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Vertebrate NCoR-family co-repressors play central roles in the timing of

embryo and stem cell differentiation by repressing the activity of a range

of transcription factors. They interact with nuclear receptors using short

linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR)

boxes. Here, we identify the pathway leading to increasing co-repressor

diversity across the deuterostomes. The final complement of CoRNR boxes

arose in an ancestral cephalochordate, and was encoded in one large exon;

the urochordates and vertebrates then split this region between 10 and

12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but

absent in NCoR1. We show for one NCoR1 exon that alternative splicing

can be recovered by a single point mutation, suggesting NCoR1 lost the

capacity for alternative splicing. Analyses in Xenopus and zebrafish identify

that cellular context, rather than gene sequence, predominantly determines

species differences in alternative splicing. We identify a pathway to diversity

for the NCoR family beginning with the addition of a SLiM, followed by

gene duplication, the generation of alternatively spliced isoforms and their

differential deployment.

1. Introduction
Vertebrates may be intuitively described as more complex than invertebrates,

but the molecular basis for this distinction, and the pathways by which it is

achieved, are less apparent. Because total gene counts are often comparable,

it has been suggested that increases in the number and type of regulatory

DNA elements, combined with an increased diversity in the composition of

the transcription factor complexes with which they interact, may begin to

account for the increasingly complex patterns of gene expression seen over evol-

utionary time (reviewed in [1,2]). In contrast, even small changes to the

sequence and structure of transcription factors themselves are likely to disrupt

their activity and have deleterious effects. The recent identification, however, of

short linear motifs (SLiMs), defined as functional peptide modules 3–10 amino

acids in length [3,4] which act as modular components within a larger protein,

points to these as independent targets for evolutionary change, because the

gain, loss or alteration of one motif is less likely to compromise the activity

of others [5]. In addition, many genes use multiple promoters and alternative

splicing to make several transcripts from one gene that can then be translated

into isoforms with distinct functions [6,7]. Using alternative splicing to generate
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isoforms that differ in their complement of SLiMs will gener-

ate related proteins with diverse functions that may

contribute to organismal complexity [3].

Vertebrate nuclear co-repressors NCoR1 and NCoR2,

also known as silencing mediator for retinoid or thyroid-

hormone receptors (SMRT), are large proteins whose genes

are derived from a common ancestor. Co-repressor activity is

reflected in their structure, in which the 50 amino acid amino-

terminal SANT domains (named after Swi3, Ada2, NCoR and

TFIIIB) [8] are core to regions that interact with histone deacet-

ylases to put chromatin into a compact, transcriptionally

inactive state [9–13]. Sequences that mediate the interaction

with the nuclear receptor transcription factors, however, are

found as SLiMs, termed co-repressor for nuclear receptor

(CoRNR) boxes, embedded within a carboxy-terminal region

that lacks significant structural organization [14–18]. Type II

nuclear receptors, such as the retinoid receptors, bind DNA

as heterodimers with a common, RXR partner [19–22], and

each co-repressor is thought to interact with a nuclear receptor

dimer [18,22,23]. To achieve this, NCoR1 uses any two of its

three CoRNR boxes to bind directly to the receptors, but only

in the absence of the receptor’s ligand, such as retinoic acid

[14–17,24,25]. The human, mouse and Xenopus NCoR2 genes

also encode three CoRNR boxes, equivalent to those in

NCoR1 but, through alternative splicing, produce protein iso-

forms with variable numbers of these motifs [24–29]. The

co-repressors bind to a wide range of nuclear receptors and

the different in vitro affinities of the CoRNR boxes for nuclear

receptors and their distribution between the NCoR2 isoforms

demonstrate that alternative splicing generates diverse iso-

forms that preferentially interact with specific subsets of

nuclear receptors [25,28–31].

Each co-repressor acts as a platform for the assembly of

multi-protein complexes [32,33] that actively repress a remark-

ably wide range of transcription factors including most, if not

all, of the type II nuclear receptors and, among others, the tran-

scription factors Pit1, PLZF, Bcl-6, NFkB, SRF, CBF-1 and ETO

(reviewed in [28]). Not surprisingly, NCoR1 and NCoR2

have been implicated in diverse biological processes. NCoR1

knockouts in mice have lethal defects in erythropoiesis [34],

while NCoR2 knockouts die from defects in cardiac develop-

ment [35,36]. NCoR1 and NCoR2 also affect embryonic

development [24,37], neural stem cell differentiation [35,38],

homeostasis [39], oxidative metabolism and ageing [40],

adipocyte differentiation [31] and embryonic blood forma-

tion [41]. Altered interactions between the co-repressors and

mutated retinoid receptors underlie acute promyelocytic

leukaemia [42–44] and primary myelofibrosis [45], while

NCoR2 has been implicated in the progression of glioblastoma

in animal models [46].

