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Introduction: The Philosophy of Vectors

Stephan Leuenberger * Philipp Keller †

Vectors are deployed in successful scientific representations of physical reality. Is there an element of
reality that corresponds to them? If yes, what kind of entity is it? If no, what accounts for the utility of
vectors in our theories? These are among the questions discussed in this special issue.

The nine articles fall into three groups. The first one is concerned with the history of vector concepts
in mathematics, and with the applicability of such concepts to physical reality. Peter Simons tells the
story of the vectorists’ victory in the “great quaternionic war”, and asks whether the language of vector
algebra will be, or should be, replaced by the language of geometric algebra. The second paper, by Marc
Lange, reviews the debate between ‘staticists’ and ‘dynamicists’ about how to justify the parallelogram
law of vector addition. Lange argues that we need an account of laws of nature that admits different
degrees of nomic necessity in order to make sense of that debate. Ingvar Johansson’s paper discusses how
the International System of Units might best be extended to vector quantities in classical mechanics, and
argues that duration in directed time ought to be the basic vector.

The papers in the second group discuss how vectorial properties fit into various metaphysical theories
of properties. Ralf Busse argues that fundamental vector fields do not refute Humean Supervenience,
contrary to what is often claimed. For this purpose, he offers a detailed development and evaluation
of three conceptions of such fields. Peter Forrest proposes a theory of vector fields that is compatible
both with the relativistic assumption that space-time is curved and with realism about universals. Claus
Beisbart then argues that physics does not construe vectorial quantities as intrinsic to their bearers.

The papers in the third group tackle the important special case of physical forces. Jessica Wilson proposes
a causal argument against realism about component forces, while Olivier Massin argues that Newtonian
forces are real, symmetrical and non-causal relations. Finally, Alastair Wilson defends realism about
both resultant and component forces on the grounds that the distinction between them is frame-relative.

Together, these papers illustrate the importance and fruitfulness of detailed metaphysical investigation of
vectorial quantities. They continue, and reinforce, we hope, the current trend to move from toy examples
to more realistic ones in metaphysical theorizing.

Vectors and vectorial properties

In physical theories, vectors are associated with points of space or spacetime. It is therefore plausible to
construe what they stand for either as properties of such points or of their occupants, or else as relations
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between them and something else. The topic of the worldly counterparts of mathematical vectors is
thus naturally treated as a chapter in the theory of properties and relations. Historically, that branch of
metaphysics has suffered from a poverty in its diet of examples. For a long time, attention was restricted
to monadic properties, while relations were neglected. Likewise, graded monadic properties, sometimes
with the exception of mass, were typically ignored in favour of all-or-nothing properties. Discussions
of vectorial properties have been few and far between. (Among the early exceptions are Tooley (1988),
Bigelow and Pargetter (1989), Robinson (1989) and Johansson (1989)). The aim of this special issue is
to bring them, or ways to do without them, under more intense metaphysical scrutiny.1

By a ‘vectorial property’ or ‘vectorial quantity’, we mean a property or quantity that is represented by
a vector in modern physical theories. Examples in classical physics include determinates of velocity,
momentum, acceleration, force, electric current, electric field strength, and magnetic field strength; in
quantum theories also determinates of spin and quark colour.2 In some of these examples, the vector
quantities are field values: they are the value of a function, a field, defined on all spacetime points.

We do not suggest that a vectorial quantity could not be represented non-vectorially.3 Nor do we suggest
that non-vectorial properties in our sense could not be represented by vectors.4 As we will see, the fact
that there appear to be properties revealingly represented by vectors is something that many metaphysical
theories find hard enough to account for.

A vectorial quantity is one that is represented by a vector. But what is a vector? One might expect this
introduction to start with a definition of this mathematical notion. But different definitions are offered
in different branches of mathematics and physics, and it would unduly constrain the discussion if we took
one of them as canonical here. Naïvely, we think of a vector as an “arrow” in space, characterised by
its length and its direction. It may be either bound – possessing a definite initial point – or free. Free
vectors may be construed as equivalence class of bound vectors. In Euclidean geometry, a vector is taken
to be a directed segment of a straight line. The representation of vectors by an n-tuple of numbers is
also familiar. However, such representations are relative to coordinate systems. There are two ways to
avoid such relativity. One can take a (bound) vector to be a function from a point and a coordinate
system to an n-tuple that satisfies a certain condition – the “vector transformation law”. Alternatively,
one can define vectors without reference to coordinate systems as directional derivatives, as is done in
some textbooks on the general theory of relativity (e.g. Wald 1984).5

1The lamented poverty in the diet of examples is in evidence even with David M. Armstrong, who has given us some of
the most detailed metaphysical theories of properties. In Armstrong (1988), he develops an account of resemblance among
properties, using mass as an example. But as argued convincingly by Maya Eddon (2007), the account runs into severe
problems dealing with electric charge and electric field vector quantities.

