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Abstract. Models are compared for use with a sensor system working in real 
time (in this case a simple image processing system). A static robot work-cell is 
modelled as several solid polyhedra. This model is updated as new objects enter 
or leave the work-place. Similar 2-D slices in joint space, and spheres and sim-
ple polhedra are used to model these objects. The three models are compared 
for their ability to be updated with new information and for the efficiency of the 
whole system in accessing data concerning new objects. The system supplies 
data to a “Path Planner” containing a geometric model of the static environment 
and a robot. The robot structure is modelled as connected cylinders and spheres 
and the range of motion is quantised. 
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1 Introduction 

Industrial processes are being improved to meet the requirements of lean and agile 
manufacturing. Navigation in these dynamic industrial environments is challenging, 
especially when the motion of the obstacles populating the environment is unknown 
beforehand and is updated at runtime. Although computers are getting faster and  
faster, real time applications still require efficient modelling and programming tech-
niques.  Some traditional motion planning approaches can be relatively slow when 
applied in real-time, whereas reactive navigation methods often have too short a look-
ahead horizon.  This paper presents simple but fast transformations to improve exist-
ing manufacturing processes by providing simple geometric models of objects moving 
through the workspaces of industrial robots.  This can improve path and trajectory 
planning in real time. 

A complex industrial environment consists of moving machinery, objects to be  
manipulated and worked, and obstacles to be avoided [1,2,3,4,5]. Free space available to 
the moving machinery depends on the accuracy of the models used for this changing 
environment. Robot navigation in dynamic environments is a challenging task [6],  
especially when the motion of obstacles is unknown beforehand. Traditional motion 
planning approaches can be too slow to be applied in real-time, whereas reactive naviga-
tion methods have generally a too short look-ahead horizon. Van-der-Stappen [7]  
presented an efficient paradigm for computing the exact solution of the motion planning 
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problem with very few obstacles but he accepted that motion planning algorithms often 
use long worst-case running times [8]. These running times are why exact algorithms 
are rarely used in real-time. Processing speed depends on the complexity of the prob-
lem, the complexity of the models used and system processing speed.  Process speed is 
increasing but problems are also becoming more complex. 

Assumptions about size and distribution of obstacles leads to a significant reduc-
tion in complexity. The complexity of the free space is known to be linear in the 
number of obstacles and De-Berg [9] studied the complexity of the motion planning 
problem for a bounded-reach robot with few obstacles and Tang [10] investigated 
how to topologically and geometrically characterize the intersection relations between 
movable polygon models often used for manufacturing environments. Large presented 
real-time motion planning approaches based on the concept of the Non-Linear Vobst 
(NLVO) [11].  Given a predicted environment, velocities which lead to collisions with 
static and moving obstacles, were modeled. 

The complexity of motion planning algorithms depends on the complexity of the 
models used for moving obstacles to provide the set of collision-free placements left 
to the robot. Complexity can be high, resulting in relatively long computing times.  
Reducing complexity reduces the running time of motion-planning-algorithms. 

In this paper, models in two different spaces are considered and they are tested 
with a simple image processing system working in real-time. A static geometric mod-
el of a robot work-cell is held in computer memory as solid polyhedra.  This static 
model is updated as new objects enter or leave the work-place. 2-D slices of joint 
space, spheres and simple polyhedra are used to model these objects. Spheres are 
suggested as the simplest models of dynamic obstacles.  Halperin [12] devised tech-
niques to manipulate a collection of loosely connected spheres in three-dimensional 
space. He analyzed sphere models and pointed to properties that make them easy to 
manipulate. He presented efficient algorithms for computing union boundaries. 