In most vertebrates, the 30 part of the gene encoding

the carboxy-terminal region of each co-repressor is divided

between 10 exons. In NCoR2, this structure underpins alterna-

tive splicing to generate isoforms with different numbers of

CoRNR boxes. For example, exon 37 encodes a CoRNR box,

but the use of an internal splice donor generates an isoform

lacking this motif. The capacity for exon 37 alternative splicing

in NCoR2 is conserved between Xenopus, mice and humans

[27]. While both exon 37 isoforms are found at roughly equiv-

alent levels in Xenopus tissues, in mice the outcome of exon 37

alternative splicing is tissue specific, with the CoRNR box-

containing isoform (37bþ) predominant in the brain and the

CoRNR box excluded isoform (37b2) found in most tissues
[27,29]. Unlike NCoR2, there is no detectable alternative spli-

cing of this exon in Xenopus NCoR1, but a distinct isoform

has been reported in mammals [27,28].

Significant differences in function between NCoR2 iso-

forms have been demonstrated in vitro [25,29,30]. The

exclusion of NCoR2 exon 37b in vivo, during Xenopus devel-

opment, results in embryos with deformed heads, disturbed

axon guidance and the repression of some early thyroid hor-

mone responsive genes, indicating this alternative splicing

event is significant for embryogenesis [24]. In addition,

mice engineered to express NCoR2 with defective CoRNR

boxes show a range of mutant phenotypes [40,45,47]. These

results indicate that the CoRNR boxes are not redundant,

because a full complement is required for normal function.

The gain and loss of SLiMs in proteins involved in tran-

scriptional control is a significant mechanism in vertebrate

evolution [5]. In addition, the direct correlation between intrin-

sically disordered regions (IDRs) and alternatively spliced

exons [48], combined with the frequent presence of SLiMs in

IDRs, indicates a mechanism by which the assortment of

SLiMs between tissue-specific isoforms can contribute to func-

tional complexity at the level of the cell (reviewed in [3]). Using

the nuclear co-repressors as a test case, we extend this concept

from cells to organisms by demonstrating a transformative

increase in the diversity of these proteins from sea urchin to

frog. The pathway to diversity, involving progressive SLiM

acquisition, augmented by a striking exon fragmentation and

the deployment of alternatively spliced isoforms, defines a

direct mechanism by which the complexity of interactions of

a family of transcription-associated proteins is enhanced

over evolutionary time.
2. Results
2.1. The acquisition of short linear motifs
The vertebrate paralogues NCoR1 and NCoR2 are defined by

two SANT domains [9–13], three CoRNR box motifs that

mediate interactions with nuclear receptors [14–17,24,26]

and a carboxy-terminal domain that interacts with SHARP, a

transcriptional repressor [49] (figure 1a). Alignment of ver-

tebrate NCoR1 and NCoR2 C-terminal sequences identified

four additional conserved short motifs (figure 1a,b and elec-

tronic supplementary material, figure S1) that will be targets

for future functional analysis.

SLiMs, such as CoRNR boxes, in the carboxy-terminal

region mediate many of the interactions of the NCoR-family

co-repressors with transcription factors [25,28–31]. Because

additional isoform diversity, particularly in NCoR2, is gener-

ated by alternative splicing of the primary transcript in this

region, we next looked at the organization of exons encoding

the C-terminal interaction domains and mapped the SLiMs

to their encoding exons (figure 1c). The organization of the

paralogues is highly conserved in vertebrates with most

having 10 exons, from that encoding the first CoRNR

box (exon 37) to the stop codon (exon 46). An exception is

zebrafish NCoR2, which lacks exon 38, although many other

actinopterygians have the standard vertebrate organization

(data not shown).