2Some quantities, such as stress-energy or distance, are represented by tensors. It is sometimes said that the concept of
a tensor is more general than that of a vector – a vector can be construed as a special case of a tensor. However, one could
argue that vectors are conceptually prior, since tensors may be defined as functions that take vectors (as well as co-vectors,
which in turn are defined in terms of vectors) as arguments.

There is not much discussion of tensors in the present volume, except in Forrest’s contribution. It remains an interesting
question what, if any, further philosophical issues arise from considering tensorial quantities as well as vectorial ones.

3Different assignments of vectors to points need not correspond to different vectorial quantities. Suppose that in every
possible world, for every point, if field f1 assigns vector v, then field f2 assigns vector 2v. Then if these fields represented
different properties, the difference between them would be hyperintensional. Given that we are not committed to the
hyperintensionality of vectorial properties, we can allow that they are not just represented by vectors, but also by intensions,
or (if no point exists in more than one world) by classes of possible points.

4For example, we could represent colours by vectors in the colour solid.
5Sometimes vectors are defined in a “functional” or “top-down” manner, as elements of mathematical structures that

satisfy the vector space axioms. However, this account would classify many things as vectors that intuitively are not, such
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In this as in many other cases, a rich and fruitful concept transcends particular definitions that may be
offered. We trust that the reader has an intuitive understanding of the notion. More discussion of the
concept of a vector in mathematics is provided by the opening piece.

How do our philosophical theories change once vectorial properties figure in our diet of examples? An-
swers are to be found in the contributions to this volume. We will let them speak for themselves. In this
introduction, we merely want to draw attention to general claims about properties that become ques-
tionable in the light of vectorial examples. For this, we can draw on the extant literature on vectorial
quantities, small as it is. Without pretense of either originality or exhaustiveness, we will discuss three
theses that consideration of vectorial properties may show to be up for revision – the theses we call “One
over many”, “Factorization”, and “Determinate exclusion”. Along the way, we will flag points of contact
with the discussion in the articles of this volume.

Vectoriality and One over many

One over many Properties are shared by many things.

Theories of properties tend to take it as a datum that a property is a “one over many”, that there typically
are many things that share it (cf. e.g. Armstrong 1978: 41). This feature is supposed to do explanatory
work: it explains why some predicates apply to more than one thing, why some things affect us in the
same way, and why things resemble each other. A philosophical theory needs to account for that datum.
The most straightforward solution to the “One over many” problem is provided by a theory of universals,
according to which one and the same property is wholly present in different instances. But even rivals
to theories of universals typically take the “One over many” as something to be accounted for.6

Considerations of vectorial properties lead us to challenge the datum. The question whether a vectorial
property F had by x is shared by y often does not have a determinate answer. This observation, and the
recognition that it leads to problems for theories of universals, is due to Peter Forrest (1990).

Consider a sphere, such as the surface of a perfectly round cousin of the earth, and two vectors vx and
vy of equal length attached at different points x and y. Suppose that vx represents property Fx, and
vy represents Fy. Are Fx and Fy the same property? Presumably, they are if vx and vy have the same
magnitude and the same direction, i.e. if they are parallel. But how do we determine, on a curved space
like a sphere, whether two vectors in x and y are parallel? Put informally, we pick up vx, move it to
y without ever wiggling, and then check whether it aligns with vy. As it turns out, the notion of not
wiggling the vector while on the move can be made precise: it is called parallel transport along a path.

