual processor and any
other processes running on this processing core.

Since the SPE cores do not run an operating system, code
executes bare-metal, with no OS level support for multi-
threading. Thus, this green thread model is a natural fit for
the creation of Java threading on SPE cores in Hera-JVM.
A single virtual processor thread of execution is run bare-
metal on the SPE core. This SPE virtual processor employs
the same runtime system scheduling code as the PPE core to
schedule Java threads. No OS level scheduling support need
be created to support threading on the SPEs.

5.4.1 SPE Virtual Processor Initialisation
Hera-JVM initialises each SPE core by having the SPE ex-
ecute a specially written boot-loader program, using the lib-
spe2 library provided by IBM. This boot-loader is written in
C so that it can be supported by libspe2. It initialises some re-
served registers used by the SPE runtime system, then copies
the low-level, out-of-line, runtime system code (used to pro-
vide code and object caching, as well as other services such
as interrupt handling) into its local memory. The boot-loader
then traps to this out-of-line code to cache and invoke the
Java entry function of the SPE runtime system (overwriting
the C boot-loader code in the process).

The Java entry function performs some additional ini-
tialisation to set-up the SPE core’s virtual processor data-
structures. It then invokes the scheduling code to find a
Java thread which it can execute. Initially, only a pre-built
idle thread will be runnable on this SPE virtual processor.
The idle thread does nothing other than yield, to enable the
scheduling of a useful thread. After a given number of yields,
it puts the core to sleep, by performing a blocking read on
an inter-core signalling channel. To wake this core, another
thread will send a signal through this channel to wake the
core, after placing a thread in its run-queue or (in the case of
the PPE core) migrating a thread to the SPE core.

5.4.2 Scheduling Mechanism
Each virtual processor (whether PPE or SPE) has its own
run-queue of Java threads. It schedules these threads for

execution in a round-robin manner, with each thread running
for a full scheduling quantum or until it blocks (e.g., on an
I/O operation).

When a virtual processor is making a scheduling de-
cision, it checks whether it has more threads in its run
queue than the other virtual processors. If so, it will per-
form load balancing by transferring some threads to another
virtual processor’s run-queue. This load balancing is only
performed by virtual processors running on the same core
type (i.e., SPE to SPE or PPE to PPE, but not SPE to PPE or
PPE to SPE). The thread migration mechanism, described in
Section 5.4.5, must be used to transfer a thread to a different
core type.

5.4.3 Context Switching Mechanism
The process of context switching a virtual processor’s exe-
cution to a different Java thread is highly architecture depen-
dent. The scheduling code calls a magic method to perform a
context switch. This magic method is compiled directly into
inline context switching machine code, specific to the core
type to which it is being compiled.

To perform a context switch on an SPE core, the currently
executing thread’s state must be saved and the new thread’s
state restored onto the core. This involves the context switch
code saving all non-volatile registers to an array associated
with the executing thread. Reserved registers, such as the
frame pointer and the top of stack register are also saved in
this array. The thread’s current method ID and offset is saved
onto the stack as if a method was being invoked. The stack
block, currently cached in the SPE’s local memory, is then
written back to the thread’s stack in main memory.

To restore the new thread’s context onto this core, the
process is reversed. The reserved and non-volatile registers
are set to those values which were saved in this new thread’s
register array when it was last swapped out. A block at the
top of this new thread’s stack is loaded onto the SPE’s local
memory stack area. The context switch code then performs a
process similar to a method return, using the method ID and
offset saved on this new thread’s stack when it was swapped
out. This ensures that the method which was being executed
by the thread when it was last executing is cached in local
memory. Execution of the thread then resumes at the correct
point of this method.

5.4.4 Timer Interrupts
To implement pre-emptive scheduling, the scheduler must
be able to interrupt the execution of a Java thread. SPE cores
have a simple hardware interrupt mechanism which can be
employed to provide timer interrupts and enable pre-emptive
scheduling.

An SPE core can be set up to asynchronously transi-
tion to interrupt handling code whenever a particular set of
hardware events occurs. One of the hardware events which
can cause an SPE interrupt is an incoming signal on the
SPE’s inter-core signalling channel. Therefore, to provide
SPE timer interrupts, a thread, running on the PPE core, sig-
nals each SPE core every 10ms.

213

The SPE interrupt handler saves the core’s context and
processes the hardware signal which caused the interrupt. As
well as handling timer interrupts, the interrupt handler main-
tains hardware controlled data-structures, such as a hard-
ware decrementer used for low-level timing information. If a
scheduling operation should be performed during this inter-
rupt, the interrupt handler then invokes the scheduler’s entry-
point method.

A number of runtime system operations must be com-
pleted in their entirety, without being pre-empted by an-
other thread. Many low-level operations, such as updating
a thread’s stack frame pointer or transferring data from main
memory, cannot be completed atomically under the SPE’s
unusual instruction set. Disabling and then re-enabling in-
terrupts around all these low-level operations would be a
considerable overhead, as well as being difficult to maintain.
Instead, Hera-JVM explicitly checks for an interrupt event
at specific points in a method’s execution. The SPE com-
piler inserts a branch on external condition instruction into
method prologues and loop branches. If an interrupt event is
pending, this instruction triggers the interrupt handling code,
otherwise it does nothing. Checking for interrupt events on
loop branches, as well as method prologues, ensures that
only a small finite amount of time will pass between a timer
interrupt being fired, and the interrupt handler running.

