
For Peer Review
 O

nly

A SUBGRADIENT METHOD BASED ON GRADIENT SAMPLING

FOR SOLVING CONVEX OPTIMIZATION PROBLEMS

Journal: Numerical Functional Analysis and Optimization

Manuscript ID: LNFA-2014-0135.R1

Manuscript Type: Original Article

Date Submitted by the Author: 21-Aug-2015

Complete List of Authors: Hu, Yaohua; Shenzhen University,
Sim, Chee-Khian; University of Portsmouth,
Yang, Xiaoqi; Hong Kong Polytechnic University,

Keywords:
gradient sampling technique, subgradient method, projection, convex
optimization

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29589554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For Peer Review
 O

nly
A SUBGRADIENT METHOD BASED ON GRADIENT SAMPLING

FOR SOLVING CONVEX OPTIMIZATION PROBLEMS

Yaohua Hu∗, Chee-Khian Sim†, Xiaoqi Yang‡

Abstract Based on the gradient sampling technique, we present a subgradient algorithm

to solve the nondifferentiable convex optimization problem with an extended real-valued ob-

jective function. A feature of our algorithm is the approximation of subgradient at a point

via random sampling of (relative) gradients at nearby points, and then taking convex com-

binations of these (relative) gradients. We prove that our algorithm converges to an optimal

solution with probability 1. Numerical results demonstrate that our algorithm performs

favorably compared with existing subgradient algorithms on applications considered.

Keywords Gradient sampling technique; Subgradient method; Projection; Convex opti-

mization.

Mathematics Subject Classification 90C25; 65K05; 49M37.

1 Introduction

Subgradient methods are popular and practical techniques used to minimize a nondifferen-

tiable convex function. Because of their simple formulations and low storage requirements,

subgradient methods can potentially be applied to a wide variety of problems. Subgradient

methods originated with the works of Shor [32], Polyak [27] and Ermoliev [9] in the 1960s.

In the last 50 years, many properties of subgradient methods have been discovered, gener-

alizations and extensions have been proposed, and many applications have been found (see

[2, 3, 12, 14, 17, 18, 24, 25, 28, 32]). Nowadays, the subgradient method still remains an

important tool for large-scale nonsmooth optimization and stochastic optimization problems,

due to its simple formulation and low storage requirement.

Nedić and Ozdaglar [25] propose a dual subgradient method to solve the resource alloca-

tion problems in large-scale networks. Since these constrained primal problems have favorable

dual structures, the dual subgradient method achieves a highly efficient performance. In the

dual subgradient algorithm, the authors generate the subgradient information in the dual

∗College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China (may-

hhu@szu.edu.cn).
†Department of Mathematics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth

PO1 3HF, United Kingdom (chee-khian.sim@port.ac.uk).
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong

Kong (mayangxq@polyu.edu.hk).

1

Page 1 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 2

space. Using the subgradient information and an averaging scheme, they construct an ap-

proximate primal solution with an explicit error estimate. Along similar lines, Larsson et

al. [22] use an averaging scheme to show that elements of the averaged subgradient sequence

satisfy the optimality conditions in the limit, while the original generated sequence does not

satisfy these optimality conditions.

Combining the primal and dual processes, Larsson et al. [23], Nedić and Ozdaglar [25] and

Nesterov [26] develop primal-dual subgradient methods for nondifferentiable convex problems

with several classical types of penalty function and stepsize. The primal-dual subgradient

algorithm generates a sequence of primal and dual iterates for which some subsequence con-

verges to a pair of primal-dual optimal solutions. An important improvement gained by these

primal-dual subgradient algorithms is that they possess a natural stopping criterion, which

is unavailable in purely primal or purely dual subgradient methods.

Nedić and Bertsekas [24] develop an incremental subgradient method to minimize a convex

function that is a summation of a large number of component convex functions. This type

of convex function appears in large-scale least squares problems such as in the training of

neural networks. The main idea of incremental subgradient methods is to perform each

iteration as a cycle of some subiterations. Using previous subiterates, each subiteration is a

subgradient algorithm iteration on a component function. Numerical results in [24] indicate

that the incremental subgradient method converges fast when iterates are far from the optimal

solution.

Kim and Ahn [15] demonstrate the convergence of generalized subgradient method, which

approximates the current subgradient by subgradients at previous iterations. Goffin and

Kiwiel [11] and Kiwiel [20, 21] exhibit some useful properties of ballstep subgradient methods,

which use projections onto successive approximations of level sets to evaluate the optimal

value. Gasimov [10] and Burachik et al. [5] applied a modified subgradient algorithm to

the dual problem defined by the sharp augmented Lagrangian, whose primal problem is a

nonconvex minimization problem with equality constraints. The authors not only establish

primal and dual convergence results, but also generate a strictly increasing sequence of dual

values. This monotone property is impossible in other types of subgradient method. Beck

and Teboulle [1] view the mirror descent algorithm as a nonlinear projected-subgradient

type method with the usual Euclidean distance function replaced by a general distance-like

function.

Recently, gradient sampling technique is used in designing algorithms for optimization

problems. The gradient sampling (in short, GS) technique is first presented by Burke et

al. [7] to solve typical matrix optimization problems. In another of their work [6], they

demonstrate that the Clarke subdifferential at a point can be approximated by the convex

hull of gradients sampled at random nearby points. Extending their previous works, in Burke

et al. [8], they design a steepest descent GS algorithm to minimize a locally Lipschitz function.

In this paper, we consider a nondifferentiable convex optimization problem with an ex-

tended real-valued objective function, where the domain of the objective function may have

an empty interior. To solve this problem, we incorporate the GS technique into the subgra-

Page 2 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 3

dient method, which is to approximate the subdifferential via random sampling of relative

gradients at nearby points. If the domain has an empty interior, the random sampling process

cannot be carried out on the whole space Rn, but on the affine hull spanned by the domain of

the objective function. Because a gradient cannot be defined in the domain whose interior is

empty, we use the relative gradient (Definition 2.1) instead. Furthermore, as each iterate is

not necessarily a relative interior point of the domain, we perform a perturbation step, which

perturbs the projected vector to the relative interior of the domain, to ensure the sampling

process can be carried out.

The motivation for introducing our algorithm is that in applications, choosing a suitable

subgradient in the subdifferential at a point can be essential for good performance − “In

the nondifferentiable case, we have some flexibility in the gradient selection and the choice

of (sub)gradients may affect the quality of the bound.” (pp. 14-15 of [4]) − but it may be

difficult to find such a subgradient. Our algorithm circumvents this by considering gradients

at nearby points instead. These gradients are unique and hence there is no issue of choosing

a suitable subgradient among infinitely many subgradients in a subdifferential.

Our algorithm is an implementation of the approximate subgradient method as discussed

in [19]. We introduce the GS procedure in our algorithm, which gets the approximate subgra-

dient via convex combination of relative gradients sampled at random nearby points. Even

though our algorithm can be seen as a special case of the approximate subgradient method,

the numerical experiments show that our algorithm performs better than the classical sub-

gradient method, as well as variants of the subgradient method. This is the advantage of

our algorithm over the approximate subgradient method. Due to the convex structure, our

algorithm, applying the GS technique, is easy to implement, which does not need to solve a

subproblem to find the search direction and the stepsize, as in [8]. The easy implementation

is the advantage of our algorithm over the steepest descent GS algorithm [8].