The presence of the domains and motifs was used to

confirm the annotation of NCoR-family proteins encoded in

invertebrate deuterostome genomes and identified that a

http://rsob.royalsocietypublishing.org/
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Figure 1. The NCoR-family conserved motifs and exon structure. (a) The NCoR-family proteins in the vertebrates typically contain two SANT domains (green bar),
followed by three CoRNR boxes, nuclear receptor interaction motifs (yellow bars) and a carboxy-terminal SHARP-binding motif (red bar). Alignment of vertebrate
NCoR1 and NCoR2 sequences identifies a further four conserved motifs (blue bars, lower diagram). Full sequence alignments are in the electronic supplementary
material, figure S1. (b) Identity of conserved vertebrate sequences using the motif notation. Yellow bars overlie the consensus CoRNR box motif L/I.x.x.I/H.I.x.x.x.I/L
[50,51] that is embedded in each of motifs 1, 2 and 5. The C-terminal SHARP-binding sequence is overlined in red as part of motif 8. (c) Exon organization of the 30

end of representative NCoR-family genes. The regions encoding the motifs have been mapped onto the relevant exons maintaining the colour scheme in (a). In
parentheses is the number of exons in this region of the gene. The C-terminal motifs are encoded by one large exon encoding 843 amino acids in the sea urchin, but
12 exons encoding 365 amino acids in the sea squirt. (d ) Summary of C-terminal motif acquisition across the representative deuterostome panel. All contain motifs
1,2 (CoRNR boxes 1 and 2) and 8, but motif 5 (the third CoRNR box) is not present in the echinoderm and incomplete in the hemichordate and urochordate. Two of
the four vertebrate specific motifs (3 and 4) are represented by partial motifs in the urochordate and cephalochordate (motif 4 only). Sequence alignments of the
motifs are in the electronic supplementary martial, figure S2.
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representative echinoderm, Strongylocentrotus purpuratus (sea

urchin), hemichordate, Saccoglossus kowalevskii (acorn worm),

cephalochordate, Branchiostoma floridae (amphioxus), and

urochordate, Ciona intestinalis (sea squirt) each encodes one

NCoR-family co-repressor (figure 1a and see electronic sup-

plementary material, table S1 for a list of identities). In

Ciona, the C-terminal region is encoded by 12 exons, though

only a few of the exons have boundaries in common with

those in the vertebrates (figure 1c). More striking are Strongy-
locentrotus purpuratus (sea urchin), Saccoglossus kowalevskii
(acorn worm) and Branchiostoma floridae (amphioxus) NCoR-

family genes, which each encode the C-terminal region in

just one exon (figure 1c).

Mapping the conserved C-terminal motifs from the ver-

tebrates to this collection of invertebrate deuterostome

NCoR-family proteins (figure 1c) overall suggests a progress-

ive acquisition of motifs (figure 1d; electronic supplementary

material, figure S2 for sequences). Interestingly, the sea

urchin lacks the third, most C-terminal CoRNR box seen in

vertebrates, while in the acorn worm it is incomplete, lacking

the conserved C-terminal leucine or isoleucine, a distinctive

feature of the CoRNR box. To determine if this third

CoRNR box is functional would require biochemical binding

assays, but it is worth noting that acorn worm CoRNR boxes

1 and 2 have complete motifs indicating that the full sequence

can interact with acorn worm nuclear receptors. The change

in CoRNR box complement is reminiscent of the acquisition

of a similar SLiM in the Ftz gene across an insect phylogeny
[52]. Although the common deuterostome ancestor may, alter-

natively, have had three CoRNR boxes, with a subsequent loss

in the Ambulacraria, the ability of the vertebrate NCoR-family

co-repressors to interact efficiently with the wide range of

nuclear receptors will have been enhanced by the presence

of a third CoRNR box in the common ancestor of the cephalo-

chordates and the vertebrates, because the identity of the

individual CoRNR boxes drives the interactions of the

co-repressors (reviewed in [28]).
2.2. The loss of splicing potential in the 30 region of
the NCoR1 gene

We have previously shown that while Xenopus NCoR2 has 16

C-terminal isoforms, generated by the alternative splicing of

four exons, despite having the same gene organization, Xenopus
NCoR1 has a single isoform [26]. There are two possible expla-

nations: first, that NCoR2 gained the capacity for alternative

splicing or second, that NCoR1 lost the capacity for alternative

splicing, subsequent to genome duplication, the latter being

consistent with previous observations of alternative splicing

and gene duplication [53]. To examine these possibilities,

we have looked in more detail at exon 37, which in NCoR2

uses two splice donors to generate a long isoform (37bþ) that

contains motif 1 and a short isoform (37b2) that lacks this

motif [26]. We have previously shown that an antisense mor-

pholino oligonucleotide to the long isoform splice donor

http://rsob.royalsocietypublishing.org/
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smaller representing the exclusion of exon 37b.
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biases alternative splicing to produce predominantly the short

37b2 isoform, without altering the overall level of NCoR2 tran-

scripts either in the whole embryo or in the range of tissues

examined. This experimental bias generates a distinct mutant

phenotype, indicating the functional significance of exon

37 alternative splicing in embryonic development [24].