Some higher level runtime system operations must also
be non-preemptible. For example, runtime system methods
that deal with thread scheduling or heap allocation should
not be pre-empted. Such methods have been annotated with
an @Uninterruptable annotation by JikesRVM to enable
them to be treated specially. To ensure that these methods
are not pre-empted, the SPE compiler simply does not in-
clude explicit interrupt check instructions when compiling
methods which are tagged with the @Uninterruptable an-
notation.

5.4.5 Migration between Core Types
Hera-JVM supports migration of Java threads between the
PPE and SPE cores to enable an application to exploit both
the core types available on the Cell processor. This migration
process is transparent from the point of view of the applica-
tion; no changes in application code are required to enable
the application to be migrated between core types. The in-
vocation of any Java method (other than those marked as
@Uninterruptable) can act as a migration point. A mi-
gration can be triggered either dynamically by Hera-JVM’s
scheduler or explicitly by invocation of a method that is an-
notated with a @RunOnSPECore or a @RunOnPPECore anno-
tation. The experiments presented in this work use explicit
annotations to trigger migration; future work will examine
automatic migration triggered by the scheduler guided by
runtime monitoring of a program’s behaviour.

If a method is to trigger a migration, it is invoked in the
normal manner, however, code in its prologue causes the
thread to trap to migration support code. The migration sup-
port code (executing on the original core type), will package
the arguments of the migrating method and, if necessary, JIT

compile this method for the core type to which the thread is
being migrated. It then places the migrating thread on a per-
core type migration queue when performing a context swap,
rather than inserting it back into its own virtual processor’s
run queue. During scheduling operations, each virtual pro-
cessor will periodically check the migration queue associ-
ated with its core type. Any threads it finds will be removed
from the migration queue to be added to its own run queue,
thus migrating the thread to a virtual processor running on
the appropriate core type.

When a virtual processor pulls a thread off the migration
queue, the migrating thread’s current stack-frame is laid out
for the other core type, from which it migrated. Therefore,
before this thread is added to the virtual processor’s run
queue, a stack-frame for this core type is added to the end
of the thread’s stack. This synthetic stack-frame causes the
thread to start executing at a migration entry-point method
when it is scheduled. The migration entry-point method will
unpack the parameters which were passed to the migrating
method, then invoke the appropriate method using Java’s
reflection mechanism.

The thread continues to execute on this new core for
the duration of this migrated method and the whole tree of
methods which it calls (i.e., to migrate a thread for the entire
duration of its execution, the thread’s run() method can be
migrated). Of course, a subsequent method invoked by this
thread could cause it to migrate back to the previous core
type using the same mechanism.

Once a thread returns from a migrated method it must re-
turn to its original core type. This is required by Hera-JVM
because the frames below this point on the stack are for-
matted for the core type on which it was originally execut-
ing. To return to the original core type, the migration entry-
point method performs a return migration once the migrating
method it invoked has returned.

5.5 Stack Scanning
A number of runtime system processes must scan a thread’s
stack for information. For example, the garbage collector
must scan every thread’s stack for references to act as roots
in its tracing algorithm. Similarly, exception handling code
must also scan the stack to find the location of an appropriate
catch block to handle a thrown exception. If a thread has
been migrated to another core type, its stack will consist of a
mix of PPE and SPE stack-frames, which could confuse such
stack scanning code. For example, while the vast majority
of the garbage collector stack scanning code is architecture
neutral, the actual code which retrieves an object reference
from a stack-frame is necessarily architecture dependent,
since stack-frame layout varies between the core types.

The synthetic stack-frame, placed on a thread’s stack as
part of the migration process, acts as a marker to signal
the transition from stack-frames of one core type to those
of another. This enables these stack scanning algorithms to
transition between PPE and SPE stack-frame scanning code
as required. The garbage collector stack scanning code uses
these markers to switch between PPE and SPE stack-frame

214

walkers. The exception handling code, on the other hand, is
scanning the stack to find a suitable catch block in which to
resume the thread’s execution. Therefore, if it encounters a
migration marker it immediately migrates the thread to the
other core type, such that it is already on the correct core
type on which to resume the thread’s execution when it finds
a suitable catch block.

5.6 System Calls and Native Methods
The final implementation consideration is to provide support
for Java threads to call non-Java native code. Occasionally,
a method in the runtime system, the Java Library or a Java
application requires access to native code (e.g. to write to a
file or start an external process). Application and library code
can execute non-Java native code using the the JNI (Java
Native Interface). JikesRVM / Hera-JVM also provides a fast
system call mechanism for trusted code within the runtime
system to perform native system calls.

However, if a thread is running on an SPE core, there is
no underlying OS to support native methods. SPE cores must
rely on the PPE core to execute native code. In the case of a
JNI method, the thread is migrated to the PPE core for the
duration of the native method, using the process described
in Section 5.4.5. For fast system call methods, the SPE core
uses an inter-core mailbox channel to signal a dedicated
thread on the PPE core with an appropriate message. This
dedicated thread performs the required system call on the
SPE thread’s behalf, then signals the SPE with the result.