However, the result of parallel transport depends on the path along which you move the vector. For
illustration, let x and y be on the parallel 45◦ north, half-way between the equator and the north pole,
and on opposite sides of the globe (we may take x to be on the null meridian and y at 180◦). Both vx

and vy are pointing north. If γ is a path starting from x, the point where vector v is attached, we denote
the result of parallel transporting v along γ by Tγ(v). Let par be the path from x to y along the 45◦

as real numbers.
6Campbell (1990: 27) calls it the “B-question” for trope theorists and Rodríguez-Pereyra (2002: 14), too, accepts that

resemblance nominalism has to address this “one of the oldest philosophical problems”.
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parallel, and let mer by the path from x to y on a great circle. Then Tpar(vx) = vy and Tmer(vx) = −vy.

This shows that parallel transport is path-dependent on a curved space. One might hope that for any
two points, there is a privileged path that combines them, and that sameness of direction is determined
by parallel transport along that path. The obvious choice for such paths are geodesics, the shortest
connections between two points. On a sphere, the geodesics are great circles.

But this suggestion runs into problems, too. Let z be on the null meridian at 45◦ south, with vz pointing
north and of equal length to vx. Then the segment of the meridian from x to z is a geodesic, and parallel
transport on it maps vx to vz. But if we transport vz on a geodesic to y, the result is not −vy. Hence
the relation that holds between two vectors if there is a geodesic γ such Tγ(v) = v′ is not transitive, and
hence not an equivalence relation.7

There are general impossibility theorems regarding equivalence classes on spheres satisfying certain con-
ditions. They are reported in Forrest (1990: 548). While the details will differ for non-spherical curved
spaces, the general situation will surely be the same.

Of course, the considerations above do not conclusively establish that a vectorial quantity is not a One
over Many. Here are a few ways to defend this claim; for convenience of exposition, we will speak in the
voice of a friend of universals, rather than the voice of someone who tries to solve the problem of the
One over Many in some other way.

First, universals may be fragile, as it were, not surviving transport from one point to the other. They
may still be universals in virtue of being wholly present in distinct points in worlds with flat spacetimes.
However, if our universe has a curved spacetime, this response would take away from the motivation
for postulating vectorial universals. Forrest (1990: 552) tentatively endorses such a solution, comparing
these repeatable but non-repeated universals to Hegelian ‘concrete’ universals.

Secondly, universals may be relatively abundant, such that the vector vx represents both a universal F

that is shared by x and y, and a distinct universal F ′ that is shared by x and z. (Vectorial universals
would still not need to be fully abundant, even among points. There may be no corresponding universal
shared by all three of x, y, and z.) This response is at odds with the insistence of prominent theorists of
universals, such as Armstrong, that universals are sparse.

Thirdly, universals may be invidious: even though it appears that there is nothing to choose between
different partitions of the vectorial quantities into equivalence classes, some produce cells that correspond
to a universal, while others do not. Of course, we would need to be given a story about what breaks
the seeming metaphysical symmetry. The perspectival theory of Mormann (1995) (discussed in Forrest
(1996)) may count as an implementation of that strategy.

Even if vectorial quantities were shareable, it would still not be clear in what way directionality makes
for similarity: Compare three vectorial properties represented in a two-dimensional Cartesian space: is
−−−−−−−→
(0, 0)(1, 1) less similar to

−−−−−−−→
(0, 0)(1, 2) than the latter is to

−−−−−−−→
(0, 0)(1, 4)? Magnitudes may motivate one

answer, directions another one, and it is not clear which one should be privileged. Directions may seem
in general unsuited as similiarity-makers: two vectors having the same orientation, but different senses
seem similar in one, but very different in another way.

7Another problem with the geodesic-proposal is that for antipodean points, there are multiple geodesics, leading to
different results.
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Vectoriality and intrinsicality

A second claim about properties that consideration of vectorial properties calls into question is the
following:

Factorization All fundamental properties and relations are intrinsic.

Factorization bans the irreducibly extrinsic. This claim has been prominent in the discussion of David
Lewis’s thesis of Humean supervenience. It is in connection with that thesis that the question whether
vectorial properties are intrinsic has received attention (Tooley (1988), Robinson (1989), Bigelow and
Pargetter (1989), Armstrong (1997: 76), Lewis (1999b)). In this volume, the question is taken up by
Busse and Beisbart.

