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Abstract. We consider ordinary differential equations such that the
only movable singularities of solutions that can be reached by analytic
continuation along finite length curves are either poles or algebraic
branch points. We review results in the literature about such equa-
tions. These results generalise some known proofs that the Painlevé
equations possess the Painlevé property. Although locally the sin-
gularity structure of such solutions is simple, the global structure is
often very complicated. We consider a class of second-order equations
and classify the admissible solutions that are globally quadratic over
the field of meromorphic functions.
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1. INTRODUCTION

Cauchy’s theorem guarantees the existence of a unique analytic local
solution to any regular initial value problem for an ordinary differ-
ential equation (ODE). For a given ODE it is natural to ask what
kind of singularities can develop after the analytic continuation of
such a local solution. For linear ODEs, singularities in solutions can
only occur at singularities of the coefficients (when the coefficient
of the highest derivative has been set to 1). Such singularities are
called fixed. In contrast, solutions of nonlinear equations can also
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be singular at values of the independent variable for which all coef-
ficient functions in the equation are regular. Such singularities are
called movable as their locations vary as we move from one solution
to another by varying the initial conditions. For example, the general
solution of

w� =
w

2

�
z2w2 − 2

z
+

1

z2w2

�

is w(z) = z−1
�
tan(z − c), where c is an arbitrary constant. The

singularity at z = 0 is fixed while all other singularities (which are
located at z = c + (nπ/2), n ∈ Z) are movable square-root branch
points. This is a particular kind of algebraic singularity, which means
that in a neighbourhood of such a singularity at z = z0, there is
a rational number r > 0 such that the solution can be represented
as the sum of a Laurent series in (z − z0)r with finite principal part.
This behaviour is typical for first-order ODEs as shown by Painlevé’s
theorem (see, e.g., Ince [10] or Hille [5]).

Theorem 1.1. (Painlevé) All movable singularities of all solutions
of an equation of the form y� = R(z, y), where R is rational in y
with coefficients that are analytic in z on some common open set, are
either poles or algebraic branch points.

The situation is much more complicated for higher-order equations.
Indeed it is simple to construct equations with solutions having mov-
able essential singularities, logarithmic branch points and even mov-
able natural barriers. Section 2 of this paper will be a review in which
we study several classes of second-order ODEs of the form

y�� = E(z, y)(y�)2 + F (z, y)y� +G(z, y), (1.1)

such that the only movable singularities of any solution that can be
reached by analytic continuation along finite length curves are either
poles or algebraic branch points. For the equations considered it is
a straightforward matter to verify when they possess enough formal
series solutions of the desired form. The difficulty arises in showing
that such series represent the only kinds of movable singularities that
can be reached. The simplest class of equations considered (other
than those that can be solved by quadrature) includes the Painlevé
equations. The proofs of all of the theorems described in Section 2
generalise the proofs that the Painlevé equations possess the Painlevé
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property (that all solutions are single-valued about all movable singu-
larities) in the spirit of Painlevé [17], Hukuhara [16], Hinkkanen and
Laine [6], and Shimomura [20]. This property is closely related to the
weak Painlevé property [18] and has been called the quasi-Painlevé
property by Shimomura [21–23]. We will also describe a recent result
on algebraic singularities of certain Hamiltonian systems [12].

The Painlevé property is important as it appears to imply that
an equation is integrable (in some sense solvable). In particular, the
only first-order rational equations of the form y� = R(z, y) with the
Painlevé property are Riccati equations,

y� = a(z)y2 + b(z)y + c(z),

which can be solved in terms of solutions of a second-order linear
ODE. Also, each of the Painlevé equations can be written as the
compatibility condition for a pair of linear problems with spectral
parameters (iso-monodromy problems) from which many remarkable
properties follow. However, the Painlevé property (but not integra-
bility) is easily destroyed by making an algebraic change of variables.

Although functions with only algebraic singularities are very sim-
ple objects locally, they can be very complicated globally and gen-
erally require a complicated infinitely-sheeted Riemann surface. So
although the Painlevé property of say the first Painlevé equation can
be destroyed by an algebraic change of variables, the resulting equa-
tion can be distinguished from the generic case by the fact that its
solutions are globally, not just locally, finitely branched.

Let F be the set of fixed singularities of some ODE and let M
be the set of meromorphic functions over C \ F . Let us say that
the equation has the algebro-Painlevé property if all solutions are
algebraic over M . It is natural to speculate that ODEs with this
property are integrable. In Section 3 of this paper we consider a re-
lated problem. Following the standard conventions of Nevanlinna
theory, for any meromorphic function f , we denote any quantity that
is o(T (r, f)) as r → ∞ outside of some possible exceptional set of
finite linear measure by S(r, f). We will prove the following theorem.