There is one set of native methods which is treated spe-
cially by Hera-JVM. The Classpath Java library, used by
HeraJVM, implements the Math class natively. This is done
purely for performance reasons; these methods do not re-
quire OS support. Thus, they do not need to be offloaded to
the PPE when invoked by a thread on an SPE core. Indeed,
since these methods perform complex floating point opera-
tions, they are likely to perform much better on the SPE core,
than on the PPE core. The SPE compiler treats these meth-
ods like intrinsic functions - directly generating the machine
code required to perform the required operation - rather than
offloading them.

6. Experimental Analysis
This section presents an experimental evaluation of Hera-
JVM under both synthetic micro-benchmarks and real-world
Java benchmarks. The aims of this evaluation are: to in-
vestigate the effectiveness of the mechanisms used to hide
the Cell processor’s heterogeneous architecture; to ensure
that unmodified real-world Java applications can be executed
correctly under Hera-JVM under the non-coherent memory
subsystem of the Cell Processor; and to characterise the per-
formance of each of the core types under different applica-
tion behaviours.

6.1 Experimental Setup
All the experiments in this section are performed on a
Playstation 3 (PS3), with 256MB of RAM, running Fedora
Linux 9. A 256MB swap space is located on the PS3’s rel-

atively fast video RAM, to minimise the paging overhead
incurred due to the small amount of RAM available on the
PS3. The Cell processor contains 8 SPE cores, however, only
6 of these SPE cores are available on the PS3 used in this
evaluation. All experiments compare single threaded perfor-
mance of code executed on a single SPE core to that on a
single PPE core, unless otherwise stated.

Hera-JVM currently supports only non-optimizing com-
pilation for the SPE cores, therefore, the baseline, non-
optimizing compiler was used to compile both PPE and SPE
machine code for these experiments2. Hera-JVM was built
with a stop-the-world, mark and sweep garbage collector.
This collector only runs on the PPE core and thus becomes a
scalability limitation if it runs for a considerable proportion
of a benchmark. There is no fundamental reason the garbage
collector cannot also execute on the SPE cores (it is writ-
ten in Java like the rest of the runtime system), however, this
support was not implemented in Hera-JVM for time reasons.

The execution times of these benchmarks were calculated
using the System.currentTimeMillis() method in the
Java library. Each experiment was repeated ten times, with
the average being reported and the standard deviation, be-
tween these runs, shown using error bars.

6.2 Micro-Benchmarks
The micro-benchmarks provided by the Java Grande bench-
mark suite [11] were employed to characterise the perfor-
mance of the various fundamental Java operations on both
core types under Hera-JVM3.

Figure 6 shows the difference in performance between
the core types for each of the micro-benchmarks included
in section one of the Java Grande Suite. There is clearly a
wide variation in capability between the PPE and SPE cores
depending upon the type of Java operation being performed.

Basic operations, such as arithmetic, primitive casting
and looping code, perform much better on the SPE core than
on the PPE core. Some of these operations, such as floating
point arithmetic and casting operations, are more than five
times faster on the SPE core. This was expected, given that
the SPE is highly tuned for floating point performance, how-
ever, even integer operations are significantly faster on the
SPE core. The fact that looping code performs better on the
SPE core, compared to the PPE core, was surprising. The
PPE core has branch prediction hardware that is not found
in the SPE cores. This should reduce pipeline stalls on the
PPE, thus increasing the performance of looping code. The

2 While the use of an optimizing compiler would significantly change the
absolute performance of the benchmarks presented in this section (using
the optimizing PowerPC backend of JikesRVM can yield up to an 8x
improvement in performance for some of the benchmarks on the PPE core),
we do not believe that it would significantly change the relative difference
in performance between the SPE and PPE cores. An initial investigation,
where three of the methods in a mandelbrot benchmark were manually
inlined, showed that this optimization could improved the performance of
code running on both the PPE and SPE cores by a similar margin (2.5x and
3.1x respectivly).
3 These experiments use version 2.0 of the sequential Java Grande suite,
available at http://www2.epcc.ed.ac.uk/computing/research_
activities/java_grande/sequential.html

215

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Arithm
etic

Assign:Locals

Assign:O
bjects

Assign:Arrays

C
ast

C
reate

Exception

Loop
M

ath
Invoke:Static

Invoke:Virtual

Invoke:Synchronized

S
p

e
e

d
u

p
 o

n
 S

P
E

 v
s
.

P
P

E

Figure 6. Relative performance of SPE and PPE cores un-
der the different Java Grande micro-benchmarks.

fact that the loop benchmark performs worse on the PPE
core may be explained by the shorter pipeline in the SPE
core, which reduces the impact on performance incurred by
pipeline stalls.

More complex operations, such as object creation, excep-
tion handling, mathematical calculations and method invo-
cation have roughly equivalent performance on both core
types. The benchmarks that perform worst on the SPE core
type are those which exercise the SPE’s software data and
code caches. Access to local variables (e.g. method param-
eters or variables on the thread’s stack) is very fast on the
SPE cores; however, accessing scalar objects or arrays on
the heap is considerably slower due to the costs involved in
setting up DMA transfers from main memory. Invocation of
synchronized methods also has a large overhead on the SPE
core, due to the SPE core’s software data cache having to be
purged before entering the synchronized method. This has a
high cost on the SPE core for two reasons: it will cause cache
misses for future heap accesses, which are much more ex-
pensive on the SPE core than the PPE core; and the software
cache on the SPE must manually purge the cache by over-
writing entries in the cache’s hash-table, whereas the PPE
does this in hardware.