In Section 5, we illustrate our algorithm on three examples. Our numerical experiments

show that the GS procedure does not take much time in the whole algorithm and our algo-

rithm always requires fewer iterations, costs less time or achieves the better optimal values

than existing subgradient algorithms. The numerical results show the promise of our method

as compared to other types of subgradient method. Especially for solving the affine rank

minimization problem using nuclear norm, our algorithm takes one third or half of the com-

putation time that is required for the ordinary subgradient method.

This paper is organized as follows. In Section 2, we present notations used in the paper

and also our subgradient algorithm based on the GS technique. In Section 3, we demonstrate

the convergence of our algorithm. In Section 4, we compute the perturbation direction, which

we introduce in this paper, for two common types of domain. This perturbation direction

plays a key role in our algorithm. Finally we exhibit several numerical results in Section 5.

Page 3 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 4

2 The subgradient method based on gradient sampling

In this paper, we consider the Euclidean space Rn, view a vector as a column vector, and

denote by ⟨x, y⟩ the inner product of two vectors x, y ∈ Rn. We use ∥x∥ to denote the standard
Euclidean norm, ∥x∥ =

√
⟨x, x⟩. For a set Z ⊆ Rn, we denote the closure (resp. interior,

convex hull, affine hull, relative interior, relative boundary) of Z by clZ (resp. intZ, convZ,

affZ, riZ, rbdZ). For x ∈ Rn and δ ∈ R+, we use B(x, δ) to denote the closed Euclidean ball

centered at x of radius δ. For a convex set Z, the Euclidean distance dist(x,Z) of x from Z,

the projection PZ(x) of x onto Z and the normal cone to Z at x are respectively defined by

dZ(x) := inf
z∈Z

∥x− z∥,

PZ(x) := {z ∈ Z : ∥x− z∥ = dist(x,Z)} = argmin
z∈Z

∥x− z∥,

and

NZ(x) := {ν ∈ Rn : ⟨ν, z − x⟩ ≤ 0,∀z ∈ Z}.

Given a nonsmooth convex function f : Rn → R̄(:= R ∪ {+∞}), the (effective) domain and

the subdifferential of f at x ∈ Rn are respectively defined by

domf := {x ∈ Rn : f(x) < +∞},

and

∂f(x) := {g : f(y) ≥ f(x) + ⟨g, y − x⟩,∀y ∈ Rn}.

In this paper, we consider the following convex optimization problem

(P) min
x∈Rn

f(x), (2.1)

where f : Rn → R is a proper closed convex function which may be nonsmooth. Throughout

this paper, we let X := domf , V be the subspace parallel to affX, and X∗ and f∗ be the

optimal solution set and optimal value of (P), respectively.

The main idea of the subgradient method is to generalize the gradient method by replacing

the gradient with an arbitrary subgradient. The iteration formula is given by

xk+1 = PX(xk − vkgk), (2.2)

where vk > 0 is the stepsize and gk ∈ ∂f(xk). When f is continues differentiable at xk, the

only choice for gk is ∇f(xk), and the subgradient method is reduced to the gradient method.

In practice, the ϵ-subgradient is usually considered due to the application and computation

errors

∂ϵf(xk) := {g : f(x) ≥ f(xk) + ⟨g, x− xk⟩ − ϵ,∀x ∈ Rn}.

When int(domf) = ∅, the gradient of f cannot be defined. The relative gradient of f is

considered instead in such case. The definition of relative gradient is given as follows.

Page 4 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 5

Definition 2.1 ([13]). Let X = domf , V be the subspace parallel to affX. A vector g ∈ V

is called the relative gradient of f at x with respect to X, denoted by ∇Xf(x̄), if

f(x+ h) = f(x) + ⟨g, h⟩+ o(∥h∥), ∀h ∈ V.

If such g exists, we say that f is relatively differentiable at x.

It is easy to see that the relative gradient, if exists, is unique. To understand Definition 2.1,

for given x0 ∈ X, we introduce a new convex function f0 := f(x0 + ·). This transformation

makes the domain of f0 full-dimensional on the subspace V , and thus f0 is differentiable

almost everywhere on int(domf0) ⊂ V , that is, f is relatively differentiable almost everywhere

on riX (see [13, Page 17]). Actually, ∇Xf(x) is the gradient of f0 at x− x0.

Now we present a subgradient method based on gradient sampling technique (in short,

sampling SGM) for solving (2.1). Since we calculate relative gradients at points in a certain

neighborhood of the current iterate in the GS technique, we need all iterates to be relative

interior points of the domain. Hence, if an iterate is not a relative interior point of X, we

perform a perturbation step to guarantee the iterate be a relative interior point (Step 3

of algorithm) and to ensure the GS technique can succeed. Therefore, the sampling SGM

consists of generating a sequence {xk}, where xk+1 is obtained from xk by first moving along

a direction gk, constructed via random sampling of relative gradients at nearby points of xk,

to a new point. xk+1 is then obtained from the new point by projection onto X and then

taking a perturbation step.

In the following algorithm, D denotes the set of all points in X where f is relatively dif-

ferentiable, and vk (resp. δk, µki, αk) denotes the stepsize (resp. sampling radius, sampling

directions, perturbation weight) at the k-th iteration.

Subgradient method based on the gradient sampling technique (sampling SGM).

Step 1. (Initialization)

Start from k = 0, select an initial point x0 ∈ riX, a sample size s, stepsizes {vk} and

perturbation weights {αk} with αk ∈ (0, 1).

Step 2. (Generate the approximate subdifferential by gradient sampling technique)

Let µk1, · · · , µks be sampled independently and uniformly from B(0, 1) ∩ V . Choose

the sampling radius to satisfy 0 < δk ≤ drbdX(xk). Set

xki = xk + δkµki, i = 1, . . . , s. (2.3)

If for some i = 1, . . . , s, the point xki ̸∈ D, then STOP; otherwise, set

Gk = conv{∇Xf(xk1), . . . ,∇Xf(xks)},

and choose an arbitrary element gk in Gk as an approximate subgradient of f at xk,

i.e.,

gk =
s∑

i=1

λki∇Xf(xki), with
s∑

i=1

λki = 1 and λki ≥ 0.

Page 5 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 6

Go to Step 3.

Step 3. (Solution update and perturbation)

Compute x̄k+1 = PX(xk − vkgk) by solving the convex program

min ∥x− (xk − vkgk)∥2

s.t. x ∈ X.

Compute the perturbation vector yk such that

yk ∈ {x̄k+1 −NX(x̄k+1)} ∩ riX ∩B(x̄k+1, 1) (2.4)

and set

xk+1 = (1− αk)x̄k+1 + αkyk, with 0 < αk < 1. (2.5)

Set k = k + 1 and go back to Step 2.

The following remarks explain the choice of parameters and the design of this algorithm.

Remark 2.1. In Step 2, we choose δk ≤ drbdX(xk) to keep all sampling points xki in X. Even

though xki is in X, xki may not be in D. In this case, our algorithm will stop and it turns

out to be failed. Fortunately, in the proof of Theorem 3.2, we show that our algorithm will

not terminate in Step 2, that is, an infinite sequence {xk} will be generated by our algorithm,

with probability 1.