Alignment of the 30 part of Xenopus exon 37 in NCoR1 and

NCoR2 shows extensive sequence conservation, apart from the

internal splice donor, which in NCoR1 is a GA rather than the

active GT dinucleotide seen in NCoR2 (figure 2a). Including

the equivalent region of the Ciona NCoR-family gene in the

comparison (figure 2a) shows a GT at the corresponding pos-

ition suggesting that the common ancestor of Ciona and the

vertebrates had a potential splice donor dinucleotide.

Because an effective splice donor requires sequences in

addition to the conserved GT [54], we next tested whether

the presence of a GT, rather than the GA, at the internal

site in NCoR1 can reconstitute an effective splice donor.

First, we used the program MAXENTSCAN [55] to quantify

the effectiveness, as splice donors, of the sequences surround-

ing all dinucleotides in NCoR1 exon 37 that could be
converted to a GT by a single base change, and then com-

pared these with the range of scores found for all other

validated Xenopus NCoR1 exon splice donors. The average

score for the confirmed splice donors is just over 8, and this

approach identified three sites within exon 37 with a greater

score, and these sites are predicted to form strong splice

donors when the core dinucleotide is mutated to a GT. Of

these three sites, one was at the GA corresponding to the

internal splice donor in NCoR2 and the other two were

approximately 50 and 90 bp further upstream (figure 2b).

To determine, experimentally, whether the sequence con-

text of the equivalent site in NCoR1 reconstitutes an effective

splice donor, we used site-directed mutagenesis to convert

the GA to a GT and then cloned the exon, and flanking

intron sequences, into the splicing minigene, pTBNde1 [56].

Because it is possible that any GT that has a surrounding

sequence calculated to be a strong splice donor might

permit alternative splicing, we addressed specificity using

an NCoR1 exon 37 minigene in which the first predicted

strong site upstream of the equivalent site was also converted

to a GT (figure 2c).
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Transcripts from embryos injected at the two-cell stage

with a plasmid minigene were analysed at the neurula stage

by RT-PCR (figure 2d ). An NCoR2 exon 37 minigene recapitu-

lated the pattern of splicing seen in the native gene producing

two bands of similar intensity [26], as did the wild-type

NCoR1 minigene, which gave one band corresponding to

the inclusion of the full-length exon. In contrast, the minigene

with the introduced splice donor, at the equivalent site to the

internal splice donor in NCoR2, generated two bands indica-

tive of alternative splicing, the stronger band associated with

splicing from the introduced internal splice donor. An intro-

duced GT at the calculated upstream site was inactive,

because only the long form transcript, identical to that from

the native NCoR1 minigene, was produced (figure 2d ).

Although we cannot discount a sequence of events in

which an effective splice donor context arose in the NCoR-

family precursor, followed by the gain of the obligatory GT

solely in NCoR2, the simpler explanation, given the presence

of the equivalent GT in both C. intestinalis and Ciona savignyi,
is that exon 37 alternative splicing arose in the precursor

but was subsequently lost from NCoR1, by point mutation,

following gene duplication.

2.3. The conservation of NCoR2 exon 37
alternative splicing

Because the alternative splicing of NCoR2 exon 37 has been

characterized in Xenopus, mouse and humans, and generates
isoforms that differ in a functional CoRNR box motif [24], we

next investigated the conservation of the internal splice donor

across nine species of fish, two lampreys and Ciona. The

position and splice donor strength of each GT dinucleotide

across 115 bases of the 30 part of NCoR2 exon 37, centred

on the internal splice donor, was calculated by MAXENTSCAN

(figure 3a).

While the NCoR-family gene in both C. intestinalis and

C. savigny (sea squirts) has a GT at site 1, the equivalent

position to the internal splice donor in Xenopus NCoR2,

(figure 3a), it does not score well as a predicted splice donor

and there is no published transcriptomic evidence for its use.

The agnathostomes Petromyzon marinus (sea lamprey) and

Lethenteron japonicum (Japanese lamprey) each have two para-

logues and one, like NCoR1, lacks the equivalent internal

splice donor while it is present in the second, where it is pre-

dicted to be a strong splice donor in the correct frame for

productive splicing. EST data and limited RT-PCR analysis

(figure 3b) for Petromyzon marinus (sea lamprey), though,

suggest that the internal site is not commonly used.