The mapping from workspace to configuration space (or joint space) is important 
and then the avoidance of the obstacles in one or other space is then important. Sand-
ers [1],[3,4,5] completed studies of geometric modelling techniques and regarded the 
following as meaningful criteria in depicting a robot and its work place:  Fast intersec-
tion calculations, ease of use with path planning algorithms, fast model generation, 
low memory storage requirements, and efficiency. Sharma [13] for example recently 
studied minimum time needed to transfer vehicles from source to destination, avoid-
ing conflicts with other vehicles. The other vehicles were effectively obstacles and a 
conflict occurred when the distance between any two vehicles was smaller than a 
velocity-dependent safety distance. Fiorini [14] presented a method for robot motion 
planning in dynamic environments in a velocity space.  The models considered in this 
paper are compared for their ability to be updated with new information to provide 
data to planning systems like that. Efficiency in accessing data concerning new ob-
jects is also considered. 

The robot machinery structure is modelled as connected cylinders and spheres and 
the range of motion is quantized. A fast sub-optimal path is to be derived using sim-
plified models that avoids the modelled objects and seeks a direct path in terms of 
total actuator movement. The approach depends on inspecting a 3-D graph of quan-
tised joint space. 
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The static model of the robot work-cell consists of solid polyhedra. The remaining 
free space model is updated as new objects penetrate or depart from the working  
volume. 2-D slices in joint space, multiple spheres, and six sided parallelepiped are 
used to model the dynamic objects in order to compare them. 

2 Robot and Static Environment 

Most computer representations of factory surroundings have flat surfaces and straight 
linear edges and this geometry resembles the objects often found in manufacturing 
work cells.  These models are difficult to deal with in real-time.  If both robot and 
dynamic objects are modelled by polyhedral shapes then the accuracy may be high 
but computation time is extended. The transformation of the static environment need 
only be made once though, so that computation time is not a problem.  An accurate 
model was therefore selected and Polyhedra were used to model the static environ-
ment. The most influential factor in representing the robot was speed of intersection 
calculation (providing the model enclosed the whole robot). A large number of indus-
trial robots have two major links, (an upper arm and a forearm) and three major joints 
(Base, Shoulder and Elbow).  The simplest possible representation for this type of 
robot was two lines jointed at one end.  Fixed distances from the lines were then de-
fined as enclosing the outer casing of the robot.  This gave two connected cylinders 
with hemispherical ends. The advantages of this representation were that the cylinders 
modelled the robot links efficiently and the intersection calculations between the ro-
bot arm and obstacles were simple.  The end effector was then represented as a sphere 
with a radius adequate to surround the end effector. Work-pieces were included by 
increasing the radius of the sphere. 

2.1 Dynamic Mapping 

Speed of intersection calculation was compared for several models representing  
dynamic objects, that is objects that moved in the working volume of the robot.  
Three models compared favourably: 2-D slices in joint space, spheres and six sided 
parallelepiped in cartesian space. In all cases it was assumed that at least the 2-D cross 
section of the dynamic object in the X-Y plane and the height (Z) of the dynamic 
object was available from a sensor system (a simple vision system in this case). The 
dynamic objects were effectively only two and a half dimensional. That is, they had a 
two dimensional shape and a height.  3-D dynamic object shapes considered during 
the work described in this paper were cylinders and cubes.  Parallelepiped models, 
spheres or similar 2-D planar slices in joint space modelled these 3-D shapes to a 
workable accuracy and in the case of the 2-D slices, more quickly in discretised 3-D 
space. 

2-D slices are described here. Models were calculated by considering two pairs of 
boundaries: the angles of the base joint, θ1, which bounded the dynamic object 
(Θ1min and Θ1max); and the maximum distance Dmax and minimum distance Dmin 
from the origin (maximum and minimum radii). The dynamic object was then mod-
elled as a series of 2-D planar slices. The reference slice was calculated within a 
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boundary of a line from the Origin bounded by Dmax and Dmin and the limits of the 
Z axis. The "blocked" configurations for the shoulder and elbow joints θ2 and θ3 were 
then calculated for this bounded plane and copied for all θ1 within the two bounding 
angles, Θ1min and Θ1max.  For the global path planning methods described in  
the literature, this reduced the number of searches and tests for "blocked" points. The 
major part of the algorithm was reduced to copying values within a 3-D graph. The 
dynamic object was first modelled as a 2-D rectangle as this was the simplest model 
which could be derived from the row and column limits of an object under a camera. 