Remark 2.2. In (2.4) of Step 3, yk lies in riX to ensure that xk+1 ∈ riX. Moreover, yk
belongs to {x̄k+1 −NX(x̄k+1)} ∩ B(x̄k+1, 1) ensures convergence of our algorithm. We show

the existence of such yk in Lemma 3.3, and how it can be calculated for two common domains

in Section 4.

There are two main differences between the sampling SGM and the ordinary subgradient

method (in short, ordinary SGM). The first difference is the random sampling and subgradi-

ent approximation processes. The ordinary SGM always directly calculates and utilizes the

subgradient information, while our sampling SGM generates the subgradient by calculating

the convex hull of relative gradients sampled at random nearby points. Secondly, it is the

perturbation step. The ordinary SGM performs a projection operation after each solution

updating step. It makes each iterate xk+1 a feasible point which might not be a relative

interior point of X. On the other hand, the sampling SGM performs a perturbation (2.5)

after each projection operation. It makes each iterate xk+1 a relative interior point of X.

Note that if x̄k+1 is already a relative interior point of X, then we have yk = x̄k+1. Therefore,

if the optimal solution is a relative interior point of X, no perturbation is needed when close

to the optimal solution.

Page 6 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 7

3 Convergence analysis

In this section, we prove the convergence of the sampling SGM. We first state the following

two lemmas, which show some basic properties of the approximate subgradient.

Lemma 3.1 ([16, Lemma 3.1 (i)]). Let g1 be a subgradient of f at x1 ∈ X. Then, for any

x2 ∈ X, g1 is a ϵ-subgradient of f at x2 with ϵ = f(x2)− f(x1)− ⟨g1, x2 − x1⟩.

Lemma 3.2 ([16, Lemma 3.1 (ii)]). Let gi be an ϵi-subgradient of f at x ∈ X for i = 1, . . . , s.

Then, the convex combination
∑s

i=1 λkigi is an ϵ-subgradient of f at x with ϵ =
∑s

i=1 λkiϵi.

From Lemmas 3.1-3.2, it follows that the direction gk ∈ Gk, generated in Step 2 of the

sampling SGM, is an approximate subgradient direction. Indeed, when xki ∈ D, ∇Xf(xki)

is a relative gradient of f at xki. Thus, by using Lemma 3.1, we have that ∇Xf(xki) is

a ϵki-subgradient of f at xk with ϵki = f(xk) − f(xki) + ⟨∇Xf(xki), δkµki⟩. Furthermore,

from Lemma 3.2, it follows that the convex combination gk =
∑s

i=1 λki∇Xf(xki) is also a

ϵk-subgradient of f at xk with ϵk =
∑s

i=1 λkiϵki, that is

f(x) ≥ f(xk) + ⟨gk, x− xk⟩ − ϵk
= ⟨gk, x− xk⟩+

∑s
i=1 λkif(xki)−

∑s
i=1 λki⟨∇Xf(xki), δkµki⟩, ∀x ∈ Rn.

(3.1)

The following lemma is very important for our algorithm. It demonstrates that Step 3 of

the sampling SGM is well-defined in that it guarantees the existence of perturbation vector.

Lemma 3.3. Let C ⊆ Rn be a nonempty closed convex set, then for each x ∈ C, the

intersection {x−NC(x)} ∩ riC ∩B(x, 1) is nonempty.

Proof. This lemma follows if we show that

(−NC(x)) ∩
{
− x+ ri(C ∩B(x, 1))

}
̸= ∅,

noting that riC ∩B(x, 1) = ri(C ∩B(x, 1)) (see [13, Proposition 2.1.10]).

By contradiction, suppose that(−NC(x)) ∩
(
− x+ ri(C ∩ B(x, 1))

)
= ∅. By the separation

theorem for convex sets (see [13]), there exists a vector s ̸= 0, such that

⟨s,−y⟩ ≥ 0, ∀y ∈ NC(x), (3.2)

⟨s,−x+ z⟩ < 0, ∀z ∈ ri(C ∩B(x, 1))

Taking z in the closure of ri(C ∩B(x, 1)), the last inequality holds as

⟨s,−x+ z⟩ ≤ 0, ∀z ∈ C ∩B(x, 1),

which is equivalent to s ∈ NC(x). From (3.2) it then follows that ⟨s,−s⟩ ≥ 0, which implies

s = 0. This is a contradiction to the separation theorem for convex sets.

Throughout this paper, we have the following assumptions which are commonly used

when we study convex programs.

Page 7 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 8

(A1) The optimal solution set X∗ is nonempty.

(A2) The relative gradients of f are bounded, i.e., there exists some scalar M such that

∥∇Xf(x)∥ ≤M for all x ∈ D.

It is well-known that the stepsize rule is critical in subgradient methods. In this paper,

we investigate convergence property of the sampling SGM using the following stepsize rules.

(a) Constant stepsize rule. The stepsize vk ≡ v > 0.

(b) Divergence stepsize rule. The stepsize vk satisfies

vk > 0,

+∞∑
k=0

vk = +∞,

+∞∑
k=0

v2k < +∞. (3.3)

Theorem 3.1. Let Assumptions (A1) and (A2) hold. Suppose the sequence {xk} is generated

by the sampling SGM with parameters δk and αk satisfying δk ≤ drbdX(xk), αk ∈ (0, 1),∑+∞
k=0 α

2
k < +∞, and the constant stepsize v. Then, limk→∞ f(xk) ≤ f∗ + vM2/2 with

probability 1.

Proof. We begin the proof by making an observation concerning the stochastic structure of

the sampling SGM. We first consider the case when the algorithm terminates finitely. Note

that xk ∈ riX, δk > 0, and µki is a realization of a random variable that is uniformly

distributed on B(0, 1)∩V . Since f is relatively differentiable almost everywhere on riX (also

on X), by measure theory, the probability that xki ̸∈ D is zero for each i and k. Therefore,

with probability 1, the algorithm does not terminate in Step 2.

We now restrict our attention to the case when the algorithm does not terminate finitely.

According to our sampling SGM, for all x ∈ X, we have

∥xk+1 − x∥2 = ∥x̄k+1 − x− αk(x̄k+1 − yk)∥2

= ∥x̄k+1 − x∥2 − 2αk⟨x̄k+1 − x, x̄k+1 − yk⟩+ α2
k∥x̄k+1 − yk∥2.

(3.4)

Since yk ∈ {x̄k+1 −NX(x̄k+1)}, we have

⟨x̄k+1 − x, x̄k+1 − yk⟩ ≥ 0,∀x ∈ X.

Furthermore, yk ∈ B(x̄k+1, 1) implies that ∥x̄k+1 − yk∥ ≤ 1. Therefore, (3.4) is reduced to

∥xk+1 − x∥2 ≤ ∥x̄k+1 − x∥2 + α2
k

≤ ∥xk − vgk − x∥2 + α2
k

= ∥xk − x∥2 − 2v⟨gk, xk − x⟩+ v2∥gk∥2 + α2
k,∀x ∈ X.

