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Abstract. We review the state of the art of the study of the cosmic structure on ultra-large scales as is
forecast to be achievable by the oncoming generation of intensity mapping experiments. We focus on
intensity maps of the redshifted 21 cm line radiation of neutral hydrogen (Hi) in the post-reionisation
Universe. Such measurements will be performed by future radio telescopes such as for instance the Square
Kilometre Array and will allow for surveying the biggest volume ever of cosmic structure. After having
shown why it is valuable to scrutinise such extremely large cosmic scales – they will supply crucial
information about the physical processes at play at early times – we concentrate on primordial non-
Gaussianity as a working example. We illustrate that Hi intensity mapping experiments can place tight
bounds on different inflationary scenarios via constraining the non-Gaussianity parameter, fNL, with an
error close to 1.

1. Introduction
The study of the largest cosmological scales and of the peculiar phenomena there occurring has recently
seen a renewed interest. This has been mostly driven by the forthcoming generation of experiments
which will scrutinise the cosmic large-scale structure with unprecedented accuracy over the biggest
volume ever surveyed. However, if on the one hand such a new, unexplored landscape is a rich source
of information valuable to strengthen our understanding of the Universe, on the other hand it is utterly
difficult, technically speaking, to access those extremely large scales.

Following References [1, 2], we here review the state of the art concerning the effort put for reaching
those ultra-large scales as well as the most important achievable scientific outcomes. More specifically,
we shall briefly present the most interesting effects which may occur on the largest cosmic scales, such
as deviations from the Newtonian prediction which can either further confirm general relativity or hint
at a modified behaviour of gravity, or non-standard halo clustering due to a possible amount of non-
Gaussianity in the statistical distribution of primordial density fluctuations. Hence, we shall focus on
primordial non-Gaussianity and show what we could attain with one of the envisaged techniques, namely
the so-called intensity mapping.

Surveying the large-scale cosmic structure by means of intensity maps of a particular line, such as
for instance the redshifted 21 cm line of neutral hydrogen (Hi), is a newly proposed technique (see
[3] and references therein). It is still in its infancy but promises to obtain great results, being by the
way pretty cheap compared to usual galaxy surveys. Instead of making a catalogue of Hi emitting

5th Young Researcher Meeting, Trieste 2014 IOP Publishing
Journal of Physics: Conference Series 566 (2014) 012004 doi:10.1088/1742-6596/566/1/012004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



galaxies as detected above a certain flux threshold, an intensity mapping experiment effectively makes
a map of large-scale fluctuations in 21 cm temperature by measuring the integrated emission in one big
pixel. By doing so, it bypasses the need of resolving individual galaxies, thus being much similar to
a map of the cosmic microwave background (CMB) radiation. Thanks to the high frequency (and thus
redshift) resolution of oncoming radio telescopes, this intensity mapping methodology renders it possible
to survey efficiently extremely large volumes.

2. Ultra-large scale effects
The investigation of the cosmic structure on the largest scales presents many advantages and can greatly
improve our confidence in the theoretical model we employ to understand the Universe and its evolution.
For a start, the modes related to the largest separations are well described by linear theory. Therefore,
we do not have to rely on approximations coming from numerical simulations to take non-linear effects
properly into account. This is a major gain, for numerical simulations are time consuming and they
always imply a certain degree of ad hoc implementation [4, 5]. Closely related to this is the fact that on
smaller scales, not only the growth of perturbations becomes non-linear, but also baryonic effects begin
to play a more and more relevant rôle. Unfortunately though, the interplay of non-gravitational physical
processes occurring on small scales – energy exchanges, radiative cooling, gas accretion to name a few
– is very resilient to theoretical modelling (see e.g. [6]).

Having now clear in mind the pros of pursuing cosmology on ultra-large scale, let us briefly
describe two of the most important effects that will be in principle detectable, namely general relativistic
corrections to cosmological observables and primordial non-Gaussianity.

2.1. Testing gravity on the largest scales
The vast majority of the predictions hitherto employed to analyse experimental data coming from surveys
of the large-scale structure have relied on Newtonian or quasi-Newtonian approximations. This has
proven to be fairly adequate for past and present surveys, since their interest is galaxy clustering well
below the horizon scale. Often, so-called redshift-space distortions are also included in the analysis, and
the contribution of weak lensing convergence and magnification to matter over-densities are sometimes
considered too. However, there are much more effects, usually subdominant with respect to number
density fluctuations and redshift-space distortions, but whose magnitude tends to increase as we go to
larger scales. Specifically, the full relativistic analysis includes terms that are suppressed on sub-horizon
scales, viz. velocity (or Doppler) terms, Sachs-Wolfe and integrated Sachs-Wolfe type terms, and time-
delay contributions [7–9]. One the one hand, this implies that future wide and deep surveys will need
to employ an accurate, precise modelling accounting not only for redshift-space distortions and weak
lensing effects, but for all geometric and relativistic corrections. On the other hand, this also means that
a clear detection of such relativistic corrections will signify a further confirmation of the goodness of
Einstein’s general relativity – even on scales farthest from those where it has been tested so far.