3 Transformation into Joint Space 

Data were processed to transform dynamic objects into a joint configuration space.  
A point in cartesian space is not transformed into a point in joint space.  If the point is 
within the working volume of the robot then it is transformed into one or more com-
plex three dimensional shapes. These complicated profiles may be depicted within a 
computer as geometric shapes, units of space or by approximating the profiles by 
mathematical curves.  The method selected in this work represented the dynamic ob-
jects as regions within joint space consisting of small units.  The technique was not 
limited to any specific design of machinery and may be used with any number of 
degrees of freedom.  The work described here was based on the implementation for 
the three major axes of a KUKA KR125 robot at Ford Motor Company. A graph was 
created which consisted of a three dimensional structure of unit regions. The 3-D 
graph had each dimension corresponding to a principal degree of freedom of the robot 
arm, Θ1, Θ2 and Θ3.  The wrist configurations were not considered but these were 
included as being within a sphere.  Each unit was initially set to `"clear"' status and 
the positions (in joint space) at which the robot intersected dynamic objects were then 
calculated.  Each unit represented a range of configurations for the robot, in terms of, 
(Θ1cent, Θ2cent, Θ3cent), plus a degree of movement away from these central joint 
values. All units together represented the whole robot work-space and the number of 
units in the graph, NodeTotal, was given by: 

 {(Θ1max-Θ1min)/2 x δΘ1}*{(Θ2max–Θ2min)/2 x δΘ2}*{(Θ3max–Θ3min)/2*δΘ3} (1) 

where, Θ1max, Θ1min = upper, lower limits of Θ1. 
Θ2max, Θ2min = upper, lower limits of Θ2 
Θ3max, Θ3min = upper, lower limits of Θ3. 

If at any configuration in a unit, the robot intersected a dynamic object, then the 
unit was set to "blocked".  If at all configurations within a unit the robot did not inter-
sect a dynamic object then the unit remained "clear".  The path planning problem  
for the global approach was then reduced to finding a series of neighbouring units  
between the START and GOAL configurations that were still "clear". If free space is 
assumed to be larger than blocked space then a fast method was to consider each  
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dynamic object and test for the nodes which could contain the transformed dynamic 
object. This was the method adopted and the algorithm was as follows: 

For a node where the robot could intersect the dynamic object, recursively test all 
the neighbouring units to see if they are also within the reach of the robot. 

Data structures were initialised to form a 3-D graph of joint space and trigonome-
tric solutions were calculated. All units in the graph were set to `"clear"' status and 
flags were associated with each node. The static model of the work cell left a number 
of clear nodes that represented safe configurations that would not collide with the 
static environment.  Dynamic object data was simulated or received from the vision 
system and the first task for the program was to read this data. The two and a half 
dimensional model was then created. 

3.1 2-D Slices 

Firstly the limits in x were increased by the radius of the upper-arm: 

 StartRow_clearance = StartRow - UpperRad% (2) 

 EnddRow_clearance = EndRow + UpperRad% (3) 

The modulus of the ends and centre point on an edge StartCol were calculated.  
This is shown below for the furthest end from the Origin. 

 Corner(TopLeft, Angle%) = InvTan (StartCol / EndRow_clearance) (4) 

 Corner(TopLeft, Modulus%) = √(EndRow² + StartCol²) (5) 

The following parameters of the model were found: the inside radius from the ori-
gin, (Dmin), outside radius from the origin, (Dmax), smallest base angle, (Θ1min), 
and largest base angle, (Θ1max). 