(3.5)

By (3.1) and (3.5), for all x ∈ X, we obtain

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2v(
∑s

i=1 λkif(xki)− f(x))

+ 2v(
∑s

i=1 λki⟨∇Xf(xki), δkµki⟩) + v2∥gk∥2 + α2
k

≤ ∥xk − x∥2 − 2v(
∑s

i=1 λkif(xki)− f(x)) + 2vδkM + v2M2 + α2
k,

(3.6)

Page 8 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 9

where the second inequality follows from (A2) and that sampling points are in the unit ball.

We denote xk + δkµk =
∑s

i=1 λkixki, where µk :=
∑s

i=1 λkiµki. By the convexity of f and

(3.6), for all x ∈ X, we obtain

2v(f(xk + δkµk)− f(x)) ≤ 2v(
∑s

i=1 λkif(xki)− f(x))

≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 2vδkM + v2M2 + α2
k.

(3.7)

Summing (3.7) over k = 0, . . . , n, for all x ∈ X, we obtain∑n
k=0 f(xk + δkµk)

n
− f(x) ≤ ∥x0 − x∥2

2nv
+
M

∑n
k=0 δk
n

+
vM2

2
+

∑n
k=0 α

2
k

2nv
. (3.8)

By the assumptions that
∑∞

k=0 α
2
k < +∞ and that δk ≤ drbdX(xk) ≤ ∥xk − x̄k∥ ≤ αk−1,

we obtain lim
∑n

k=0 δk/n = 0 (cf. [19, Lemma 2.1]). Thus, by using [19, Lemma 2.1], the

relation (3.8) implies

lim
k→∞

f(xk) ≤ lim
n→∞

∑n
k=0 f(xk + δkµk)

n
≤ f(x) +

vM2

2
, ∀x ∈ X,

Therefore, we have proved that limk→∞ f(xk) ≤ f∗ + vM2/2 with probability 1.

Theorem 3.2. Let Assumptions (A1) and (A2) hold. Suppose the sequence {xk} is generated

by the sampling SGM with parameters δk and αk satisfying δk ≤ drbdX(xk), αk ∈ (0, 1),∑+∞
k=0 α

2
k < +∞, and the divergence stepsize rule (3.3). Then, xk converges to some x∗ ∈ X∗

and limk→∞ f(xk) = f∗, with probability 1.

Proof. Similar to the proof of Theorem 3.1, by using (3.3), we have that the algorithm

generates an infinite sequence and limk→∞ f(xk) = f∗ with probability 1. Then we prove the

convergence of sequence {xk} as follows.

From inequality (3.6), if we use any x̄ ∈ X∗ instead of x, we have

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − 2vk(
∑s

i=1 λkif(xki)− f(x̄)) + 2vkδkM + v2kM
2 + α2

k

≤ ∥xk − x̄∥2 + 2vkδkM + v2kM
2 + α2

k.
(3.9)

The hypotheses, as well as (3.3), imply that

∞∑
k=0

(
2vkδkM + v2kM

2 + α2
k

)
<∞. (3.10)

This implies that the sequence {xk} is bounded. Furthermore, as we have proved that

limk→∞ f(xk) = f∗, one has that {xk} has a cluster point x∗ ∈ X∗. Finally, {xk} converges

to x∗ from (3.9), using x∗ in place of x̄, noting that the tail sum
∑∞

i=k

(
2viδiM +v2iM

2+α2
i

)
vanishes as k tends to infinity.

Page 9 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 10

4 Calculating the perturbation vector for two common do-

mains

The perturbation vector, yk, plays a key role in the sampling SGM to guarantee that we

obtain relative gradients at nearby points of each iteration and to achieve the convergence

properties. We have proved its existence in Lemma 3.3. In this section, we show how this

vector can be calculated for two common cases of the domain X: X is a convex polyhedron

or sublevel set of some convex quadratic functions. For simplicity, we denote x̄ := x̄k+1 in

what follows. We need to find s̄ ∈ Rn to satisfy x̄ − s̄ ∈ riX, s̄ ∈ NX(x̄) and ∥s̄∥ ≤ 1. The

perturbation vector yk can then be found by setting yk := x̄− s̄.

4.1 Convex Polyhedron

Let X be a convex polyhedron in Rn, i.e.,

X := {x : ⟨ai, x⟩ ≤ bi, ∥ai∥ = 1, i = 1, 2, . . . ,m}.

For each x̄ ∈ X, let the active index set be

J(x̄) := {i : ⟨ai, x̄⟩ = bi, i = 1, 2, . . . ,m}.

It is well-known that the normal cone to X at x̄ is given by

NX(x̄) = cone{aj : j ∈ J(x̄)}
= {

∑
j∈J(x̄) βjaj : βj ≥ 0}.

Since we need s̄ ∈ NX(x̄), s̄ =
∑

j∈J(x̄) βjaj with βj ≥ 0 for j ∈ J(x̄). We next deduce

conditions on βj such that x̄− s̄ ∈ riX, that is, ⟨ai, x̄− s̄⟩ = ⟨ai, x̄−
∑

j∈J(x̄) βjaj⟩ < bi, for

i = 1, 2, . . . ,m. The deduction is divided into two cases: (a) x̄ ∈ riX and (b) x̄ ∈ rbdX.

(a) x̄ ∈ riX.

In this case, J(x̄) = ∅, s̄ ∈ NX(x̄) = {0}, and x̄− s̄ = x̄ ∈ riX. Hence, βj = 0, j ∈ J(x̄).

(b) x̄ ∈ rbdX.

Deduction of conditions on βj is split into two subcases based on the index of ai: (i)

i ̸∈ J(x̄) and (ii) i ∈ J(x̄), as follows.

(i) i ̸∈ J(x̄).

In this case, we have ⟨ai, x̄⟩ < bi. Choose βj , j ∈ J(x̄), to satisfy

0 < βj <
1

|J(x̄)|
min{ min

i̸∈J(x̄)

bi − ⟨ai, x̄⟩
max{−⟨ai, aj⟩, 0}

, 1}. (4.1)

Then we obtain ⟨ai, x̄− s̄⟩ = ⟨ai, x̄⟩ − ⟨ai,
∑

j∈J(x̄) βjaj⟩ < bi.

Page 10 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 11

(ii) i ∈ J(x̄).

In this case, we have ⟨ai, x̄⟩ = bi. Hence, to guarantee ⟨ai, x̄ − s̄⟩ < bi, we need to

choose βj ∈ J(x̄) such that ∑
j∈J(x̄)

βj⟨ai, aj⟩ > 0. (4.2)

Therefore, for (a), s̄ = 0 satisfies x̄ − s̄ ∈ riX, s̄ ∈ NX(x̄) and ∥s̄∥ ≤ 1. Hence, yk can

be found. For (b), we can find βj , j ∈ J(x̄) that satisfy both (4.1) and (4.2). To find

βj , j ∈ J(x̄) that satisfy (4.2) for all i ∈ J(x̄), we solve the following system of linear

inequalities ∑
j∈J(x̄)

βj⟨ai, aj⟩ ≥ 1,∀i ∈ J(x̄),

in practice, instead. By scaling these βj , j ∈ J(x̄), appropriately so that ∥
∑

j∈J(x̄) βjaj∥ ≤
1, we can then find s̄ and hence the perturbation vector yk.