Of three cartilaginous fish examined, only Squalus acanthias
(dogfish) has site 1. Although the Leucoraja erinacea (little skate)

has a site further upstream that is predicted to be an effective

splice donor, the corresponding transcripts are not present in

the reported transcriptome. Of the ray-finned fish, NCoR2

site 1 is present in four out of six genomes examined, being

absent in two related catfish species. It is likely that the internal

splice site donor is active in Oryzias latipes (medaka) because it

http://rsob.royalsocietypublishing.org/
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(c) RNA extracted from the embryos was subject to RT-PCR using specific pri-
mers shown as small arrows in (a). Xenopus and zebrafish clones both gave
two bands indicative of exon 37 alternative splicing in Xenopus. Injection into
zebrafish embryos resulted in splicing primarily from the internal site to give
the shorter 37b2 isoform. This indicates that the pattern of alternative spli-
cing is strongly influenced by the cellular context. S, size markers; U,
uninjected; X, injected Xenopus construct; Z, injected zebrafish construct.
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is closely followed by an in-frame stop codon that would

otherwise produce a truncated protein with compromised

function (electronic supplementary material, figure S3). An

assessment of 40-h post-fertilization (hpf) Danio rerio (zebra-

fish) embryos indicates that site 1 is predominantly used

(figure 3b) and this is supported by EST data, but there is also

a low level of the longer transcripts that use site 2. We next

examined, in more detail, why the observed use of site 1 differs

between species such as zebrafish and Xenopus, when the

consensus splice-donor sequences are identical.
2.4. The acquisition of distinct patterns of alternative
splicing in NCoR2 exon 37

During early development, zebrafish uses site 1 to produce

solely the short (37b2) isoform, however a low level of the

longer exon 37bþ transcripts can be detected by embryonic

day 5 (figure 4a). This is likely to represent the production of

NCoR2 exon 37bþ transcripts in neural tissue, as they are

also found in the dissected brain and eyes of adult fish, but

not in other tissues examined (figure 4b). This is similar to the

tissue-specific pattern seen in mice [27]. Consequently, while

both Xenopus and zebrafish use alternative splicing to generate

NCoR2 exon 37 isoforms, strategies for isoform deployment

differ in that the expression of both isoforms is widespread in

Xenopus, but temporally, and spatially, regulated in zebrafish.

To determine whether the intrinsic sequence of the

internal splice donor or its cellular context plays the greater

role in determining the splicing pattern of NCoR2 exon 37,

we generated splicing minigenes containing either zebrafish

or Xenopus exon 37, together with flanking intron sequences,

in the pTBNde1 minigene [56]. The minigenes were each

injected into Xenopus embryos at the two-cell stage and spli-

cing of the transcript from the minigene assayed by RT-PCR 1

day later (figure 5). Just as found in the endogenous gene,

the Xenopus NCoR2 minigene produces two transcripts. The

zebrafish NCoR2 minigene also now produces two transcripts
in approximately equal amounts, in contrast to the total exclu-

sion of the longer form seen for the endogenous gene in fish

at an equivalent developmental stage. This suggests that the

cellular context provided by the Xenopus embryos, rather

than the intrinsic sequence of the splice donor, determines the

outcome of exon 37 alternative splicing.

Because placing either minigene in a Xenopus context imi-

tated the endogenous Xenopus pattern of alternative splicing,

we next repeated the analysis, injecting the minigenes into

zebrafish embryos. The Xenopus minigene again produced

two bands, but this time with a significant bias towards the

short form. This was even more pronounced for the zebrafish

minigene (figure 5). Again, the pattern of alternative splicing

of the minigenes mirrors that of the endogenous host gene

indicating the importance of the cellular context.

Xenopus and zebrafish embryos differ in the way in which

they regulate alternative splicing at exon 37. The sequences

immediately adjacent to the internal splice donors are identi-

cal, as are those that surround the terminal splice donor, and

internal and terminal sites have similar strength by MAXENT

SCAN. One simple explanation is that the generation of both

isoforms, seen in the Xenopus context, is determined predomi-

nantly by the balanced splice donor strengths, while

zebrafish embryos either have a suppressor to inhibit the

terminal splice donor or a splice-promoting protein to

enhance the use of the internal donor that operates less effi-

ciently on the sequences included in the Xenopus gene

splicing construct. Later in development, the simple loss of

expression of either type of factor in zebrafish neural tissue

would result in the production of both isoforms in this tissue.
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3. Discussion
The vertebrate nuclear receptor co-repressors, NCoR1 and