6.2.1 Writing to the Heap
The tests in the assign benchmark of the Java Grande Suite
read from, and write to, memory in equal measure. To inves-
tigate whether reading from objects and arrays on the SPE
is equally as costly as writing to them, the benchmark was
modified so that the ratio of reads to writes could be var-
ied. Figure 7 shows the difference in performance between
the SPE and PPE cores, as this ratio is varied. This bench-
mark has a small enough working set that reads always hit
the cache, thus it only exercises the fast-path of the software
cache. At small write ratios, the SPE core actually outper-
forms the PPE. The SPE is almost 55% faster than the PPE
when reading from scalar objects and 40% faster when read-
ing from array elements. Thus, even though the SPE must
perform a software cache look-up operation for each ob-
ject or array access, the SPE core’s simple design and the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

S
p
e
e
d
u
p
 o

f
S

P
E

 v
s
.
P

P
E

Percentage of Writes over Reads

Scalar Object
Array

Figure 7. Performance as ratio of reads to writes is varied.

software cache’s lightweight implementation make these ac-
cesses faster than the hardware cache on the PPE core.

However, the SPE’s performance falls significantly as the
write ratio increases. Above a write ratio of between 10%
and 15%, the PPE core’s performance outstrips that of the
SPE. Writes are expensive on the SPE core because: a write-
through policy is used, meaning every write must be prop-
agated to main memory; and each write to main memory
requires a DMA transfer, which is relatively expensive to set
up. Informal experiments show that the use of a write-back
caching policy to enable batching of DMA transfers signif-
icantly improve write performance on the SPE core, how-
ever, implementing this write-back policy significantly com-
plicates the design of the cache. A complete implementation
of write-back caching is left as future work.

6.2.2 Data Caching Overheads
Each of the micro-benchmarks presented above has a small
enough working set that the data it accesses always fits in the
cache. To investigate the overhead of data caching, a micro-
benchmark was devised in which the size of the program’s
data working set could be varied. This benchmark reads
from, and writes to, randomly selected elements of an array.
The size of the array can be varied to alter the program’s
working set size and affect its cache hit rate. This benchmark
represents the worst case in performance for a particular
working set size, since access is entirely random and no real
work is done between heap accesses. Figure 8 shows the
performance of the SPE and PPE cores for this benchmark.

The SPE’s performance initially surpasses that of the
PPE. However, as expected, cache misses on the SPE core
are more expensive than on the PPE core, due to the caching
being performed in software, rather than being under hard-
ware control. Once the size of the working set grows larger
than the amount of local memory reserved for the SPE’s data
cache (96KB), its performance degrades severely. The PPE
core has a larger data cache (256KB in its L2 cache). Its
performance does suffer after the working set size increases
above this cache size, however, not so severely as on the
SPE core. For the maximum working set size of 16MB, the
overhead due to cache misses reduces the SPE core’s perfor-
mance to about an eighth of its original value, while the PPE
core’s performance drops by a half.

216

 0

 1

 2

 3

 4

 5

 6

 7

 8

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

R
u
n
ti
m

e
 (

s
)

Working Set Size (bytes)

PPE
SPE

(a) Absolute performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

P
e
rc

e
n
ta

g
e
 S

lo
w

d
o
w

n

Working Set Size (bytes)

PPE
SPE

(b) Slowdown relative to 8k working set.

Figure 8. The effect of a thread’s data working set on per-
formance.

6.2.3 Code Caching Overheads
Method invocation also involves caching of code from main
memory. To investigate the performance of the software
caching scheme used by Hera-JVM, a micro-benchmark was
developed in which the amount of code executed can be var-
ied, while the same amount of real work is done. This bench-
mark performs three million method invocations, randomly
selecting which method to invoke from a set of available
methods. Every method in this set performs the same opera-
tion (incrementing a local variable). However, each is com-
piled to separate machine code, therefore, its code is cached
separately when run. By varying the number of methods in
the set, the amount of code which the benchmark executes
can be varied, without altering the amount of “real” work
that it performs.

Figure 9 shows the performance of this benchmark on
both the SPE and PPE cores. Once the working set of meth-
ods that this benchmark invokes grows beyond 1024, it can
no longer fit in the SPE’s local memory cache. Performance
on the SPE core drops to about one fifth of its original value,
since almost every method invocation will need to re-cache
the method’s code, as it is likely to have been evicted since
the method was last called. The benchmark’s performance
does not suffer as severely on the PPE core, again due to its
dedicated caching hardware.