Remark 4.1. s̄ and hence the perturbation vector yk in the box case is particularly easy to

calculate. For example, if X = Rn
+, we obtain

s̄ =
sign(x̄)− e√

n
,

where e = (1, 1, . . . , 1)T and sign(·) denotes the sign function.

4.2 Sublevel set of some convex quadratic functions

Define

fi(x) :=
1

2
xTQix+ cTi x+ di, i ∈ I = {1, 2, . . . ,m},

where Qi is symmetric, positive semi-definite matrix, ci ∈ Rn and di ∈ R. Let X be the

sublevel set of these convex quadratic functions, i.e.,

X := {x : f(x) ≤ 0},

where

f(x) := max
i∈I

fi(x).

For each x̄ ∈ X, let the active index set be

J(x̄) := {i : fi(x̄) = 0, i ∈ I}.

Again, we want to find the perturbation vector yk := x̄− s̄, where s̄ satisfies x̄− s̄ ∈ riX, s̄ ∈
NX(x̄) and ∥s̄∥ ≤ 1. We do this by looking at the only two situations that x̄ can be in.

(a) x̄ ∈ riX.

In this case, J(x̄) = ∅, s̄ ∈ NX(x̄) = {0}, and x̄− s̄ = x̄ ∈ riX.

Page 11 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 12

(b) x̄ ∈ rbdX.

From [30, Proposition 10.3], by the regularity of f , the normal cone to X at x̄ is given

by
NX(x̄) = cone{∇fi(x̄) : i ∈ J(x̄)}

= cone{Qix̄+ ci : i ∈ J(x̄)}
= {

∑
j∈J(x̄) βj(Qj x̄+ cj) : βj ≥ 0}.

Since we need s̄ ∈ NX(x̄), it can be represented as s̄ =
∑

j∈J(x̄) βj(Qj x̄+ cj) with βj ≥ 0.

Let β := (β1, . . . , β|J(x̄)|)
T ∈ R|J(x̄)|, aj := Qj x̄ + cj ∈ Rn and A := (a1, . . . , a|J(x̄)|) ∈

Rn×|J(x̄)|, then s̄ = Aβ. In the following, we deduce conditions on β such that x̄−s̄ ∈ riX,

that is, fi(x̄− s̄) < 0, for all i ∈ I. Note that

fi(x̄− s̄) = 1
2(x̄− s̄)TQi(x̄− s̄) + cTi (x̄− s̄) + di

= 1
2 s̄

TQis̄− x̄TQis̄− cTi s̄+ fi(x̄)

= 1
2β

T (ATQiA)β − (x̄TQi + cTi)Aβ + fi(x̄).

(i) i ̸∈ J(x̄).

In this case, we have fi(x̄) < 0. To ensure fi(x̄− s̄) < 0, we shall choose β ∈ R|J(x̄)|

such that

1

2
βT (ATQiA)β − (x̄TQi + cTi)Aβ + fi(x̄) < 0. (4.3)

(ii) i ∈ J(x̄).

In this case, we have fi(x̄) = 0. Then, as in (4.3), we need

1

2
βT (ATQiA)β − (x̄TQi + cTi)Aβ < 0. (4.4)

Thus, the vector s̄ =
∑

j∈J(x̄) βj(Qj x̄+ cj), satisfying (4.3) for all i ̸∈ J(x̄) and (4.4) for

all i ∈ J(x̄), has the properties that s̄ ∈ NX(x̄) and x̄− s̄ ∈ riX. Let

Fi(β) :=
1

2
βTPiβ − hTi β + fi(x̄),

where Pi := ATQiA, hi := (x̄TQi + cTi)A. Then inequalities (4.3) for all i ̸∈ J(x̄) and

(4.4) for all i ∈ J(x̄) are equivalent to Fi(β) < 0 for all i ∈ I.

By choosing β small enough, terms involving β2 can be ignored. Hence Fi(β) < 0 for all

i ∈ I is equivalent to

−hTi β + fi(x̄) < 0,∀i ∈ I. (4.5)

Therefore, by finding β small enough which satisfies (4.5), we can find β that satisfy (4.3)

for all i ̸∈ J(x̄) and (4.4) for all i ∈ J(x̄). Finding β that satisfies (4.5) can be achieved

as in Case 1(b). By appropriately scaling β so that ∥Aβ∥ ≤ 1, we can then find the

required s̄ and hence yk.

Page 12 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 13

5 Numerical Experiments

In this section, we show some numerical experiments to illustrate that our algorithm is compa-

rable with existing subgradient algorithms. In the first experiment, cited in [31], we compare

our algorithm with the algorithm proposed by Ruszczyński on a nonsmooth convex program.

In the second experiment, cited in [24], we use our algorithm to solve the dual problem arising

from the assignment problem and compare it with the incremental subgradient method. In

the third experiment, we use our algorithm to deal with the affine rank minimization problem.

Using our algorithm, we can recover the MIT logo and PolyU logo clearly.

Before we describe our numerical experiments in detail, we need to clarify some points in

the numerical experiments.

Since the subgradient method is not a descent method, it is common to keep track of

the best point found so far, i.e., the one with the least function value. Therefore, at each

iteration, we keep track of the record value

fkrec := min{f(xk), fk−1
rec }.

This technique makes the sequence {fkrec} nonincreasing.

In the following three numerical examples, as domains of objective functions are all full

dimensional, relative gradients, as introduced in Definition 2.1, reduce to gradients.

Similar to the strategy in [8], we do not attempt to check whether the iterates lie in the

set D, where f is differentiable, in Step 2 of the sampling SGM. This seems not to be an easy

task for a complicated function. Hence, we skip the differentiability check and assume that

we have the information whether the gradient of f exists or not at a given point.

Another issue is the stopping criterion. Besides the nondifferentiablity information, we do

not set any stopping criterion in the sampling SGM. Lack of implementable stopping criterion

is a major drawback of subgradient methods. This drawback comes from the nondescent

property of subgradient direction. If we cannot obtain or estimate the optimal value, it is

really hard to set an effective stopping criterion. One common trick is to check whether there

is any improvement in the last 100 iterates. If fkrec does not decrease in the last 100 iterates,

then we stop and obtain the best value found so far. Another idea is to use the primal-dual

subgradient method (see [23, 25, 26]) whose natural stopping criterion is the gap between the

primal function value and dual function value. In the following, we do not set any stopping

criterion and just illustrate the performance of the sampling SGM and other algorithms in a

specified number of iterations.

5.1 Nonsmooth convex optimization

Here we consider the nonsmooth convex optimization problem (see [31])

min
x∈Rn

+

f(x), (5.1)

Page 13 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 14

where f : Rn
+ → R is defined by f(x) = max{f1(x), f2(x)}, with

f1(x) = α− cTx, f2(x) =
1

2
xTDx.

As in the numerical experiments in [31], we set n = 100 and

α = n · rand(), c = 2 · rand(n, 1)− e, D = diag(rand(n, 1)).

Here rand() denotes a random value drawn from an uniform distribution on the unit

interval, rand(n, 1) denotes a column vector with n elements and all elements take random

values on the unit interval, e denotes a vector in Rn with all elements 1, and D is a diagonal

matrix with random diagonal entries.