NCoR2, play important roles in physiological [22,24,31,34–37,

39–41] and pathological conditions [42–45] by interacting

with a wide variety of transcription factors and other DNA

binding proteins [28]. NCoR1 and NCoR2 interact with nuclear

receptors via short sequence motifs called CoRNR boxes,

located in the intrinsically disordered carboxy-terminal part of

the co-repressor [14–18]. Alternative splicing, particularly in

NCoR2, determines the complement of motifs in the protein

and so generates diverse isoforms, each with specific binding

capabilities [25,28–31]. As a result, NCoR1 and NCoR2 conform

to a model where the selection of SLiMs by alternative splicing,

from within an IDR of a protein, plays a significant role in the

generation of functional diversity [3]. Here, we combine com-

parative and experimental approaches to analyse the origins

of co-repressor diversity across the deuterostomes.
3.1. Diversity through motif acquisition
Strongylocentrotus purpuratus (sea urchin) has a single NCoR-

family gene with only limited sequence homology to NCoR1

and NCoR2, but encoding two indicative SANT domains and

three of the eight vertebrate NCoR-family motifs. These

include two CoRNR boxes [14,50,51] that are typical SLiMs

and a SHARP interacting motif at the carboxy-terminus of

the protein. The remaining motifs may indicate regions that

interact with other transcription factors or act as sites for

post-translational modifications, such as phosphorylation,

that, at other sites, are known to modulate the activity of

the co-repressor protein in vivo [3,57–59]. In comparison,

Branchiostoma floridae (amphioxus) produces a co-repressor

with three complete CoRNR boxes. Increasing the number

of motifs will increase the functional diversity of the co-

repressor, because in vitro experiments using mouse or Xeno-
pus proteins have shown that different CoRNR boxes have

different affinities for specific nuclear receptors [14–17,25].

It is likely, however, that lifting repression by the ligand-

dependent displacement of the co-repressor will be more sig-

nificant than imposing repression by binding, because this

mechanism would set ligand concentration thresholds for

nuclear receptor activation that are dependent on the

CoRNR box complement of the co-repressor. This concept

is illustrated, in exaggerated fashion, in acute promyelocytic

leukaemia, in which specific NCoR2 isoforms are displaced

from the pathological RAR fusion protein at distinct

concentrations of retinoic acid [44].

Changes to the cis-regulatory elements in the promoter of

a transcription factor have been directly associated with evol-

utionary events [60]. Because most promoters are a collection

of independent elements that each control a limited aspect of

gene expression, a mutation in one element is likely to affect

expression of the gene in only one component of its pattern.

In contrast, mutations that affect the protein coding sequence

of a transcription factor itself will tend to affect, often calami-

tously, the expression of all downstream targets [60]. The

protein sequence changes seen in the NCoR family, however,

illustrate how the consequences of changes to the protein

coding sequence can be mitigated. By encoding functional

SLiMs within IDRs, the gain or loss of a SLiM has an incre-

mental effect, because the remaining functions of the
protein are essentially maintained [5]. The insect Ftz protein,

and its ability to interact with Ftz-F1, typically illustrates this

interaction and involves a SLiM closely related to the core

CoRNR box sequence [52].

3.2. Fragmentation of the invertebrate NCoR-family
terminal exon

The entire C-terminal region, encoded by exons 37–46 in

Xenopus, is encoded by a single exon in sea urchins and is pre-

dicted to have the same organization in acorn worms and

amphioxus. In C. intestinalis (sea squirt), however, this part

of the gene is divided into 12 exons and is consistent with chor-

date phylogeny, which predicts the tunicates, rather than

amphioxus, are most closely related to the vertebrates [61].

A similar degree of discrepancy in exon number and exon

boundary location between C. intestinalis and humans is seen

in the huntingtin gene [62]. The trigger and mechanism

for this remarkable and extensive fragmentation of the

NCoR-family gene terminal exon is unknown.

3.3. Diversity through gene duplication
Across the deuterostomes analysed, a complement of two

NCoR-family genes is first seen in the genome of the lampreys.

Gene duplication opens the possibility for a form of sub-

functionalization and neofunctionalization in which altered

cis-regulatory events, alternative splicing and protein sequence

changes happen within one paralogue on the background of an

initially redundant second sequence [63,64]. Following gene

duplication, the amino acid sequences of the paralogues have

(apart from the identified motifs) diverged extensively in the

C-terminal region such that NCoR1 and NCoR2 have less

than 40% identity in humans (data not shown). Importantly,

gene knockout studies in mice show that the two paralogues

are no longer equivalent [22,34–36].