However, the largest cosmic scales might as well represent the very ground where Einsteinian
predictions fail. Indeed, the last decade has seen a great endeavour by the cosmologists’ community
in the search for explanations of the observed late-time cosmic acceleration alternative to the standard
cosmological constant hypothesis. The main idea inspiring such an effort is that behind the Universe’s
accelerated expansion there may be not some exotic component – for instance dark energy – which
we never directly detected but nonetheless accounts for more than 70% of the total energy budget, bur
rather a modification to the gravity law occurring on cosmological scales. (We refer the reader to Clifton
et al. [10] for an exhaustive review on cosmology in modified gravity theories.) Since the accelerated
expansion of the cosmos is a late-time phenomenon, it is natural to look for hints concerning the physical
nature of the underlying mechanism on very large scales. Clearly, the detection of a modified gravity
signature will be such an enormous breakthrough that it appears worth scrutinising the ultra-large scales.
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2.2. Primordial non-Gaussianity
The standard inflationary scenario predicts almost Gaussian primordial fluctuations which successively
grow by gravitational accretion to form the large-scale structure we observe today (e.g. [11]). However,
inflation is rather a paradigm than an established theory and at the present day there is no such ‘standard
model’ universally agreed upon. Quite on the contrary, many viable scenarios have been proposed, and
a deeper understanding of the mechanism which drove inflation represents one of the cardinal goals of
contemporary cosmology. To this aim, the study of primordial non-Gaussianity stands as a major tool at
our disposal. Indeed, if the distribution of primordial density perturbations is not Gaussian, it cannot be
fully described by a power spectrum; we rather need higher-order moments such as the bispectrum. In
particular, different models of inflation give rise to different bispectrum shapes. Thence, it is in principle
possible to discriminate amongst different inflationary models by measuring a particular shape of non-
Gaussianity.

For instance, standard single-field inflation generates negligibly small deviations from Gaussianity.
They are called of the local shape, where one of the three bispectrum wavenumbers has got a much
smaller magnitude than the other two. Local-shape non-Gaussianity can also be generated when an
additional light scalar field other than the inflaton contributes to the observed curvature perturbations,
e.g. in curvaton models [12] or in multi-field models [13]. Besides, there are inflationary models with a
non-standard inflaton kinetic term which contains higher-order derivatives of the field itself [14]. Their
primordial bispectrum is maximised for configurations where the three wavevectors have approximately
the same amplitude and falls under the name of equilateral-type primordial non-Gaussianity [15].
Eventually, we have also so-called squashed configurations [16] or shapes of the bispectrum which are
nearly orthogonal to both the local and equilateral forms [17].

The method par excellence hitherto employed to constrain primordial non-Gaussianity has relied
on measuring the CMB temperature anisotropy bispectrum [18]. However, primordial non-Gaussianity
also induces an additional scale and redshift dependence in a biased tracer of the underlying
matter distribution [19, 20]. For example, the modification ∆bX(z, k) to the Gaussian large-scale
bias bG

X of a biased tracer X induced by local non-Gaussianity reads ∆bX(z, k) = 3[bG
X (z) −

1]ΩmH0
2δc/[k2T (k)D+(z)] fNL, where Ωm is the total mass fraction in units of the critical density, H0 the

Hubble constant, δc the critical value of the matter over-density at collapse, T (k) the transfer function,
D+(z) the linear growth factor of density perturbations normalised to unity today and fNL parameterises
the quadratic correction to the linear Gaussian term in Bardeen’s gauge invariant potential [21, 22].
Attempts at detecting this effect with galaxy surveys already led to promising results (e.g. [23]). In what
follows, we shall exploit this peculiar behaviour to forecast constraints on primordial non-Gaussianity
with Hi intensity mapping.

3. Hi intensity mapping
Late-time cosmology with Hi intensity mapping is based on the assumption that, after reionisation, most
of Hi in the cosmos is confined within galaxies. Thus, a map of its 21 cm line emission is a proxy of
the underlying clustered distribution of galactic haloes. The idea is that radio telescopes measure flux
density. In the Rayleigh-Jeans limit, this can be converted into an effective brightness temperature – in
turn split into a homogeneous and a fluctuating part, Tb = T b(1 + δHI), where δHI are the perturbations in
the large-scale Hi distribution. By investigating the statistical properties of such Hi over-densities in the
Universe, we can thus reconstruct the fluctuations of underlying matter density field, much in the same
way as it is done with the power spectrum or the correlation function of usual galaxy surveys.