Solved by CVX1, the optimal value for an instance of the above problem is f∗ = 18.5166.

To solve (5.1), the subgradient algorithm based on a merit function approach (in short,

MFA-SGM) designed in [31] is presented as follows,

yk = PX(xk − zk),

xk+1 = xk + τk(yk − xk),

zk+1 = zk + aτk(sk+1 − zk),

with sk+1 ∈ ∂f(xk), starting from x0 ∈ X, z0 ∈ ∂f(x0).

The MFA-SGM differs from our sampling SGM in two main ways. The first difference

is the random sampling and subgradient approximation process. The MFA-SGM updates

the subgradient by a convex combination of the current subgradient and successive direction,

while the sampling SGM updates the subgradient by combining the relative gradients of the

random sampling points. The second difference is the updating and projection steps. The

MFA-SGM uses the stepsize τk in the updating step after the projection operation while the

sampling SGM uses stepsize vk in the updating step before the projection operation. This is

the essential difference between the MFA-SGM and sampling SGM. Note that if the MFA-

SGM starts from a relative interior point x0 of X, then all iterates are relative interior points,

which is similar to our sampling SGM.

In our numerical computation, we use the same parameter a = 0.1 and stepsize τk = τ/(1+

0.01k) in MFA-SGM as in [31]. For comparison, we choose several different divergent stepsizes

vk = v/(1 + 0.01k) and parameters s = 5, αk = min{vk, 1}, δk = min{αk−1/2, drbdRn
+
(xk)},

λki = 1/s in our sampling SGM algorithm. Figure 1 plots the difference fkrec − f∗ when

τ = 0.5 in MFA-SGM and v = 0.3, 1, and 1.5, respectively in our sampling SGM until 3000

iterates. It illustrates that our sampling SGM when v = 1.5 converges faster than MFA-SGM

when τ = 0.5, but slower than sampling SGM when v = 1.

1CVX, designed by Michael Grant and Stephen Boyd, is a Matlab-based modeling system for convex

optimization. Detailed information is available at the website http://cvxr.com/cvx/.

Page 14 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 15

500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

Iteration

f re
c

k
 −

 f *

τ
k
=0.5/(1+0.01k), MFA−SGM

v
k
=0.3/(1+0.01k), Sampling SGM

v
k
=1/(1+0.01k), Sampling SGM

v
k
=1.5/(1+0.01k), Sampling SGM

Figure 1: Comparison of MFA-SGM and sampling SGM for the nonsmooth convex optimiza-

tion problem.

5.2 Assignment problem

The assignment problem is to assign m jobs to n machines such that the total cost is minimal

(see [24]). Job i, performed at machine j, costs aij and requires pij time units.

Given the total available time tj at each machine j, we want to find the minimum cost

assignment of jobs to machines. Formally the problem can be written as

min
∑m

i=1

∑n
j=1 aijyij

s.t.
∑n

j=1 yij = 1, i = 1, . . . ,m,∑m
i=1 pijyij ≤ tj , j = 1, . . . , n,

yij = 0 or 1, for all i, j,

where yij is the assignment variable, which is equal to 1 if the i-th job is assigned to the

j-th machine and equal to 0 otherwise. In our numerical experiments we choose n = 6 and

m = 100.

By relaxing the time constraints of machines, the following Lagrangian dual problem is

obtained ([24])

max f(x) =
∑m

i=1 fi(x)

s.t. x ≥ 0,
(5.2)

where

fi(x) = min∑n
j=1 yij=1,yij∈{0,1}

n∑
j=1

(aij + xjpij)yij −
1

m

n∑
j=1

tjxj . (5.3)

A principal method for solving problem (5.2) is the subgradient method

xk+1 = PRm
+
[xk + vk

m∑
i=1

gi,k],

Page 15 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 16

where gi,k is a subgradient of fi at x
k and vk is the stepsize.

To solve problem (5.2), the main improvement of the incremental subgradient method

(in short, incremental SGM) over subgradient method is that at each iteration, x is changed

incrementally, through a sequence of m steps. Each step is a subgradient iteration for each

single component function fi. Thus, an iteration can be viewed as a cycle of m subiterations.

Noting xk as the vector obtained after k cycles, the vector xk+1 obtained after one more cycle

is

xk+1 = ψm,k,

where ψm,k is obtained after m steps

ψi,k = PRm
+
[ψi−1,k + vkgi,k], gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m, (5.4)

starting with

ψ0,k = xk.

Returning to (5.3), since aij + xjpij ≥ 0 for all i, j, we can easily evaluate fi(x) for each

x ≥ 0:

fi(x) = aij∗ + xj∗pij∗ −
1

m

n∑
j=1

tjxj∗ ,

where j∗ is the index such that

aij∗ + xj∗pij∗ = min
1≤j≤n

{aij + xjpij}.

Without additional cost, we obtain a subgradient gi of fi at x:

gi = (gi1, . . . , gin)
T , gij =

{
− tj

m , if j ̸= j∗,

pij∗ −
tj∗
m , if j = j∗.

The data for the problems (i.e., the matrices (aij), (pij)) are randomly drawn from an

uniform distribution on the unit interval.

A = (aij) = rand(m,n), P = (pij) = rand(m,n).

The values tj are calculated according to the formula

tj =
t̄

n

m∑
i=1

pij , j = 1, . . . , n,

with t̄ taking the value 0.4.

In our numerical computation, we choose the divergence stepsize vk = v/(1 + 0.01k)

in both incremental SGM and sampling SGM and parameters s = 5, αk = vk, δk =

min{αk−1/2, drbdRn
+
(xk)}, λki = 1/s in our sampling SGM. Figure 2 shows the record value

of fkrec when v = 0.05 in the incremental SGM and v = 0.05, 0.1 in our sampling SGM until

300 iterates. It illustrates that our sampling SGM results in a faster convergence of the dual

objective values than the incremental SGM for the cases solved.

Page 16 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 17

20 40 60 80 100
26

27

28

29

30

31

Iteration

f re
c

k

v
k
=0.05/(1+0.01k), Incremental SGM

v
k
=0.05/(1+0.01k), Sampling SGM

v
k
=0.1/(1+0.01k), Sampling SGM

Figure 2: Comparison of incremental SGM and sampling SGM for the Lagrangian dual of

assignment problem.

5.3 Affine rank minimization problem

Affine rank minimization problem has become an important problem in many applications

in recent years. This problem can be stated as (see [29])

min rankZ

s.t. A(Z) = b,
(5.5)

where Z ∈ Rm×n is the decision variable, the linear map A : Rm×n → Rp and vector b ∈ Rp

are given. Let K := mn, the linear map A : Rm×n → Rp can always be written as its matrix

representation,

A(Z) = Avec(Z),

where vec(Z) ∈ RK denotes the “vectorized” Z with its columns stacked in order on top of

one another, and A is a p×K matrix.

An idea for affine rank minimization is to reformulate (5.5) as a nuclear norm minimization

problem and solve it efficiently as a convex optimization problem. The corresponding nuclear

norm minimization problem is

min ∥Z∥∗
s.t. A(Z) = b.

(5.6)

It is recalled that the nuclear norm of Z, ∥Z∥∗, is defined as the sum of its singular values.