6.3 Real World Benchmarks
In this section, a selection of benchmarks from three real
world benchmark suites are used to evaluate Hera-JVM
in a realistic setting. To provide a range of applications
with different types of behaviour, benchmarks were selected
from: SpecJVM 2008 [21], a suite which mimics a variety
of general purpose applications; the Java Grande Parallel

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 32 64 128 256 512 1024 2048 4096 8192

R
u
n
ti
m

e
 (

s
)

Number of Methods

PPE
SPE

(a) Absolute performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 64 128 256 512 1024 2048 4096 8192

P
e
rc

e
n
ta

g
e
 S

lo
w

d
o
w

n

Number of Methods

PPE
SPE

(b) Slowdown relative to 32 methods.

Figure 9. The effect of a thread’s code working set on
performance.

benchmark suite [22], which aims to replicate high perfor-
mance computing workloads, such as scientific, engineering
or financial applications; and the Dacapo 2006 benchmark
suite [5], which focuses on memory hungry benchmarks.
The following benchmarks were run under Hera-JVM:

mandelbrot generates an 800x600 pixel image of the man-
delbrot set (this benchmark is not part of any of the
benchmark suites).

JavaGrande: mol dyn performs a molecular dynamics par-
ticle simulation, using the Lennard-Jones potential.

JavaGrande: monte carlo performs a financial simulation,
using Monte Carlo techniques to price products derived
from the price of an underlying asset.

JavaGrande: ray trace renders a scene containing 64 spheres,
using a 3D ray tracer with a resolution of 150x150 pixels.

Spec: fft performs Fast Fourier Transformation, using a
one-dimensional, in-place algorithm with bit-reversal
and Nlog(N) complexity.

Spec: lu computes the LU factorization of a dense, in-place
matrix using partial pivoting. It uses a linear algebra
kernel and dense matrix operations on a 100x100 matrix.

Spec: monte carlo approximates the value of Pi by com-

puting the integral of the quarter circle y =
√
1− x2.

Spec: sor simulates the Jacobi successive over-relaxation
algorithm for a 250x250 grid data set.

Spec: sparse performs matrix multiplication on an unstruc-
tured sparse matrix in compressed-row format with a pre-
scribed sparsity structure.

Spec: compress compresses and decompresses 3.36MB of
data, using a modified Lempel-Ziv method.

Spec: mpegaudio decodes six MP3 files which range in size
from 20KB to 3MB.

217

 0

 0.5

 1

 1.5

 2

 2.5

m
andelbrot

JG
: m

ol_dyn

JG
: m

onte_carlo

JG
: ray_trace

SPEC
: fft

SPEC
: lu

SPEC
: m

onte_carlo

SPEC
: sor

SPEC
: sparse

SPEC
: com

press

SPEC
: m

pegaudio

D
AC

APO
: antlr

D
AC

APO
: hsqldb

S
p
e
e
d
u
p
 o

n
 S

P
E

 v
s
.
P

P
E

Figure 10. Performance comparison between benchmarks
running on a single SPE core, and running on the single PPE
core.

Dacapo: antlr parses multiple grammar files, and generates
a parser and lexical analyzer for each.

Dacapo: hsqldb uses JDBC to invoke an in-memory, SQL
relational database, modelling a banking application.

In future work, Hera-JVM will be augmented so that it
can automatically choose the most appropriate core type on
which to execute blocks of code, based upon program be-
haviour; however, before doing so, it is necessary to un-
cover the relative performance of each core type under dif-
ferent workloads. Therefore, in the following experiments,
the timed portion of each of these benchmarks was executed
on either the PPE core or the SPE core in its entirety (other
than forced migrations due to invocation of native code), to
compare their relative performance.

The only modification required to execute these bench-
marks on the SPE cores was to split a small number of ex-
ceptionally long methods into multiple smaller methods, so
that they could fit in the SPE’s code cache in their entirety.
Developing a code caching scheme which splits a method
into multiple cacheable blocks would remove the need for
these modifications.

6.3.1 Single Threaded Performance
Figure 10 shows the difference in the performance of these
benchmarks when they are run on a single SPE core, versus
the PPE core. The error bars represent the standard deviation
between ten runs on each core type. There is a wide variation
in the performance of the benchmarks between core types,
from a 2.25x increase in SPEC: sor on the SPE core, to a 3x
slowdown for DACAPO: hsqldb.

The mandelbrot, Java Grande Suite and SpecJVM 2008
suite (other than SPEC: compress) all perform well on the
SPE core. These benchmarks are of a similar workload to
that which the SPE was designed to support: computation-
ally intensive scientific or multimedia centric workloads.
The SPEC: compress and Dacapo benchmarks do not per-
form as well on the SPE core. The common trait linking
these benchmarks is that they access large amounts of data,
thus exercising the software cache on the SPE.

��� ���� ���� ���� ���� 	����

��������

�������

������������

�����������

�����������

���� ��

����������!�����

�������"���#��

�����������!��

����������!�����

����!��������

$%%�&��������

$%%�&��'�(����

)���*�"�

+���"���

,���!'�

��!-�

.�!���/������

/�#��/������

Figure 11. Percentage of cycles spent executing different
classes of machine instructions on SPE. Benchmarks are
ordered upwards by increasing SPE performance.

To further investigate how a program’s behaviour af-
fects its performance on the different core types, a simulator
was used to calculate the percentage of time the SPE core
spends executing different classes of machine instructions.
Figure 11 shows this breakout by instruction type for each
benchmark. The benchmarks are ordered by their perfor-
mance on the SPE core, relative to the PPE core, with the
best performing benchmark at the top.