Theorem 1.2. Let y be a solution of the equation

y�� =
3

4
y5 +

4�

k=0

ak(z)y
k, (1.2)
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such that y also satisfies

y(z)2 + s1(z)y(z) + s2(z) = 0, (1.3)

s1, s2, a0, . . . , a4 being meromorphic functions such that for some
j ∈ {1, 2}, T (r, ak) = S(r, sj) for all k ∈ {0, . . . , 4}. Suppose that
equation (1.3) is irreducible over the meromorphic functions. Then s1
is proportional to a4, and s2 reduces either to the solution of a Riccati
equation with coefficients that are rational expressions in a0, . . . , a4
and their derivatives, or to the equation

w�� =
(w�)2

2w
+

3

2
w3 + 4(az + b)w2 + 2((az + b)2 − c)w, (1.4)

which, in case of a �= 0 is equivalent to a special case of the fourth
Painlevé equation and in case of a = 0 can be solved in terms of
elliptic functions.

2. MOVABLE ALGEBRAIC SINGULARITIES

Painlevé, Gambier and Fuchs studied equations in the complex do-
main of the form

y�� = F (z, y, y�), (2.1)

where F (z, p, q) is rational in p and q with coefficients that are an-
alytic in some common domain. They showed that any equation of
the form (2.1) can be mapped by a transformation of the form

z �→ Φ(z), y �→ α(z)y + β(z)

γ(z)y + δ(z)

to one of fifty canonical equations. Among these equations were the
six known today as the Painlevé equations PI–PVI , the first three of
which are

y�� = 6y2 + z,

y�� = 2y3 + zy + α,

y�� =
(y�)2

y
− y�

z
+

1

z
(αy2 + β) + γy3 +

δ

y
,

where α, β, γ and δ are arbitrary constants. The solutions of each
of the fifty canonical differential equations could be solved in terms
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of linear differential equations, classically known functions such as
elliptic functions, and the solutions of the six Painlevé equations.

Painlevé [17] presented a proof that the first Painlevé equation
does indeed have the Painlevé property (which for this equation is
equivalent to showing that all solutions are meromorphic), however
the proof contained gaps, which were only properly fixed in the pub-
lished literature in 1999 by Hinkkanen and Laine [6]. A correct proof
had also been circulating around the University of Tokyo since the
1960s by Hukuhara, which was eventually published (in the original
Esperanto!) by Okamoto and Takano in [16]. Hinkkanen and Laine
subsequently published a series of papers in which they proved the
Painlevé property for all of the Painlevé equations [7–9] using simi-
lar methods. Shimomura [20] also provided proofs that the Painlevé
equations possess the Painlevé property. All of these proofs have in
common the fact that they work directly with the nonlinear equa-
tions, and by showing that certain quantities must be bounded they
are able to construct different regular initial value problems that cor-
respond to the possible singularities of a solution. Broadly speaking,
these are the same tools that will be described below for analysing al-
gebraic singularities. Most other approaches to proving the Painlevé
property use the related linear (iso-monodromy) problems, so these
approaches are essentially using the integrability of the equations,
which will not generalise to the class of equations that we consider.

In 1953, Smith [24] proved the following.

Theorem 2.1. Let f and g be polynomials of degree n and m respec-
tively, where n > m, and let P be analytic at some point z0. Then
there is an infinite family of solutions of

y�� + f(y)y� + g(y) = P (z), (2.2)

which have an algebraic critical point at z0. In a neighbourhood of z0
these solutions can be expressed in the form

y(z) =
∞�

j=0

aj(z − z0)
(j−1)/n, (2.3)

where a0 �= 0. Furthermore, let Γ be a contour of finite length which
lies in the z-plane and has z0 as an end point. If y(z) is a solution
of equation (2.2) which can be continued analytically along Γ as far
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as z0 but not over it, then the singularity of y(z) at z0 must be an
algebraic critical point of the type described in (2.3).

In the same paper, Smith also showed that the only singularities in the
finite plane that can be reached by continuation along infinite length
curves are accumulation points of such algebraic branch points. In
particular, he was able to demonstrate this phenomenon in solutions
of the equation

y�� + 4y3y� + y = 0,

by using the fact that the general solution of this equation can be
given implicitly in terms of Bessel functions.

In a series of papers [21–23], Shimomura considered the equations

y�� =
2(2k + 1)

(2k − 1)2
y2k + z, k ∈ N (2.4)

y�� =
k + 1

k2
y2k+1 + zy + α, k ∈ N \ {2}, (2.5)

which he referred to as P I-type and P II-type respectively. Shimo-
mura’s main results concerning these equations can be summarised
as follows.