Let Z = UΣV T be an SVD where U ∈ Rm×r, V ∈ Rn×r, and Σ is an r × r diagonal matrix,

with rankZ = r. The subdifferential of the nuclear norm at Z is then given by (see [29])

∂∥Z∥∗ = {UV T +W :W and Z have orthogonal row/column spaces and ∥W∥ ≤ 1},

Page 17 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 18

(a) MIT logo (b) PolyU logo

Figure 3: The original MIT and PolyU logos.

where ∥ · ∥ stands for the operator norm. When Z has no zero singular value (Z is full rank),

the nuclear norm is differentiable and ∇∥Z∥∗ = UV T .

We are interested in recovering the logos of Massachusetts Institute of Technology (MIT)

and The Hong Kong Polytechnic University (PolyU), which are presented in Figure 3. Note

that some numerical investigations are done in [29] for recovering the logo of MIT. We do

some modification to the two logos. The modified MIT logo has three distinct colors white,

gray, and black, with corresponding distinct nonzero numerical values, and rank equal to 5

(r = 5), while the modification of PolyU logo is a little more complex. Since the original

PolyU logo is almost full rank, we rotate it by 45 degrees and then make it low rank. They

are shown in Figure 4. The modified PolyU logo has two distinct colors white and black,

with rank equal to 9 (r = 9).

(a) MIT logo (b) PolyU logo

Figure 4: The modified MIT and PolyU logos.

Consider the modified MIT and PolyU logos presented in Figure 4. The modified MIT

logo has 46 rows, 81 columns and 3726 elements (m = 46, n = 81,K = 3726), with three

distinct values corresponding to white, gray, and black, while the modified PolyU logo has

60 rows, 60 columns and 3600 elements (m = 60, n = 60,K = 3600), with two distinct values

corresponding to white and black. For the linear map A, we use the Gaussian ensemble and

sample constraint matrices A with p ranging between 1000 and 2400 in our experiments.

Here we use the ordinary SGM and our sampling SGM to solve the nuclear norm mini-

Page 18 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 19

mization problem (5.6). Since the constraint set is an affine space, the perturbation step is

skipped and thus we set αk ≡ 0. In the computation process, we choose divergence stepsize

vk = 1/(1 + 0.1k), δk = vk/2, λki = 1/s and different sample size s = 1, 5, 20, 50, 200 in

our sampling SGM. We display the numerical results for recovering the modified MIT logo

when p ≥ 1300 in Table 1 and the modified PolyU logo when p ≥ 2000 in Table 2. In these

tables, ∆f denotes the required error on the objective value before termination, and NIT

and time denote the corresponding number of iterations and total time taken to reach the

specified precision of ∆f respectively. It is illustrated that our sampling SGM arrives at the

required level in fewer iterations and less time compared to ordinary SGM. When s = 50, it

only takes one third or half of time that required for the ordinary SGM. Indeed, our sampling

SGM provides a promising alternative subgradient method besides those suggested by Recht,

et. al. in [29] that can be applied to the nuclear norm minimization problem.

Table 1: Computation results for recovering the modified MIT logo.
p = 1300 p = 1400

Algorithms/ sample size ∆f NIT time [min] ∆f NIT time [min]

Ordinary SGM 0.3 369 11 0.3 427 14

Sampling SGM/ s = 1 0.3 427 13 0.3 471 15

Sampling SGM/ s = 5 0.3 295 9 0.3 298 10

Sampling SGM/ s = 20 0.3 254 8 0.3 226 8

Sampling SGM/ s = 50 0.3 241 8 0.3 206 7

Sampling SGM/ s = 200 0.3 234 10 0.3 191 9

Sampling SGM/ s = 500 0.3 212 13 0.3 186 13

p = 1500 p = 1600

Ordinary SGM 0.3 460 16 0.3 486 18

Sampling SGM/ s = 1 0.3 449 16 0.3 510 20

Sampling SGM/ s = 5 0.3 313 11 0.3 320 12

Sampling SGM/ s = 20 0.3 223 8 0.3 236 9

Sampling SGM/ s = 50 0.3 207 8 0.3 211 8

Sampling SGM/ s = 200 0.3 191 10 0.3 186 10

Sampling SGM/ s = 500 0.3 187 13 0.3 185 14

Table 2: Computation results for recovering the modified PolyU logo.
p = 2000 p = 2100

Algorithms/ sample size ∆f NIT time [min] ∆f NIT time [min]

Ordinary SGM 0.3 472 18 0.3 495 19

Sampling SGM/ s = 1 0.3 424 16 0.3 421 17

Sampling SGM/ s = 5 0.3 252 10 0.3 225 9

Sampling SGM/ s = 20 0.3 193 8 0.3 188 8

Sampling SGM/ s = 50 0.3 168 7 0.3 163 7

Sampling SGM/ s = 200 0.3 153 9 0.3 149 8

Sampling SGM/ s = 500 0.3 150 12 0.3 143 11

p = 2200 p = 2300

Ordinary SGM 0.3 520 22 0.3 509 23

Sampling SGM/ s = 1 0.3 461 20 0.3 397 17

Sampling SGM/ s = 5 0.3 252 11 0.3 244 11

Sampling SGM/ s = 20 0.3 183 8 0.3 173 8

Sampling SGM/ s = 50 0.3 158 7 0.3 148 7

Sampling SGM/ s = 200 0.3 141 8 0.3 135 8

Sampling SGM/ s = 500 0.3 138 11 0.3 131 11

So, does bigger sample size lead to better result? The answer is negative. From Tables

1 and 2, we observe that the number of iterations decreases as the sample size increases.

However, it takes much more time to compute gradients when s = 200 and 500. As such the

total computation time becomes large again when s is over 200.

Page 19 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 20

Figures 5 and 6 show the convergence behavior for recovering the modified MIT logo when

p = 1500 and modified PolyU logo when p = 2200 using the ordinary SGM and our sampling

SGM. In these figures, ∆fk = f(xk) − f∗ denotes the error between the objective value and

the optimal value, and ∆Zk = ∥Zk − Z∗∥F denotes the error between the kth iterate and

the optimal solution, where ∥ · ∥F stands for the Frobenius norm. Figure 7 shows recovered

images for both the modified MIT logo when p = 1300 and PolyU logo when p = 2000.

200 400 600 800 1000

0.5

1

1.5

2

k

∆
f k

Classical SGM
Sampling SGM, s=1
Sampling SGM, s=5
Sampling SGM, s=20
Sampling SGM, s=50
Sampling SGM, s=200

(a)

100 200 300 400 500

0.2

0.4

0.6

0.8

1

k

∆
Z

k

Classical SGM
Sampling SGM, s=1
Sampling SGM, s=5
Sampling SGM, s=20
Sampling SGM, s=50
Sampling SGM, s=200

(b)

Figure 5: Convergence behavior for recovering the modified MIT logo using the ordinary

SGM and our sampling SGM when p = 1500. (a) shows the convergence property in objective

values and (b) shows the convergence property in iterates.