Benchmarks which perform well on the SPE core also
generally spend more of their time executing floating point
or integer-based calculations. Benchmarks which spend a
large proportion of time accessing data elements in the heap
(the local memory and main memory categories) perform
more poorly on the SPE core than the PPE core. This is
especially prominent when those accesses result in cache
misses or write operations which require DMA operations
to main memory.

6.3.2 The Effect of Cache Size
By default, the size of software data and code caches on
the SPE core are fixed at 92KB and 88KB respectively.
These sizes were chosen to give roughly equal weighting to
caching of code and data by default. However, applications
do not necessarily access the same amounts of heap data as
code. Therefore, these applications may benefit from having
a different proportion of local memory reserved for each
cache.

Figure 12 show how the performance is affected as this
ratio is altered for an interesting subset of the benchmarks
(results for all benchmarks are presented in [12]). The effect
of cache size on hit rate for both data and code accesses is
also shown in these figures. The cross formed by the dotted
lines in these figures shows the performance at the default
cache sizes.

The relationship between a benchmark’s performance and
this ratio falls into four main categories:

Peaked: The ray trace and mpegaudio benchmarks show a
peak in performance, when roughly an equal percentage
of memory is reserved for each cache. These benchmarks
are equally affected by small code or data caches. How-

218

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.5

0.6

0.7

0.8

0.9

1

1.1

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(a) JavaGrande: ray trace

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.9

1

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(b) SpecJVM: mpegaudio

0.75

0.8

0.85

0.9

0.95

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(c) Dacapo: antlr

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.25

0.3

0.35

0.4

0.45

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(d) Dacapo: hsqldb

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(e) SpecJVM: fft

0.97

0.98

0.99

1

C
a
c
h
e
 H

it
 R

a
te

Code Cache
Data Cache

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.5

1.55

1.6

1.65

1.7

1.75

S
p
e
e
d
u
p
 v

s
.
d
e
fa

u
lt
 S

P
E

S
p
e
e
d
u
p
 v

s
.
P

P
E

Code / Data Cache Size (KB)

(f) SpecJVM: sparse

Figure 12. The effect of varying the proportion of local memory reserved for use by the data and code caches.

ever, the plateau shape of these two graphs suggests that
the working set of both code and data for both bench-
marks fits comfortably in the local memory provided by
the SPE core.

Rising: The performance of the JavaGrande: monte carlo
and Dacapo benchmarks rises as the proportion of mem-
ory provided to cached code increases. The working set
of code required by these benchmarks is clearly too large
to completely fit into the SPE’s local memory, leading to
this behaviour.

Falling: The performance of the mol dyn, fft, lu and com-
press benchmarks are more heavily affected by the size of
the data cache. These benchmarks would seem to benefit
from an even larger data cache size than can be provided
by the SPE’s local memory.

Flat: Finally, the SPEC: monte carlo, sor and sparse bench-
marks exhibit little variation in performance as the cache
sizes change, except at extremely small cache sizes.
These benchmarks therefore have very small working
sets.

Given the different behaviours of these benchmarks, it is
clear that no fixed segregation of the code and data caches
will provide the best performance for all applications. One
possible solution to this would be to mix code and data
in a single larger cache. The problem with this approach
is that the data cache must be purged on thread synchro-
nization operations, whereas the code cache need not. With
a single shared cache, either the code must be needlessly
purged alongside data, or a more complex cache allocation
and purging scheme must be employed. Another approach
would be to provide Hera-JVM with the capability to dy-
namically alter the code / data cache ratio, based upon run-
time monitoring of a program’s cache hit rates. The provi-
sion of such a system for Hera-JVM is left for future work;
the default code / data cache ratio of 88KB / 92KB is used
in all subsequent experiments.

6.3.3 Scalability
The preceding experiments evaluated the performance of
the benchmarks when run on a single SPE core compared
with single PPE core. However, the Cell processor contains
eight SPE cores and can provide significantly more com-
puting power if an application can be parallelised. Other

219

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
p
e
e
d
u
p

Number of Cores

mol_dyn
ray_tracer

monte_carlo

(a) Java Grande Parallel benchmarks

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
p
e
e
d
u
p

Number of Cores

sor
sparse

lu
monte_carlo

fft

(b) SpecJVM scimark benchmarks

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
p
e
e
d
u
p

Number of Cores

mandelbrot
mpegaudio

compress

(c) Remaining benchmarks

Figure 13. Scalability of benchmarks running on SPE cores.

than the two Dacapo benchmarks, these benchmarks have
all been developed with scalability in mind. The SpecJVM
benchmarks scale by running multiple instances of the same
benchmark simultaneously, and therefore only evaluate the
scalability of the runtime system itself. However, the Man-
dlebrot and JavaGrande benchmarks scale by having mul-
tiple threads coordinate on a single instance of the bench-
mark, therefore these benchmarks also evaluate interaction
and synchronization between application threads running
under Hera-JVM.

The Cell processor in the Playstation 3 used for these ex-
periments only provides six SPE cores for user applications
(one core is disabled, due to manufacturing defects, and the
other runs a secure hypervisor). Figure 13 shows the speedup
obtained by each of the benchmarks as they are scaled from
one to six SPE cores.