If the dynamic object was matched to a template then the height of the dynamic ob-
ject was extracted from the template, otherwise if the dynamic object height was un-
known, the height (Z) was set to infinity.  The segment was extrapolated to the Y axes 
so that calculation took place in the Y, Z plane.  The modelled dynamic object was 
expanded by the radius of the robot's upper-arm in the Y and Z plane.  Θ1 was set to 
its new lower limit and the inverse kinematic solution was found for all the points 
within the dynamic object, as shown in the following code: 

FOR Yaxis = (Radius%(min%)UpperRad%) TO (Radius%(max%) + 
UpperRad%) 
  FOR Zaxis =  255 TO (Radius%(Z%) + UpperRad%) 
       CALL InvKinematics 
  NEXT Zaxis 
NEXT Yaxis 
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The coordinates in Y and Z were converted to robotic joint angles using the inverse 
kinematic solution in the subroutine InvKinematics.  Firstly the distance from the 
origin to the cartesian point (L3) and the angle to the point (CurvΘ) were calculated: 

 CurvΘ = InvTan Zaxis / Yaxis   (6) 

 sqL3  = Yaxis² + Zaxis² (7) 

 L3  = √sqL3 (8) 

The upper-arm was checked against L3 to see if a collision was possible.  If within 
the reach of the upper-arm and if Θ2 was within its limit, then Θ2 was set to CurvΘ 
and Θ3 was set to "blocked" between its limits.  If L3 was less than the Forearm plus 
upper-arm then the Forearm collided with the point.  Θ2 and Θ3 were calculated using 
the cosine rule and if Θ2 and Θ3 were within their limits a flag was set to "blocked". 

The method is being successfully used with sensors [15,16] mobile robots 
[17,18,19,20,21] and wheelchairs [22,23]. 

3.2 Spheres 

The graph data structure described earlier was initialised.  Limits of the graph corres-
ponded to the angular limits for the robot's joints within the range of the work cell and 
obstacles outside this work-space were ignored.  As the graph carried out intersection 
checks at a limited number of positions, only a limited number of trigonometric solu-
tions were required and these were calculated at the start.  Before the obstacles were 
calculated all the units in the graph had a flag set to `CLEAR' status.  Four other flags 
were used with each node, these were:  `New obstacle', `Forearm tested', `Upper arm 
tested', and `On list'.  Each unit code was stored as one byte of computer memory in 
an array and the flags used one bit each.  The obstacle data was received from a file or 
from the vision system and the first task for the program was to read this data. 

The task was then split into two sub-tasks, firstly to calculate the upper arm and 
then to calculate the forearm blocked space on the graph.  A configuration was calcu-
lated at which the part of the arm under consideration was closest to the obstacle cen-
tre.  If the forearm was being considered, then the configuration where the Foretip 
was at the centre of the sphere was calculated.  For the upper arm, the configuration 
was calculated for which the centre line of the upper arm pointed at the sphere centre.  
If the obstacle was within the reach of the link being tested, then this configuration 
was the first unit for the transformed obstacle.  The base angle was calculated from 
the X,Y coordinates of the sphere.  Firstly the modulus (L3) and the angle (SphΘ) 
from the robot to the centre of the sphere was calculated and a test was conducted to 
see if the sphere was out of range, in which case no further processing was necessary.   

 Waist Angle Θ1 =InvTan(Y/X)                (9) 

 Modulus XY=√(X²+Y²)                        (10) 

 SphΘ=InvTan(Z/ModulusXY)     (11) 
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 L3 
 = √ ( X² + Y² + Z²) (12) 

The cosine rule was used to calculate the shoulder Θ2 and elbow Θ3 angles. 
L1 = Upper-Arm = 220mm 
L2 = ForeArm = 160mm 

 Θ3 = InvCos [ ( L1² + L2² - L3²) / ( 2 * L1 * L2 ) ] (13) 

 Θ2 = InvCos [ ( L1² + L3² - L2²) / ( 2 * L1 * L3 ) ] + SphΘ (14) 

If the sphere centre was too close to the robot then Θ3 would exceed its lower limit 
(Θ3 < 90°).  In this case Θ3 was set to 90° and Θ2 was calculated using InvTan: 