200 400 600 800 1000

0.5

1

1.5

2

k

∆
f k

Classical SGM
Sampling SGM, s=1
Sampling SGM, s=5
Sampling SGM, s=20
Sampling SGM, s=50
Sampling SGM, s=200

(a)

100 200 300 400 500

0.2

0.4

0.6

0.8

1

k

∆
Z

k

Classical SGM
Sampling SGM, s=1
Sampling SGM, s=5
Sampling SGM, s=20
Sampling SGM, s=50
Sampling SGM, s=200

(b)

Figure 6: Convergence behavior for recovering the modified PolyU logo using the ordinary

SGM and our sampling SGM when p = 2200. (a) shows the convergence property in objective

values and (b) shows the convergence property in iterates.

Funding. The paper was partially supported by a grant with grant no: PolyU 5295/12E

from the Research Grants Council of Hong Kong, the National Science Foundation of China

Page 20 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 21

(a) MIT (b) PolyU

Figure 7: Recovered images for the modified MIT logo when p = 1300 and PolyU logo when

p = 2000.

(11431004) and the Natural Science Foundation of SZU (201544).

References

[1] A. Beck and M. Teboulle (2003). Mirror descent and nonlinear projected subgradient

methods for convex optimization. Oper. Res. Lett., 31(3):167–175.

[2] D. P. Bertsekas (1999). Nonlinear Programming. Athena Scientific, Cambridge.

[3] D. P. Bertsekas, A. Nedić, and A. Ozdaglar (2003). Convex Analysis and Optimization.

Athena Scientific, Cambridge.

[4] D. B. Brown and J. E. Smith (2014). Information relaxations, duality, and convex

stochastic dynamic programs. Oper. Res., 62:1394–1415.

[5] R. S. Burachik, R. N. Gasimov, N. A. Ismayilova, and C. Y. Kaya (2006). On a modified

subgradient algorithm for dual problems via sharp augmented Lagrangian. J. Global

Optim., 34:55–78.

[6] J. V. Burke, A. S. Lewis, and M. L. Overton (2002). Approximating subdifferentials by

random sampling of gradients. Math. Oper. Res., 27:567–584.

[7] J. V. Burke, A. S. Lewis, and M. L. Overton (2002). Two numerical methods for

optimizing matrix stability. Linear Algebra Appl., 351–352:117–145.

[8] J. V. Burke, A. S. Lewis, and M. L. Overton (2005). A robust gradient sampling algo-

rithm for nonsmooth, nonconvex optimization. SIAM J. Optim., 15(3):751–779.

[9] Y. M. Ermoliev (1966). Methods of solution of nonlinear extremal problems. Cybern.

Syst. Anal., 2:1–14.

[10] R. N. Gasimov (2002). Augmented Lagrangian duality and nondifferentiable optimiza-

tion methods in nonconvex programming. J. Global Optim., 24:187–203.

Page 21 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 22

[11] J.-L. Goffin and K. C. Kiwiel (1999). Convergence of a simple subgradient level method.

Math. Program., 85:207–211.

[12] J.-B. Hiriart-Urruty and C. Lemaréchal (1996). Convex Analysis and Minimization

Algorithms. Springer-Verlag, Berlin.

[13] J.-B. Hiriart-Urruty and C. Lemaréchal (2001). Fundamentals of Convex Analysis.

Springer-Verlag, Berlin.

[14] Y. H. Hu, X. Q. Yang, and C.-K. Sim (2015). Inexact subgradient methods for quasi-

convex optimization problems. Eur. J. Oper. Res., 240(2):315–327.

[15] S. Kim and H. Ahn (1991). Convergence of a generalized subgradient method for non-

differentiable convex optimization. Math. Program., 50:75–80.

[16] K. C. Kiwiel (1983). An aggregate subgradient method for nonsmooth convex minimiza-

tion. Math. Program., 27:320–341.

[17] K. C. Kiwiel (1996). The efficiency of subgradient projection methods for convex opti-

mization, part I: General level methods. SIAM J. Control Optim., 34(2):660–676.

[18] K. C. Kiwiel (1996). The efficiency of subgradient projection methods for convex opti-

mization, part II: Implementations and extensions. SIAM J. Control Optim., 34(2):677–

697.

[19] K. C. Kiwiel (2004). Convergence of approximate and incremental subgradient methods

for convex optimization. SIAM J. Optim., 14(3):807–840.

[20] K. C. Kiwiel, T. Larsson, and P. O. Lindberg (1999). The efficiency of ballstep subgra-

dient level methods for convex optimization. Math. Oper. Res., 24(1):237–254.

[21] K. C. Kiwiel, T. Larsson, and P. O. Lindberg (2007). Lagrangian relaxation via ballstep

subgradient methods. Math. Oper. Res., 32(3):669–686.

[22] T. Larsson, M. Patriksson, and A.-B. Strömberg (1998). Ergodic convergence in subgra-

dient optimization. Optim. Method. Softw., 9(1-3):93–120.

[23] T. Larsson, M. Patriksson, and A.-B. Strömberg (2003). On the convergence of condi-

tional epsilon-subgradient methods for convex programs and convex-concave saddle-point

problems. Eur. J. Oper. Res., 151(3):461–473.

[24] A. Nedić and D. P. Bertsekas (2001). Incremental subgradient methods for nondifferen-

tiable optimization. SIAM J. Optim., 12(1):109–138.

[25] A. Nedić and A. Ozdaglar (2009). Approximate primal solutions and rate analysis for

dual subgradient methods. SIAM J. Optim., 19(4):1757–1780.

Page 22 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Y. H. Hu, C.-K. Sim, and X. Q. Yang 23

[26] Y. Nesterov (2009). Primal-dual subgradient methods for convex problems. Math. Pro-

gram., 120:221–259.

[27] B. T. Polyak (1967). A general method for solving extremum problems. Soviet Mathe-

matics Doklady, 8:593–597.

[28] B. T. Polyak (1987). Introduction to Optimization. Optimization Software, New York.

[29] B. Recht, M. Fazel, and P. A. Parrilo (2010). Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization. SIAM Rev., 52(3):471–501.

[30] R. T. Rockafellar and R. J.-B. Wets (1998). Variational Analysis. Springer-Verlag,

Berlin.

[31] A. Ruszczyński (2008). A merit function approach to the subgradient method with

averaging. Optim. Method. Softw., 23:161–172.

[32] N. Z. Shor (1979). Minimization Methods for Non-differentiable Functions. Naukova

Dumka, Kiev [English translation: Springer, Berlin, 1985].

Page 23 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

111x83mm (300 x 300 DPI)

Page 24 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

62x34mm (300 x 300 DPI)

Page 25 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

256x129mm (300 x 300 DPI)

Page 26 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

141x101mm (300 x 300 DPI)

Page 27 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

142x102mm (300 x 300 DPI)

Page 28 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

250x169mm (300 x 300 DPI)

Page 29 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

250x169mm (300 x 300 DPI)

Page 30 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

126x95mm (300 x 300 DPI)

Page 31 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

75x59mm (300 x 300 DPI)

Page 32 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

256x129mm (300 x 300 DPI)

Page 33 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

142x102mm (300 x 300 DPI)

Page 34 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

142x102mm (300 x 300 DPI)

Page 35 of 35

URL: http://mc.manuscriptcentral.com/lnfa Email: znashed.@mail.ucf.edu

Numerical Functional Analysis and Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