Theorem 2.2. Any singularity of a solution of equation (2.4) or
(2.5) that can be reached by analytic continuation along a finite length
curve is algebraic.

Before moving on to discuss more general equations, we will first
study some obstructions to the existence of algebraic singularities.
To this end, consider the ODE

y�� =
N−2�

n=0

an(z)y(z)
n +

2(N + 1)

(N − 1)2
y(z)N , (2.6)

where N ≥ 2 is an integer and the a0, . . . , aN−2 are analytic in
a neighbourhood of some point z = z0. The coefficient of yN has
been normalised for convenience. We wish to find a formal series
solution to equation (2.6) that is a Laurent series in some fractional
power of z − z0. We begin by looking for leading-order behaviour of
the form y(z) = c0(z − z0)−p + o ((z − z0)−p) as z → z0. We find
that cN−1

0 = 1 and p = 2/(N − 1). Superficially there appear to be
N − 1 different leading-order behaviours. However, if N is even then
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(z − z0)−2/(N−1) is a branched function with N − 1 branches. If we
fix any choice of c0 such that cN−1

0 = 1, then the other N − 2 values
of c0 simply correspond to the other sheets of the Riemann surface
that can be reached by the analytic continuation of c0(z−z0)−2/(N−1)

around z = z0. So there is only one leading-order behaviour from this
point of view. However, when N is odd then (z − z0)−2/(N−1) has
only (N − 1)/2 branches whereas there are still N − 1 choices for c0.
So we see that when N is odd there are effectively two leading-order
behaviours.

Having obtained the leading-order behaviour, we now look for
a formal Laurent series expansion of the form

y(z) =
∞�

n=0

cn(z − z0)
(n−2)/(N−1). (2.7)

If N is odd it is in fact sufficient to have a Laurent series in (z −
z0)2/(N−1), meaning that ck = 0 for k odd. Substituting the expan-
sion (2.7) in equation (2.6) leads to a recurrence relation of the form

(r +N − 1)(r − 2N − 2)cr = Pr(c0, . . . , cr−1), r ≥ 1, (2.8)

where Pr is a polynomial in its arguments. Having determined c0,
equation (2.8) allows us to determine c1, . . . , c2N+1. However, on
substituting r = 2N + 2 in (2.8) we obtain the condition

P2N+2(c0, . . . , c2N+1) = 0. (2.9)

If this condition is satisfied then c2N+2 can be chosen arbitrarily and
then the recurrence relation (2.8) uniquely determines all other cj for
all j > 2N + 2. If (2.9) is not true then there is no formal series
solution of the form (2.7).

Recall that if N is even then there is effectively only one leading-
order behaviour and so there is only one obstruction of the form (2.9),
which in this case turns out to be a��N−2(z0) = 0. When N is odd,
we get two conditions. They are equivalent to a��N−2(z0) = 0 and one
other condition on the coefficients.

In [1], Filipuk and Halburd proved the following.

Theorem 2.3. For N ≥ 2, suppose that there is a domain Ω ⊂ C
such that a0, . . . , aN are analytic and that aN (z0) �= 0 on Ω. Suppose
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further that for each z0 ∈ Ω and for each c0 such that

cN−1
0 =

2

aN (z0)

N + 1

(N − 1)2
, (2.10)

the equation

y��(z) =
N�

n=0

an(z)y(z)
n, n ∈ N, n ≥ 2. (2.11)

admits a formal series solution of the form

y(z) =
∞�

j=0

cj(z − z0)
j−2
N−1 . (2.12)

Then

(i) For each c0 satisfying (2.10) and for each β ∈ C, there is
a unique formal series solution of the form (2.12) such that
c2(N+1) = β.

(ii) Given c0 and c2(N+1) as above, the series (2.12) converges in
a neighbourhood of z0.

(iii) Now let y be a solution of equation (2.11) that can be continued
analytically along a curve Γ up to but not including the endpoint
z0, where the coefficients aj are analytic on Γ∪ {z0} and aN is
nowhere zero on Γ ∪ {z0}. If Γ is of finite length, then y has
a convergent series expansion about z0 of the form (2.12).

(iv) If y cannot be represented by a series expansion about z0 of the
form (2.12) then Γ is of infinite length and z0 is an accumula-
tion point of such algebraic singularities.

The following theorem [2] is a generalisation of Smith’s Theo-
rem 2.1.