There are two other main ingredients for constructing the power spectrum of Hi density fluctuations,
namely its bias, bHI, and the total Hi density fraction, ΩHI. The former depends upon the size of host dark
matter haloes. Such dependence can be modelled by using the halo mass function with an appropriate
lower mass cutoff (see e.g. [24–26] for more discussions). Despite the considerable disagreement
between various Hi bias models, we have got at least one robust measurement of the combined quantity
ΩHIbHI = (4.3 ± 1.1) × 10−4 at the 68% confidence level at z = 0.8 [25]. This constraint can be used
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to gauge a semi-analytical derivation of bHI and ΩHI [27, 28]. Firstly, we need to specify the amount
of Hi within a halo of mass M at redshift z, MHI(M, z). The most straightforward ansatz is a direct
proportionality with respect to the halo mass, which can be then fitted against the available data. Thence,
we can calculate ΩHI, the Hi bias and Hi brightness temperature in a consistent manner.

The principal advantage of Hi intensity mapping experiments in the task of surveying the cosmic
structure on the largest scales is that they are sensitive to structures at a redshift range which is difficult
to span for conventional galaxy surveys [29]. Indeed, for them it is hard to achieve the required sensitivity
at high redshift over vast areas of the sky. Moreover, the problem of a poor sampling, usually referred
to as cosmic variance, can greatly spoil the results. However, by not requiring galaxy detections, the
intensity mapping technique transfers the problem to the issues of calibration and foreground removal,
viz. the need for cleaning methods for removing everything but the Hi signal we are interested in [30].

4. Forecasts for future surveys
Now, we show forecast constraints on the primordial non-Gaussianity parameter, fNL, as achievable
by viable future experiments. If we work with Fourier-Bessel transforms on the celestial sphere, the Hi
angular power spectrum is CHI

` (νi, ν j), where νi is the frequency of ith shell. To calculate this quantity, we
use the camb−sources code [9], and include the redshift space distortion but discard subdominant terms.
We refer to Camera et al. [1] for other assumptions and the experimental set up. Fig. 1 from Ref. [1]
depicts the main results. We plot σ fNL contours in the plane of surveyed area and total observation time,
with abscissas covering from a 15 × 15 deg2 survey to 2π. The three top panels, where the y-axis is
observation time tTOT multiplied by the number of dishes Nd, illustrates the case for a dish survey with
three distinct maximum angular modes, corresponding to dish diameters of 5, 15 and 80 metres at redshift
∼ 3. For higher angular resolution, interferometers may be a better option. The lower panels of Fig. 1
show σ fNL for 1, 10 and 100 pointings at a resolution of `max ' 300, as set by choosing Da ∼ 80 m as the
diameter for the array. For interferometers, the main design parameter is the field of view, which fixes
`min, and for a ‘dense array’ it is related to the number of elements. Given that the maximum angular
scale is set by the field of view, by pointing several times we simply diminish the variance by Np, though
the noise increases too, because tobs → tobs/Np.

Figure 1. Forecast 68.3% error
contours on fNL as a function of
surveyed area and total observation
time, for a dish survey with Nd
dishes (upper panels) and an in-
terferometer making Np pointings
(lower panels). Courtesy of [1].

Several dish survey telescopes under development should be able to probe this Hi intensity signal and
thus constrain primordial non-Gaussianity. One of the major candidate is the Square Kilometre Array
(SKA) phase 1, which will probe down to ∼ 350 MHz, thus allowing us to push below Planck constraints.
In terms of designing a new system from scratch, something like 10, 000 small dishes between 2 − 4 m
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diameter, working at ∼ 400 MHz, would be a good and cheap possibility to target the fNL ∼ 1 region.
For interferometric surveys, none of the planned telescopes are compact enough to deliver the required
sensitivity on large scales. This means we would need in principle to wait for the full SKA, with the
proposed ‘aperture array’ system working below 1 GHz, thus reaching the σ fNL . 1 limit. However, the
full SKA is designed to achieve much higher angular resolution than what is needed for our purposes
and a smaller array with 80 m or less in diameter would be an interesting, near term, alternative, capable
of reaching σ fNL ∼ 1.

5. Conclusions
Here, we have succinctly reviewed the current theoretical and experimental endeavour to the aim of
accessing the largest cosmological scales. We have shown why such extremely large scales contain a
wealth of information capable to deepen our understanding of the physical mechanism driving the early
Universe inflation and of the law of gravity itself. We have presented the Hi intensity mapping technique
as a valuable tool to access ultra-large scales – hardly reachable with enough sensitivity for conventional
galaxy surveys. As a figure of merit, we have focussed on primordial non-Gaussianity as an emblematic
large-scale effect and have shown how forthcoming Hi intensity mapping experiments will enable us to
constrain fNL to a degree of accuracy much higher than the current most stringent constraints achieved
by the Planck CMB experiment.
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