3.4. Diversity through alternative splicing: the case of
NCoR2 exon 37

Comparisons between Xenopus NCoR1 and NCoR2 show a

high degree of nucleotide sequence conservation across the

latter half of exon 37. One difference, however, is the GT that

forms the conserved core dinucleotide of the NCoR2 internal

splice donor that is a GA in NCoR1. A GT at the equivalent

position in the single gene in both C. intestinalis and C. savignyi
suggests that the GT may be the ancestral form that changed to

GA in the NCoR1 gene after duplication. A point change that

restores the GT to the internal NCoR1 splice donor recovers

the splicing activity of this site. There is more to the activity of

this site, however, than just the dinucleotide and the immediate

surrounding sequence, because the introduction of a GT

upstream in the same exon, that generates a site predicted to

be an efficient splice donor, is inactive in Xenopus embryos.

Su et al. [53] have suggested that the loss of pre-existing alterna-

tive splicing in one paralogue, and the generation of more

diversity in the other, may not be uncommon, and this seems

a plausible scenario for NCoR1 and NCoR2.

Alternative splicing at exon 37b varies the number of

CoRNR boxes in NCoR2 and this has functional signifi-

cance in Xenopus laevis embryonic development [24].

Unlike Xenopus, the equivalent exon in NCoR1 is alternatively
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Figure 6. The pathway to diversity for the NCoR family of co-repressors. Strongylocentrotus purpuratus (sea urchin) encodes two CoRNR boxes, but this increases to
three in the cephalochordate amphioxus. Further motifs, identified by similarity to those in vertebrates, are found in the urochordate Ciona intestinalis. An additional
CoRNR box motif will increase the range of nuclear receptors to which the co-repressor can bind. While the C-terminal interaction domains are encoded by a single
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genome duplication event after the divergence of Ciona and the vertebrates [69]. Of the two resulting paralogues, NCoR1 lost the alternative splicing of exon 37b by
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which employs a different splice donor (blue lines). The alternative splicing of NCoR2 exon 37 is apparent in the teleost zebrafish, where, like mammals such as the
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SHARP domain in red.
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spliced in mammals to generate isoforms with different

numbers of CoRNR boxes, though from a different splice

donor [28] (and see NM_001190440). This is consistent with

the idea that alternative splicing of exons that contain SLiMs

within an IDR is an efficient mechanism for the generation

of isoforms with different activities that can progressively

contribute to the complexity of the cellular functions during

evolution [3,65].
3.5. Diversity through the deployment of alternative
splicing

With two splice donors in exon 37, zebrafish has the capacity

for alternative splicing, but in the early embryo uses only the

internal splice donor, and so the resulting isoform excludes

one of the CoRNR boxes. It is only later in development,

and in the adult, that alternative splicing is deployed, but

restricted to neural tissues (figure 4). In contrast, Xenopus
NCoR2 37bþ and 37b2 isoforms are readily found in all

embryonic and adult tissues analysed [27]. The activity of

trans-acting factors [66] in zebrafish, but not Xenopus,

embryos may prevent splicing from the external site either

directly, or indirectly by promoting the use of the internal

site. This is supported by the observation that a zebrafish

exon 37 minigene introduced into Xenopus embryos gave

approximately equal amounts of 37bþ and 37b2 transcripts.

The final outcome of alternative splicing, however, is likely to

depend on a combination of the intrinsic strength of the splice
sites, determined by nucleotide sequence, and the activity of

a number of trans-acting factors.

Analyses of differences in alternative splicing patterns

between humans and mice have largely come to a different con-

clusion. Using transgenic mice that contain part of human

chromosome 21, and looking at genes whose splicing patterns

differ between mice and humans, Barbosa-Morais et al. [67]

found that the human genes maintain the human pattern,

even in the mouse context, concluding that species-specific pat-

terns of alternative splicing are driven by differences within the

genes rather than by changes in the trans-acting factors [67].

The results presented here indicate that differences in the

activity of trans-acting factors between species can also play a

significant role.

A difference between vertebrates and other deuterostomes

may lie in the increased complexity of their gene regulatory net-

works [68]. The vertebrate co-repressors NCoR1 and NCoR2

exemplify this because they interact with an impressively

broad range of transcription factors by generating isoforms

in which the interaction domains contain different comp-

lements of the CoRNR box motifs. In contrast, the sea urchin

co-repressor is much simpler with one fewer CoRNR boxes

and a lack of carboxy-terminal isoforms. In this paper, we

detail the pathway leading to the increased diversity of ver-

tebrate co-repressor isoforms (figure 6), highlighting the role of

SLiMs located within IDRs, and their deployment by alternative

splicing. We therefore identify a mechanism that generates func-

tional diversity in a transcription-associated protein, a critical

contributory factor in determining organismal complexity.
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4. Material and methods
4.1. Sequence alignment
The accession numbers of genes used in the comparisons

are listed in the electronic supplementary material, table S1.