Theorem 2.4. Let Γ be a finite length curve with z0 as one of its
endpoints and let

F (z, y) =
n�

j=0

fj(z)y
j , G(z, y) =

n+1�

k=0

gk(z)y
k,
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where n is a positive integer, f0, . . . , fn; g0, . . . , gn+1 are analytic on
Γ ∪ {z0} and fn is nowhere zero there. Suppose that y is a solution
of the equation

y�� = F (z, y)y� +G(z, y),

that is analytic on Γ but cannot be analytically continued to Γ∪{z0}.
If, in a neighbourhood of z0, either

f �
n−1fn − fn−1f

�
n + (n+ 1)fn−1gn+1 − nfngn = 0, (n > 1)

or

f0f1(2g2 − f �
1) + (2g2 − f �

1)
2 − f2

1 g1 + f �
0f

2
1 + f1(2g

�
2 − f ��

1 )

− f �
1(2g2 − f �

1) = 0, (n = 1)

then y has a series expansion of the form

y(z) =
∞�

j=0

cj(z − z0)
(j−1)/n,

where cn0 = −(n+1)/(nfn(z0)), that converges in a neighbourhood of
z = z0.

The papers [3, 11] concern equations of the form (1.1) where E,
F and G have the form

E(z, y) =
n�

µ=1

kµ
y − aµ(z)

, F (z, y) =
f(z, y)�n

µ=1(y − aµ(z))lµ
,

G(z, y) =
g(z, y)�n

µ=1(y − aµ(z))mµ
,

in a neighbourhood of a point z = z0 ∈ C, where f(z, y) and g(z, y)
are polynomials in y with coefficients that are analytic in a neigh-
bourhood of z = z0. Empty sums and products are taken to be
zero and one respectively. All of the functions aµ(z) are analytic in
a neighbourhood of z = z0 and aµ(z0) = aν(z0) only if µ = ν. Finally
we let

fµ(z) =
f(z, aµ(z))

n�

ν=1
ν �=µ

(aµ(z)− aν(z))
lν

, gµ(z) =
g(z, aµ(z))

n�

ν=1
ν �=µ

(aµ(z)− aν(z))
mν

.
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The following theorem was proved in [3].

Theorem 2.5. Consider equation (1.1) with E, F and G as de-
scribed above. Let the degree of f(z, y) as a polynomial in y be at
most n and define

k0 := 2−
n�

µ=1

kµ, m0 := degyg(z, y)−
n�

µ=1

mµ − 2 and

g0(z) := lim
y→∞

y−(m0+2)G(z, y).

We make the following assumptions.

(a) For all µ ∈ {0, . . . , n}, gµ(z0) �= 0.

(b) For all µ ∈ {0, . . . , n}, 2kµ and mµ are integers such that 2kµ+
mµ > 1 and mµ ≥ 1.

(c) For all µ ∈ {1, . . . , n}, fµ+2kµa�µ ≡ 0. Furthermore, if mµ = 1,
then gµ �= kµa�2µ .

We also assume the existence of the following formal series solutions.

(i) For all µ ∈ {1, . . . , n}, if mµ is even then there is a neighborhood
Ω of z0 such that for all ẑ ∈ Ω there is a formal series solution
of the form

aµ(ẑ) +
∞�

j=0

αj(z − ẑ)(j+2)/(mµ+1), (2.13)

where α0 �= 0.

(ii) For all µ ∈ {1, . . . , n}, if mµ is odd then there is a neighborhood
Ω of z0 such that for all ẑ ∈ Ω there are two formal series
solutions of the form

aµ(ẑ) +
∞�

j=0

αj(z − ẑ)2(j+1)/(mµ+1),

aµ(ẑ) +
∞�

j=0

βj(z − ẑ)2(j+1)/(mµ+1),

(2.14)

where α0β0 �= 0 and α
(mµ+1)/2
0 = −β

(mµ+1)/2
0 .
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(iii) If m0 is even then there is a neighborhood Ω of z0 such that for
all ẑ ∈ Ω there is a formal series solution of the form

∞�

j=0

αj(z − ẑ)(j−2)/(m0+1), (2.15)

where α0 �= 0.

(iv) If m0 is odd then there is a neighborhood Ω of z0 such that for
all ẑ ∈ Ω there are two formal series solutions of the form

∞�

j=0

αj(z − ẑ)2(j−1)/(m0+1),
∞�

j=0

βj(z − ẑ)2(j−1)/(m0+1), (2.16)

where α0β0 �= 0 and α(m0+1)/2
0 = −β(m0+1)/2

0 .