It should be noted that Factorization is much weaker than Humean supervenience, and may be accepted
even by some anti-Humeans. It does not entail that composite things do not have fundamental proper-
ties, and is thus compatible with certain forms of emergentism. It does not even entail that there are
fundamental properties of points or point-sized things. (Factorization is compatible with an atomless
mereology. It is also compatible with monism, the view that all fundamental properties are exemplified
by one thing, the whole world.) Further, Factorization does not entail that all fundamental relations are
spatiotemporal.

Before considering the question whether vectorial properties may count as intrinsic, it is worth asking
whether any of them are fundamental. If not, they do not provide a threat to Factorization.

In philosopher’s discussions of fundamental properties, electric charge is usually one of the putative
examples, along with mass. Many vectorial properties, such as magnetic field strength, velocity, or
force, are not fundamental. Magnetic field strength supervenes on the distribution of electric charge in
spacetime, velocity supervenes on positions at various times, and forces are determined by masses and
charges. However, the parallel transport problem also arises for the vectorial property of quark colour, as
Maudlin (2007) emphasizes.8 Quark colour has a strong claim to be a fundamental property. According
to modern physics, there are four fundamental forces: weak, strong, electromagnetic, and gravitational.
While mass is associated with gravity and electric charge with the electromagnetic force, quark color is
associated with the strong force. Roughly, quark colour stands to the strong force like electric charge
stands to the electromagnetic force. (Indeed, it sometimes called “colour charge”.)9

Are fundamental vectorial properties like quark colour intrinsic? The answer may depend on which
conception of intrinsicality is right, of course. We briefly consider three approaches: invariance under
duplication, modal independence, and essential independence.10

8The details work out slightly differently, since the vectors that represent quark colours do not belong to the tangent
space, but rather to a more complex example of what is called a “fibre”. See Maudlin (2007: pp. 94-96).

9The parallel transport argument does by no means exploit all metaphysically interesting aspects of quark colours, and of
the theory (quantum chromodynamics) in which they figure. It only turns on their being vectorial properties instantiated in
points on curved spaces. Nothing in the arguments depends on the local gauge freedom that they display. For a philosophical
discussion of gauge theories, see Healey (2007).

10Provided intrinsicality is understood in terms of essential rather than modal independence, Factorization is compatible
with necessary connection between distinct existences, and may thus be attractive even to anti-Humeans. See Molnar
(2003) for an anti-Humean view of dispositions according to which they are intrinsic. Molnar characterizes intrinsicality by
essential independence.
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Suppose we understand the intrinsicality of a property in terms of duplication: it is intrinsic if it is
invariant among duplicates. Many would agree with Lewis that “offhand, […] two things can be duplicates
even if they point in different directions” (1994: 226). However, the intuition seems negotiable, and indeed
Lewis himself does reject it. The intuition is perhaps strongest if we consider two points x and y, in
the same world, with differently directed vectorial quantities, and a lonely point z in another world. It
seems that z may be a duplicate of both x and y (whether or not we agree with Robinson (1989: 408)
that a vectorial quantity could not be instantiated in a lonely point). By the symmetry and transitity of
duplication, x and y are then duplicates, and hence the vectorial quantity is not intrinsic.11

On another conception, an intrinsic property is one whose instantiation by something does not have any
implications for the rest of the world. Being ten feet from an elephant is not intrinsic because my having
it implies the existence of an elephant in a part of the world that does not overlap me. If implication
is cashed out modally, this can be parlayed into a modal independence criterion for intrinsicality. We
need not go into the technical difficulties of doing this (see Weatherson (2001), Lewis (2001), and Denby
(2006)).12 The pertinent question, for present purposes, is whether there is any reason to think that
vectorial properties fail to satisfy modal independence conditions. Vector fields are sometimes required
to vary continuously from point to point. But we could take this to be a merely nomological and not
a metaphysical necessity. However, a suitably general modal independence condition will require that a
given vectorial property can be had by a lonely object.

On both the duplication-invariance and the modal-independence approach, whether vectorial properties
may count as intrinsic seems to turn on whether they can be exemplified by lonely objects. If they can,
then they are arguably modally independent but not duplication-invariant. If they cannot, they are
arguably duplication-invariant but not modally independent.13

On a third conception, a property is intrinsic if it is essentially independent, i.e. if its essence does not
in any way involve other things.14

We might expect that modal independence implies essential independence, since an essential dependence
would be necessary.15 But with vectorial properties, even this is questionable. Suppose that F is a
vectorial property that happens to be exemplified in an accompanied point x. An account of F ’s essence,
of what it is, arguably needs to tell us in virtue of what it differs from F ′, another vectorial properties
that is not, but might be exemplified in x. It is extremely hard to see how this could be achieved without
mentioning points distinct from x. This seems to threaten the essential independence of F .