Where the invertebrate NCoR-family orthologue was not

annotated, candidates were identified by BLAST compari-

sons using vertebrate NCoR-family motifs. Candidates with

at least two CoRNR box motifs and a C-terminal SHARP

interaction motif in the correct order were further validated

by the presence of two upstream SANT domains. The

sequence of the protein was then inferred from a combination

of manual annotation and reference to online annotation.

Multiple sequences were aligned using CLUSTALW2 and

CLUSTAL OMEGA (EBI-EMBL) using standard criteria.

4.2. RT-PCR, cloning and sequencing
Zebrafish (AB mixed with Tubingen) total RNA was isola-

ted from five to 10 embryos at the developmental stages

described in the text or at 26–28 hpf using TRI Reagentw

(Sigma) and purified using RNeasy Micro Kit (Qiagen).

Xenopus total RNA was isolated from three to five neurula

stage embryos by phenol extraction and precipitation. Alterna-

tive splicing was assessed by conversion of RNA into cDNA

using Superscript III reverse transcriptase and random nona-

meric primers, followed by PCR. PCR used species and

exon-specific oligonucleotides primers (electronic supplemen-

tary material, table S2) and Platinum Taq polymerase

(ThermoBioscience) or ReadyMixTM Taq (Sigma). Where

described, PCR products were resolved on 1–2% agarose, 1�
TBE or 0.5� TAE gels, cloned directly into the vector pCR2.1

(TA cloning, Invitrogen) and sequenced (Source Bioscience).

4.3. Cloning of Xenopus laevis and zebrafish exon 37
genomic regions

Total nucleic acid was prepared from 50 X. laevis tailbud

embryos [70] and treated with RNAse. Sets of primers were

designed from the X. laevis genome assembly v6 on Xenbase

[71] to amplify exon 37 of NCoR2 and NCoR1 with approxi-

mately 250 base pairs of upstream and downstream intron

sequence. The PCR products were cloned into pCR2.1 (Invitro-

gen, TA cloning) and sequenced (Source Bioscience). The

genomic fragments were then blunt-end cloned into the Nde1

site (blunted) of the splicing vector pTBNde1 [56,72]. This

vector is based on pBluescript and contains the CMV enhancer

driving the expression of human globin and fibronectin exons

separated by an intron. The Nde1 site is located centrally

within the intron. The orientation of the cloned insert was

determined by sequence.

In the zebrafish genome, NCoR2 exon 36 is separated

from exon 37 by a short intron of 97 basepairs. We therefore
used a primer 249 basepairs upstream of exon 36, spanning a

naturally occurring Nde1 site and a reverse primer 474 base-

pairs downstream of exon 37 that incorporated an Nde1 site.

Fragments were cloned into pCR2.1 (Invitrogen, TA cloning)

excised with Nde1, cloned into the Nde1 site of splicing

vector pTBNde1 and the orientation checked by sequencing.
4.4. Site-directed mutagenesis of NCoR1 exon 37
A single base change was introduced into the NCoR1 exon 37

sequence by site-directed mutagenesis of the clone in pCR2.1

using overlapping oligonucleotides carrying the required

mutation. Amplification of the mutated sequence used Vent

polymerase (New England Biolabs) to limit further mutation

and the final construct checked by sequencing. The fragments

from pCR2.1 were then blunt-end cloned into pTBNde1 [72]

as described above.
4.5. Splicing assays
The NCoR1 and NCoR2 exon 37 constructs in pTBNde1

were grown in media and isolated (plasmid midi-prep

kit, Machery-Nagel). Approximately 200 pg of plasmid at

20 pg nl21 was injected into each X. laevis embryo at the two-

cell stage, and the embryos grown to the mid neurula stage

(Nieuwkoop and Faber, stage 16) [73]. Zebrafish embryos

were injected at the one-cell stage with 200 pg of plasmid at

400 pg nl21, grown overnight at 328C and collected at stage

27/28 hpf. Total nucleic acid was then extracted [70] and

DNA removed by RNAse-free DNAse digestion. The remain-

ing RNA was precipitated, resuspended and converted to

cDNA using reverse transcriptase. The splicing status of the

transcripts from the clones was assayed by PCR using forward

and reverse primers against the human exons [72] or one

human and one Xenopus- or zebrafish-specific sequence and

the products resolved on 1.5–2% agarose gels.
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