Most of the benchmarks scale well as the number of SPE
cores increase. However, the lu, fft and both monte carlo
benchmarks stop scaling after four cores. The reason these
benchmarks stop scaling is due to garbage collection. These
benchmarks allocate a large amount of data during their
execution. Since the garbage collector currently runs on only
the PPE core, this leads to a scaling bottleneck.

Figure 14 provides an overview of the performance of
running each benchmark on all six SPE cores, compared
with running on the single PPE core. For those benchmarks
which scale, running on all six SPE cores provides from a
3x to a 13x speedup, compared to running on the single PPE
core.

7. Related Work
The abstraction of heterogeneous processing resources has
been examined by a large body of related work over the
years. One of the most widely available types of heteroge-
neous processing resource is the Graphics Processing Unit
(GPU) present in most commodity computer systems. As
GPUs have become more capable, a number of systems,
such as Cuda [18], Sieve C++ [7] and OpenCL [14], have
been developed to enable general purpose applications to ex-
ploit a GPUs potential processing performance. While these
systems abstract many of the difficulties involved in writ-
ing general purpose code for GPUs, they are relatively in-
flexible; a program’s threads of execution cannot easily be

 0

 2

 4

 6

 8

 10

 12

 14

m
andelbrot

JG
: m

ol_dyn

JG
: m

onte_carlo

JG
: ray_trace

SPEC
: fft

SPEC
: lu

SPEC
: m

onte_carlo

SPEC
: sor

SPEC
: sparse

SPEC
: com

press

SPEC
: m

pegaudio

S
p
e
e
d
u
p
 o

n
 6

 S
P

E
s
 v

s
.
P

P
E

Figure 14. Performance of each benchmark running on all
6 SPE cores compared to a single PPE core.

migrated between the CPU and GPU cores as workload or
resource requirements change. Data transfers must also, typ-
ically, be controlled explicitly by the program.

A number of projects have investigated techniques to
aid programing of the Cell processor. The Cell Superscalar
(CellSs) framework [16] enables the developer to identify
blocks of code that would benefit from execution on the
SPE cores and then automatically schedules task blocks on
the appropriate core type, by employing a task dependency
graph. However, the developer must decide ahead of time
which core type to use for a given piece of code, reduc-
ing flexibility in moving a thread’s execution to a differ-
ent core type dynamically at runtime as workload require-
ments change. The developer is also expected to have in-
depth knowledge of the Cell processor’s unusual architecture
to exploit it effectively, reducing the appeal of this model for
mainstream developers.

The CellVM [15] takes a similar approach to Hera-JVM,
by supporting the execution of applications written in Java
on both of the Cell processor’s core types. However, Hera-
JVM provides a number of features which are not found
in CellVM: in CellVM each Java thread is bound to a sin-
gle SPE core and cannot be transparently migrated between
core types as in Hera-JVM; CellVM is structured as two dif-
ferent runtime systems (one for each core type), complicat-
ing maintenance and integration; CellVM’s SPE core type
runtime system supports only a limited subset of the Java
language specification, relying on the PPE core to perform

220

operations such as thread synchronization and object allo-
cation, which limits scalability; and CellVM does not pro-
vide the coherence guarantees that are required by the Java
memory model. These limitations mean that CellVM does
not support significant real-world Java applications and can
only run parallel applications where the threads do not share
access to data objects.

Some proposed multi-core architectures provide cores
that have symmetric instruction set architectures but are
asymmetric in their performance. Saez et al. [19] describe
the CAMP scheduler, which uses a utility function to opti-
mize system-wide performance, by placing CPU intensive
workloads on fast cores and memory intensive workloads on
the slower cores.

Other work has investigated similar approaches to those
used in Hera-JVM, but for different reasons. Cashmere [23]
provides software-based, pseudo-coherent shared memory
similar to Hera-JVM, but on a different scale (multi-node
clusters instead of multi-core processors). Intel’s many-core
runtime McRT [20] currently targets symmetric multi-core
architectures, however, their sequestered mode, where ap-
plication threads run “bare metal” on processing cores, is
similar to our execution of Java threads on the SPE cores.

8. Discussion and Future Work
The Cell processor is a challenging architecture upon which
to develop general purpose software. However, by abstract-
ing the details of this architecture behind a JVM, Hera-JVM
hides the heterogeneous nature of the Cell processor and the
unusual features of the SPE core. This enables developers
to write application code for this challenging architecture in
the same manner as they would for more conventional archi-
tectures, while still gaining a performance benefit from the
architectures heterogeneity.

Of course, this abstraction does not come for free. The
wide impedance mismatch between a JVM abstraction and
the SPE core’s architecture means that applications running
under Hera-JVM cannot take take full advantage of the SPE
core’s potential performance. However, the techniques de-
scribed in this work, such as efficient stack management and
software caching using high level type information, enable
the SPE core to provide better performance than the PPE
core for the majority of the benchmarks with which Hera-
JVM was evaluated. Given that Hera-JVM is targeting main-
stream application developers, who would otherwise be un-
likely to exploit the Cell processor’s SPE cores at all, the cost
of providing this abstraction would appear to be justified.