Let Γ be a finite-length curve with endpoint z0 ∈ C. Suppose
that y is analytic on Γ \ {z0}, where it solves equation (1.1). If y
cannot be analytically continued to Γ ∪ {z0} then in a neighbourhood
of z = z0, y(z) is the sum of a series of one of the forms (2.13–2.16)
with ẑ = z0.

In [11], Kecker proved the following, which is a generalisation of
Theorem 2.4.

Theorem 2.6. Consider equation (1.1) with E, F and G as de-
scribed before Theorem 2.5, where kµ, lµ, and mµ are integers for
all µ ∈ {1, . . . , n}. Suppose that degyf(z, y) >

�n
µ=1 lµ and that

n�

µ=1

(lµ −mµ)− 1 ≤ degyf − degyg.

For all µ ∈ {1, . . . , n} such that a�µ ≡ 0, we have lµ > mµ ≥ 0.
Otherwise we have lµ = mµ > 0 and gµ + a�µfµ ≡ 0. If additionally
lµ = mµ = 1 we require that

kµa
�
µ(z0) + fµ(z0) �= 0.

For all µ ∈ {1, . . . , n}, we assume the existence of a formal series
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solution for all ẑ in some neighbourhood of z0 of the form

y(z) = aµ(ẑ) +
∞�

j=1

cj(z − ẑ)k/lµ , c1 �= 0. (2.17)

Furthermore, we assume the existence of a formal series solution of
the form

y(z) =
∞�

j=0

cj(z − ẑ)(j−1)/l0 , c0 �= 0, (2.18)

where l0 = degyf −
�n

µ=1 lµ. Then in a neighbourhood of any singu-
larity z0 that can be reached by the analytic continuation of a solution
y of equation (1.1), y has a convergent series expansion of the form
(2.17) or (2.18) with ẑ = z0.

Finally, consider the system of equations in [12],

y�1 =(N + 1)α0,N+1(z)y
N
2 +

�

(i,j)∈I

jαij(z)y
i
1y

j−1
2

y�2 =− (M + 1)αM+1,0(z)y
M
1 −

�

(i,j)∈I

iαij(z)y
i−1
1 yj2,

(2.19)

where the set of indices I is defined by

I =
�
(i, j) ∈ N2 : i(N + 1) + j(M + 1) < (N + 1)(M + 1)

�
,

and αij(z), (i, j) ∈ I ∪ {(M +1, 0), (0, N +1)}, are analytic functions
in some common domain Ω ⊂ C. This is a Hamiltonian system with
Hamiltonian

H(z, y1, y2) = αM+1,0(z)y
M+1
1 + α0,N+1(z)y

N+1
2 +

�

(i,j)∈I

αij(z)y
i
1y

j
2.

We define the set

Φ =
�
z ∈ Ω|αM+1,0(z) = 0} ∪ {z ∈ Ω|α0,N+1(z) = 0

�
.

Theorem 2.7. Suppose that at every point ẑ ∈ Ω\Φ the Hamiltonian
system (2.19) admits formal series solutions of the form

y1(z) =
∞�

k=−N−1

c1,k(z − ẑ)
k

MN−1 , y2(z) =
∞�

k=−M−1

c2,k(z − ẑ)
k

MN−1 ,
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about any point ẑ ∈ Ω\Φ, for every pair of values (c1,−N−1, c2,−M−1)
satisfying

cMN−1
1,−N−1 = −

�
α0,N+1(ẑ)αM+1,0(ẑ)

N (MN − 1)N+1
�−1

,

c2,−M−1 = (MN − 1)αM+1,0(ẑ)c
M
1,−N−1.

Let Γ ⊂ Ω be a finite length curve with endpoint z0 ∈ Ω \ Φ such
that a solution (y1, y2) can be analytically continued along Γ up to,
but not including z0. Then the solution can be represented by series
expansions

y1(z) =
∞�

k=−N+1
d

C1,k(z − z0)
kd

MN−1 ,

y2(z) =
∞�

k=−M+1
d

C2,k(z − z0)
kd

MN−1 ,

where d = gcd{M + 1, N + 1}, convergent in some branched, punc-
tured, neighbourhood of z0.

3. DIFFERENTIAL EQUATIONS WITH ALGEBROID
SOLUTIONS

Having discussed the singularity structure of certain classes of second-
order differential equations with locally finitely branched singularities
in the first part of this article, we now focus on the global singular-
ity structure of these equations. In particlular we are interested in
finding equations which allow for globally finitely branched solutions.
This leads to the notion of algebroid functions, i.e. functions that are
algebraic over the field of meromorphic functions.