11This argument relies on the assumption that lonely objects may exemplify vectorial properties. Some definitions of
intrinsicality, e.g. the one by Lewis and Langton (1998), combine the requirement that intrinsic properties are invariant
under duplication with the requirement that they can had by both lonely and accompanied objects. On this more demanding
conception, a stronger case can be made for the non-intrinsicality of vectorial properties.

12If properties are abundant, satisfying modal independence conditions will at best be a necessary condition for intrinsi-
cality, and certainly not a sufficient one.

13It should not be suprising that the two approaches depend in different ways on whether lonely vectorial properties
are possible. In effect, duplication-invariance is a universal and modal independence an existential quantification over
possibilities. More possibilities means fewer duplication-invariant and more modally independent properties, roughly.

14Again, there are different ways to spell this out: a property F is “identity-independent”, according to E.J. Lowe (1998:
149) e.g., if there is no function f such that it is part of the essence of F to be identical with the f of another thing.

15Though Keller’s “Contingent essence” challenges this assumption.
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After considering different accounts of intrinsicality, we do not have a clear verdict about whether vectors
represent intrinsic properties.16 Suppose that they do not. Could the the factorization thesis be saved by
construing them as intrinsic relations?17 The trouble with this suggestion is that in general, they do not
seem to be relations at all. Any choice of further relata beyond the point at which the vector is attached
seems to be artificial.18

A naïve proposal would be to take a vectorial attribute to relate the two end points of the arrow. But
there are two objections to this. First, the length of the arrow, and according to this proposal, the second
relatum, is due to a conventional choice of scale. Secondly, on a curved space, the arrow does not point
to anything in spacetime at all, but rather to a point in the tangent space – presumably an abstract
entity not suitable for being a relatum of a fundamental relation.

Alternatively, the vectorial attribute might be taken to relate the point where the vector is attached
with the ray in space starting out from that point. But this suggestion seems to wrongly make the
exemplification of a vectorial attribute dependent on the existence of that ray. There could be two
duplicates sharing a vectorial property even though one of them is surrounded by infinite space and the
other by finite space. These considerations do not refute the suggestion that vectorial properties are
relations. Busse’s article considers more sophisticated versions of that view.

If vectorial properties falsify Factorization, there is an interesting question about whether a suitably
weaker claim is both compatible with their existence and able to preserve some of the intuitions behind
it. Jeremy Butterfield (2006) has argued that the claim that velocity is barely extrinsic (roughly, intrinsic
to an arbitrary small neighbourhood) does justice to some of the motivations of intrinsicality theses.

Vectoriality and exclusion of determinates

A third widely accepted principle about properties that vectorial properties invite us to reconsider con-
cerns W.E. Johnson’s relation between determinables and determinates (cf. Johnson 1921: 171):

Determinate exclusion Nothing has two determinates of the same determinable.

The paradigm of a determinable is colour. The idea behind the principle that determinates exclude each
other is simple: nothing can be red and green (though it may, of course, have green parts and red parts).19

It is natural to construe force vectors as representing determinates of a determinable, namely force.
After all, force vectors can be added, and it is tempting to generalize Johansson’s thesis (this issue)
that scalar quantities “can in a physically meaningful way only be added to (or subtracted from) other

16There are further questions regarding vectoriality and intrinsicality that we cannot discuss here. Weatherson (2006)
contains an interesting discussion about whether vectorial properties threaten plausible principles linking the duplication
of parts to the duplication of a whole.

17The letter of the Factorization thesis could also be saved by taking vectorial properties to be exemplified by some-
thing larger than a point, perhaps a neighbourhood. As vectorial properties are certainly ascribed to points rather than
neighbourhoods, this would require treating questions of ascription and of exemplification differently.