The SPE core’s simple design means that it requires much
less area on a silicon die to implement. On the Cell processor
die, the PPE core requires roughly the same area of silicon
as 4 SPE cores. Thus, if an application can be parallelised it
can be executed on many more SPE cores than PPE cores,
for the same sized processor. The scalability results show
that, for those benchmarks which scale, even the worst per-
forming benchmark provides a 3x speedup when running on
four SPE cores, compared to running on a single PPE core,

thus providing significantly better performance for the same
silicon area.

Finally, the ability of Hera-JVM to transparently migrate
a thread between the PPE and SPE core types provides the
runtime system with the flexibility to fully utilise the het-
erogeneous core types of the Cell processor under varying
conditions and workloads. Future work will investigate tech-
niques which enable the runtime system to automatically se-
lect the most appropriate core type on which to schedule dif-
ferent threads and phases of a given application’s execution,
based upon runtime monitoring of the application’s execu-
tion behaviour.

Acknowledgments
This work was funded by the Carnegie Trust for the Uni-
versities of Scotland. We would also like to thank Microsoft
Research for providing funding for some of the equipment
used in this work. Many thanks to Tim Harris, Simon Pey-
ton Jones and Rachel Lo for their invaluable advice and feed-
back on early drafts of this paper, which greatly improved
the presentation of this work.

References
[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and

H. Wilkinson. The Next Generation of Intel IXP Network
Processors. Intel Tech. Journal, 6(3), 2002.

[2] T. Ainsworth and T. Pinkston. Characterizing the Cell EIB
On-Chip Network. IEEE Micro, 27(5):6–14, 2007.

[3] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, et al. The Jikes
Research Virtual Machine project: building an open-source
research community. IBM Systems Journal, 44(2):399–417,
2005.

[4] G. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings
of the Spring Joint Computer Conference, pages 483–485,
1967.

[5] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Guyer, et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the 21st Confer-
ence on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’06), pages 169–190, 2006.

[6] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broad-
band Engine Architecture and its First Implementation: A Per-
formance View. IBM Journal of Research and Development,
51(5):559–572, 2007.

[7] A. Donaldson, C. Riley, A. Lokhmotov, and A. Cook. Auto-
parallelisation of Sieve C++ programs. Lecture Notes in
Computer Science, 4854:18, 2008.

[8] M. Hill and M. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41(7):33–38, 2008.

[9] H. Hofstee. Power efficient processor architecture and the
cell processor. 11th International Symposium on High-
Performance Computer Architecture (HPCA-11), pages 258–
262, 2005.

221

[10] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In Proceedings of the 32nd Symposium on Princi-
ples of Programming Languages (POPL’05), pages 378–391,
2005.

[11] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis
and development of Java Grande benchmarks. In JAVA ’99:
Proceedings of the ACM 1999 conference on Java Grande,
pages 72–80. ACM, 1999.

[12] R. McIlroy. Using Program Behaviour to Exploit Hetero-
geneous Multi-Core Processors. PhD thesis, Department of
Computing Science, The University of Glasgow, 2010.

[13] R. McIlroy and J. Sventek. Hera-JVM: Abstracting Processor
Heterogeneity Behind a Virtual Machine. In Workshop on Hot
Topics in Operating Systems (HotOS), 2009.

[14] A. Munshi. The OpenCL Specification. Khronos OpenCL
Working Group, 2009.

[15] A. Noll, A. Gal, and M. Franz. CellVM: A Homogeneous
Virtual Machine Runtime System for a Heterogeneous Single-
Chip Multiprocessor. In Workshop on Cell Systems and Ap-
plications, June 2008.

[16] J. Perez, P. Bellens, R. Badia, and J. Labarta. CellSs: Making
it easier to program the Cell Broadband Engine processor.
IBM Journal of Research and Development, 51(5):593–604,
2007.

[17] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, et al. The
design and implementation of a first-generation CELL pro-
cessor. IEEE Solid-State Circuits Conference, 2005.

[18] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk,
and W. Hwu. Optimization principles and application per-
formance evaluation of a multithreaded GPU using CUDA.
In Proceedings of the 13th Symposium on Principles and
Practice of Parallel Programming (PPoPP’08), pages 73–82,
2008.

[19] J. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A Com-
prehensive Scheduler for Asymmetric Multicore Processors.
In Proceedings of EuroSys’10, 2010.

[20] B. Saha, A. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan,
R. Hudson, L. Petersen, V. Menon, B. Murphy, T. Shpeisman,
E. Sprangle, et al. Enabling scalability and performance in a
large scale CMP environment. In Proceedings of EuroSys’07,
pages 73–86, 2007.

[21] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko.
SPECjvm2008 Performance Characterization. In Proceedings
of the 2009 SPEC Benchmark Workshop on Computer Perfor-
mance Evaluation and Benchmarking, pages 17–35. Springer,
2009.

[22] L. Smith, J. Bull, and J. Obdrizalek. A parallel Java Grande
benchmark suite. In Proceedings of the Conference on Super-
computing (SC’01), 2001.

[23] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
software coherent shared memory on a clustered remote-write
network. In Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP’97), pages 170–183, 1997.

222

	coversheet.pdf
	http://eprints.gla.ac.uk/43100/