3.1. Properties of algebroid functions

An n-valued algebroid function f satisfies an irreducible algebraic
equation

fn + s1(z)f
n−1 + · · ·+ sn−1(z)f + sn(z) = 0, (3.1)

where s1, . . . , sn are meromorphic functions. If all functions s1, . . . , sn
are rational then f is called algebraic. If at least one of the functions
s1, . . . , sn is non-rational then f is called transcendental algebroid.
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Over every point z0 ∈ C an algebroid function takes on at most
k ≤ n values a1, . . . , ak ∈ C ∪ {∞} and allows for series expansions

f(z) = ai +
∞�

j=τi

cj(z − z0)
j
λi

or, in case ai = ∞,

f(z) =
∞�

j=−τi

cj(z − z0)
j
λi . (3.2)

Here it is assumed that the number λi in each series expansion has
no common factor with all the indices j where cj �= 0. We then have
λ1 + · · ·+ λk = n.

3.2. First-order equations

For first-order equations, Malmquist [13] proved the following theo-
rem in 1913.

Theorem 3.1. Let P (z, y) and Q(z, y) be polynomials in y with ra-
tional coefficients. Suppose the rational first-order differential equa-
tion

y� =
P (z, y)

Q(z, y)
, (3.3)

has a transcendental algebroid solution. Then it can be reduced, by a
rational transformation w = R(z, y), to a Riccati equation

w� = a(z)w2 + b(z)w + c(z),

with a(z), b(z) and c(z) rational.

Usually, Malmquist’s theorem is quoted as the following: If equation
(3.3) has a transcendental meromorphic solution, then it is a Riccati
equation. But in fact, Malmquist proved the more general Theo-
rem 3.1. Malmquist’s original proof involved asymptotic methods.
Yosida [28] gave a much shorter proof of Malmquist theorem using
Nevanlinna Theory, but only for the case of a meromorphic solution.
Nevanlinna Theory also allows one to generalise Theorem 3.1 to the
notion of admissible solutions as explained below.
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3.3. Tools from Nevanlinna Theory

We denote the Nevanlinna functions by their usual symbols, the inte-
grated counting function N(r, f), the proximity function m(r, f) and
the Nevanlinna characteristic T (r, f). Nevanlinna Theory of mero-
morphic functions was generalised by Selberg [19] and Ullrich [26] to
algebroid functions. Most of the notation and some standard theo-
rems carry over to the algebroid case with some modifications. Let
f be an n-valued algebroid function. We denote n(r, f) =

�
|z0|≤r τ ,

where the sum is over the numbers τ of all points z0 where f has an
expansion of the form (3.2). The algebroid Nevanlinna functions are
then defined as follows:

N(r, f) =
1

n

� r

0

n(t, f)− n(0, f)

t
dt+

1

n
n(0, f) ln(r),

m(r, f) =
1

2πn

n�

ν=1

� 2π

0
ln+

��fν
�
reiφ

� ��dφ,

T (r, f) = m(r, f) +N(r, f),

where f1, . . . , fn are the n branches of f . In the single-valued (mero-
morphic) case these functions reduce to the usual Nevanlinna func-
tions. However one needs to be slightly careful when applying the
Nevanlinna functions to a composition of algebroid functions, e.g.
sums and products. In [14, 15] Mokhon’ko proves some theorems for
the application of the Nevanlinna functions to rational expressions
of algebroid functions which are analogous to the meromorphic case,
e.g.

m

�
r,

n�

i=1

fi

�
≤

n�

i=1

m(r, fi) +O(1), m

�
r,

n�

i=1

fi

�
≤

n�

i=1

m(r, fi).

Many results from the meromorphic case have an analogue in the
algebroid case. We only quote here the important Lemma on the
Logarithmic Derivative [27]:

Lemma 3.2. Suppose f is a transcendental algebroid function. Then
we have

m

�
r,
f �

f

�
= o(log T (r, f)),

as r → ∞, possibly outside an exceptional set of finite linear measure.

Reports and Studies in Forestry and Natural Sciences No 14 71



R. Halburd and T. Kecker

Any function that behaves like o(T (r, f)) as r → ∞, possibly outside
an exceptional set of finite measure, is denoted by S(r, f). In particu-
lar, Lemma 3.2 states that m (r, f �/f) = S(r, f). As we seek to apply
Nevanlinna theory to the solutions of differential equations we give
the following definition. Suppose f satisfies an algebraic differential
equation

F (z, f, f �, . . . , f (k)) = 0, (3.4)

where F is polynomial in f and its derivatives with meromorphic
coefficients {aλ,λ ∈ I}. An algebroid solution of (3.4), satisfying
the algebraic equation (3.1), is called admissible if, for some j ∈
{1, . . . , n}, T (r, aλ) = S(r, sj) ∀ λ ∈ I. For the notion of admissible
solutions, Malmquist’s Theorem 3.1 will generalise to the following
form: Let P (z, y) and Q(z, y) be polynomial in y with meromorphic
coefficients and suppose that the first-order equation (3.3) has an
admissible algebroid solution. Then it can be reduced, by a rational
transformation w = R(z, y), to a Riccati equation in w.