18However, as Massin argues, there is a natural choice in the special case of Newtonian forces.
19‘Determinate’ is here understood as ‘ultimate determinate’. On another usage of ‘determinate’, both red and scarlet are

determinates of colour; but of course they do not exclude each other. The principle could be revised as follows:
Determinate exclusion Nothing has two determinates of the same determinable unless one of them is a determinate of

the other.
For discussion, see e.g. Funkhouser (2006).
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determinates of the same determinable” to vectorial quantities. But clearly, one thing can be subject to
different forces. A boat may be pulled by two horses, on either side of the canal; a proton may experience
both graviational and electromagnetic forces. Thus we have a prima facie case against the exclusion of
determinates.

A vector has a magnitude and a direction. Quantitative properties also have magnitudes, and relations
have directions; different theories have been developed to understand these two features. It is a third, and
even more difficult task, to understand their interplay, brought to the fore in the discussion about whether
directions can be ‘added’ (in some sense of this word): Is there, on a fundamental level, something like
vector addition? If so, is it ontologically productive: does it result in something new, a resultant vector?
does it do away with what it is applied to, the component vectors? This is the question addressed by the
three final papers in this volume. It is in some ways akin to a question about superposition states: do we
have to understand them as intrinsically complex, as superpositions of two states, or do they have some
claim to be themselves fundamental? A similar question also surfaces in the discussion of causality: do
partial causes do themselves causal work, or are they causally relevant only in so far they are parts of
some total cause?

An argument in favour of component forces might go like this: suppose that at t0, two equally strong
forces act on a point-sized particle, in north-east and south-east directions respectively, resulting in a
force in eastern direction. If the second one of these forces now changes its direction to south-west, the
resultant force, at t2, will be directed south-east, at an angle of 45° and not, as if it would have to be
expected if only the resultant force would have been real at t0, in a 67.5° direction. Component forces
seem necessary to account for this. If component forces are real, then they do not exclude each other.

Note that once we abandon the exclusion principle (as urged e.g. by Armstrong (1978: 113)), there is some
pressure towards denying that a vectorial determinate even excludes itself. We would have to distinguish
between a given quantity being exemplified once, twice, or n times, for any n. The pressure arises from
continuity reasoning. Suppose that two different vectorial properties F1 and F2 with different direction
and the same magnitude can be exemplified in the same point. Then surely F1 can be exemplified in the
same point as F3, which is half the sum of F1 and F2 (it has the same length a those, and its direction
bisects the angle between them). By repeating this process, we obtain the possibility of two co-exemplified
vectorial quantities that are arbitrarily close in direction. By invoking a continuity principle, we obtain
the result that F1 can be exemplified twice in the same point.

The defender of an exclusion principle has various options.

First, she might deny the reality of component forces, and only accept resultant ones. There are inde-
pendent arguments for this.20 In her contribution to this special issue, Jessica Wilson presents another
exclusion argument, relying on causal considerations, against the reality of component forces. But as
Massin argues, this is a high price to pay.

Second, she might deny that different component forces fall under one determinable. Perhaps the de-
terminables are ‘force exerted by Bucephalus’ and ‘force exerted by Pharlap’, or, more fundamentally,

20Another argument against component problems would be that their acceptance multiplies possibilities beyond what is
needed to account for physical reality by forcing us, e.g., to distinguish a situation where a force of magnitude 2 acts on a
particle from a situation where two forces, of magnitude 1 each, act on the same particle in the same direction. In response,
defendants of component forces could claim that only some component forces are real (Creary 1981; Bigelow and Pargetter
1989).
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‘gravitational force’ and ‘electromagnetic force’.21 If forces are relations, as Massin argues, then the
relational properties derived from those relations would not be determinates of the same determinable.

How could a defender of that kind of response respond to the extension of Johannsson’s point about the
physical meaningfulness of addition? She might consider it to be merely nomologically necessary that
forces can be added, rather than something that true in virtue of the nature of these quantities; or she
might deny the reality of resultant forces, as Massin does.

Third, she might deny that component forces acting at the same point are really had by the same thing.
Rather, they are had by spatiotemporally coincident things. The resultant force would then be had by
the mereological sum of these coincident entities. The would make for a nice parallelism between addition
of vectorial quantities and addition of scalar quantities like mass and electric charge. They are additive
in the following sense: if none of the xs overlap, the quantity had by the (mereological) sum of the xs is
the sum of the quantities had by the xs. On the coincidentalist proposal, vectorial quantities would be
additive in the same way. Nonetheless, the proposal seems implausible.22 23
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