3.4. Algebroid solutions of second-order equations

We now consider equations in the class

y�� =
2(N + 1)

(N − 1)2
yN +

N−1�

k=0

ak(z)y
k, (3.5)

the normalisation factor being chosen for convenience. Suppose that
(3.5) has an admissible algebroid solution y. Then, rearranging (3.5)
and using Lemma 3.2, one obtains

Nm(r, y) = m(r, yN )

= m(r, y�� − aN−1y
N−1 − · · ·− a1y − a0) +O(1)

≤ m(r, y) +m

�
r,
y��

y
− aN−1y

N−2 − · · ·− a1

�

+m(r, a0) +O(1)

≤ 2m(r, y) +m(r, a0) +m(r, a1)

+m(r, aN−1y
N−3 − · · ·− a2) + S(r, y)

≤ · · · ≤ (N − 1)m(r, y) +
N−1�

j=0

m(r, aj) + S(r, y),
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and therefore, since y is assumed to be admissible,

m(r, y) = S(r, y). (3.6)

This shows that N(r, y) = T (r, y)+S(r, y). In particular, this means
that at least one of the functions s1, . . . , sn has a number of poles of
order O(T (r, y)).

3.5. Simplest case: 2-valued algebroid solutions

We now consider an equation that has solutions with branched sin-
gularities of the form

y(z) =
∞�

k=−1

ck(z − z0)
k
2 .

A candidate of such an equation in the class (3.5) is equation (1.2)
of Theorem 1.2,

y�� =
3

4
y5 + a4(z)y

4 + a3(z)y
3 + a2(z)y

2 + a1(z)y + a0(z). (3.7)

If we are seeking globally 2-valued algebroid solutions, y also satisfies
a quadratic equation (1.3) where s1 and s2 are meromorphic func-
tions. They are also the elementary symmetric functions of the two
branches y1, y2 of y, i.e.

s1 = −(y1 + y2), s2 = y1y2.

It follows from (3.6) that also m(r, s1) = S(r, y) and m(r, s2) =
S(r, y).

At any singularity z0 of y, where ak(z), k ∈ {0, . . . , 4} are analytic,
we have y1, y2 ∼ (z − z0)−1/2. Therefore, since s1 is single-valued, it
has no pole at these points z0 and hence we have T (r, s1) = S(r, y).
On the other hand, since y is an admissible solution, s2 must have
a number of poles of order T (r, y). Differentiating (1.3) once yields

2yy� + s�1y + s1y
� + s�2 = 0 =⇒ y� = −s�1y + s�2

2y + s1
. (3.8)

We differentiate again and insert y� from (3.8) and y�� from (3.7).
Multiplying by the common denominator (2y + s1)2 one obtains an
equation polynomial in y, s1 and s2 and their first and second deriva-
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tives. One can use (1.3) repeatedly to reduce the order in y, and in
a finite number of steps one obtains an equation

F1(s1, s
�
1, s

��
1, s2, s

�
2, s

��
2)y + F0(s1, s

�
1, s

��
1, s2, s

�
2, s

��
2) = 0.

Since (1.3) was assumed to be irreducible, y does not satisfy a linear
equation of this kind, i.e. we have in fact shown that F1 ≡ F0 ≡ 0.
For F1 we have

0 = F1 =
�
4s2 − s21

� �
s��1 − s51 + a4s

4
1 − a3s

3
1 + a2s

2
1 − a1s1 + 2a0

+ s2(2a2 + 3a3s1 − 4a4s
2
1 + 5s31) + s22(2a4 − 5s1)

�
,

and, since 4s2 − s21 is the discriminant of the irreducible quadratic
equation (1.3), the expression in the brackets must vanish identically,
which yields an equation of the form

s��1 + p(s1) = s2q(s1) + s22(2a4 − 5s1),

where p and q are polynomial in s1. However, the left hand side of
this equation is of order S(r, y) whereas the right hand side involves
s2. This is only possible if both sides vanish identically, giving the
conditions

s1 =
2

5
a4, q(s1) = 0, s��1 + p(s1) = 0. (3.9)

By a linear transformation in y we could have set a4 = 0 (and there-
fore s1 = 0) from the start, which we will assume to be done in the
following. The other conditions in (3.9) then become a2 = 0 and
a0 = 0. The equation F0 = 0 now yields an equation satisfied by s2:

s��2 =
(s�2)

2

2s2
+

3

2
s32 − 2a3(z)s

2
2 + 2a1(z)s2. (3.10)

We will now examine this equation further which must have an ad-
missible meromorphic solution. At any pole z0 of s2, where a3(z) and
a1(z) are analytic,

s2 ∼ α(z − z0)
p, p ∈ Z,

one easily finds that p = −1 and α = ±1. Inserting the full Laurent
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series
α

z − z0
+

∞�

k=0

ck(z − z0)
k

into (3.10) one can determine the coefficients ck, k = 0, 1, 2, . . . re-
cursively and finds the expansion

α

z − z0
+

1

2
a3(z0) +

�
α

4
a3(z0)

2 +
2

3
a�3(z0)−

2α

3
a1(z0)

�
(z − z0)

+ h(z − z0)
2 + · · · , (3.11)

where the coefficient h cannot be determined by the recursion, which
breaks down for k = 2. Instead one finds the resonance condition

αa��3(z0) + a3(z0)a
�
3(z0)− 2a�1(z0) = 0. (3.12)

From equation (3.10) one obtains, using Lemma 3.2,

2m(r, s2) = m(r, s22)

≤ m

�
r,
s��2
s2

�
+ 2m

�
r,
s�2
s2

�
+m(r, s2) +m(r, 2a3)

+m(r, 2a1) +O(1),

=⇒ m(r, s2) = S(r, s2).

It follows that we must have N(r, s2) = O(T (r, s2)). However, it is
not certain whether both cases of the leading order behaviour α = ±1
occur with frequency of order T (r, s2). We denote the integrated
counting function of the number of poles of s2 with leading order be-
haviour α/(z−z0) by Nα(r, s2). Essentially we consider two different
cases. First suppose that both leading order behaviours at the poles
of s2 occur with frequency of order N±1(r, s2) = O(T (r, s2)). We
then consider the functions

αa��3(z) + a3(z)a
�
3(z)− 2a�1(z), α = ±1.

By (3.12) each of these functions has zeros with frequency of order
T (r, s2). But therefore, since s2 is admissible, they must both vanish
identically and one obtains the two conditions

a��3 ≡ 0, (a23 − 4a1)
� ≡ 0,

and letting a3(z) = −2(az + b) and a1(z) = (az + b)2 − c, equation
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(3.10) becomes equation (1.4). In case of a �= 0, equation (3.10)
reduces, by a linear transformation in z, to the equation

s��2 =
(s�2)

2

2s2
+

3

2
s32 + 4zs22 + 2(z2 − c)s2,

which is a special case of the fourth Painlevé equation for which it is
known that all solutions are meromorphic functions in the complex
plane, see e.g. [25] or the book [4]. Otherwise, in case of a = 0,
equation (3.10) reduces to

s��2 =
(s�2)

2

2s2
+

3

2
s32 + 4bs22 + 2(b2 − c)s2,

which can be solved in terms of elliptic functions.
For the second case suppose thatNα(r, s2) = O(T (r, s2)), however

N−α(r, s2) = S(r, s2). We will show that in this case s2 is an admis-
sible solution of a Riccati equation

s�2 = −αs22 + u(z)s2 + v(z). (3.13)

Differentiating (3.13) and equating with the right hand side of (3.10)
yields the following conditions by comparing coefficients of powers
of s2:

u = αa3, 2αv = 2αa�3 + a23 − 4a1 ≡ 0.

Suppose now that s2 does not satisfy any Riccati equation admissibly.
Then define the function

w = s�2 + αs22 − αa3s2, (3.14)

which has proximity function m(r, w) = S(r, s2). At any pole z0 of
s2 with leading order α/(z− z0), by employing the expansion (3.11),
w is regular. Therefore w can have poles only where s2 has a pole
with leading order −α/(z − z0), i.e. we also have N(r, w) = S(r, s2).
But that means that T (r, w) = S(r, s2), therefore (3.14) is a Riccati
equation for which s2 is an admissible solution in contradiction to
the assumption. We have therefore proved Theorem 1.2.
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Hukuhara, Funkcial. Ekvac. 44 (2001), 201–217.
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[19] H.L. Selberg, Über die Wertverteilung der algebroiden Funktionen, Math. Z.
31 (1930), 709–728.

[20] S. Shimomura, Proofs of the Painlevé property for all Painlevé equations,
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