If Θ3 < 90° THEN 
  Θ3 = 90°   
  Θ2 = InvTan ( L2 / L1) + SphΘ 
END 

This gave a starting configuration close to the centre.   When the lower limit of Θ2 
was exceeded, (Θ2 < -30°), the angle was set to minus 30° and the distance between 
the upper-arm and sphere centre was calculated (the modulus) using the subroutine 
FindModulus, from which the cosine could be used to find the new Θ3: 

If -30° < Θ2 THEN  
 Θ2 = -30°  
 Θ3 = InvCos[(L1² + L2² - Modulus²) / (2* L1 * Modulus)] 
END 

The first configuration was set to blocked .  Its neighbouring units were also tested 
and if they were set to blocked then their neighbours were checked.  The position 
problem was solved using forward kinematic calculations and the minimum distance 
between the obstacle and the robot arm was calculated, (provided that it had not com-
pleted the calculation before).  The method continued recursively until the whole 
obstacle transformation was found.  All units were set to blocked, which had any two 
opposite neighbouring units which were also blocked.  Any units which were on the 
edge of the now solid obstacle were recorded on a list.  All the neighbours of the units 
on the list were tested, and the process repeated until the surface of the transformed 
sphere was completely defined.   

Nodes which were blocked were stored on a list of units to be expanded later.  
When a unit was expanded it was retrieved from the list and new blocked points were 
added to the list.  When all the nodes on the list were exhausted the obstacle transfor-
mation was complete.  The most important consideration was processing speed.  
Times for calculating obstacles were recorded during the project and examples are 
presented in the results section.  
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3.3 Simple Polyhedral Shapes 

Polyhedra are commonly used to model dynamic objects.  The third modelling  
method described in this paper modelled the dynamic objects as simple six sided  
parallelepiped.  This was the most elementary polyhedral model.  The system found 
the position of the edges of the model in X and Y by calculating the limits of the rows 
and columns set by the vision program.  If possible, the height of the object was then 
retrieved from an associated template.  Edge positions were expanded with the model 
radius of the part of the robot under test (ie upper-arm or forearm), as demonstrated 
below for an expansion of the forearm in X. 

 Expand_XLow% = EdgePosition%(LowX%) - ForRad (15) 

 Expand_XHigh% = EdgePosition%(HighX%) + ForRad (16) 

The cartesian coordinates of the arm were then tested against the expanded polyhe-
dral edge limits.  

4 Results 

The most important consideration for the system was that it should be suitable for real 
time applications. Times for transforming dynamic objects were recorded during  
the project and as an example, the times for the three models to transform a large cube 
into joint space are shown in Table 1.  The times were recorded with the Z axis of the 
cylinder at X = 0 mm and Y = 300 mm with respect to the origin. 

Table 1. Transformation times for a cube. 

 
The 2-D Slice Model:  The advantage of modelling the dynamic object as a series 

of similar 2-D slices was that once the collision coordinates of Θ2 and Θ3 had been 
calculated for a particular Θ1 then these collisions could be repeated for the limits of 
Θ1 which collided with the dynamic object. This reduced the main processing task to 
copying data rather than calculating forward or reverse kinematic solutions. The re-
presentation of dynamic objects using similar 2-D slices was the fastest to transform 
into discrete 3-D joint configuration space. 

Once a dynamic object increased above a certain size or was moved closer to the 
origin, part of the dynamic object intersected both the Upper Arm and ForeArm joint 
space.  Thus the joint-space occupied by the dynamic object suddenly increased and  
 

      Model   Time 
(Seconds) 

 Number of blocked 
 nodes recorded. 

 One Sphere     8.8         2426 
 Two Spheres    14.1         2336 
 Simple Polyhedron    26.3         1983 
 2-D Slices     5.3         2489 
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calculation time increased. For the transformation methods a graph of calculation time 
vs discrete work-space volume can be expected to be linear, that is the calculation 
time for a dynamic object was approximately proportional to the number of units 
tested, the total number of nodes being the work-space volume. 

The computer time required for dynamic object transformations was short. The  
initial conversion time to model the static environment was slow; Up to three minutes 
of computer time depending on the complexity of the model, but the transformation 
was only performed when the system was powered up. 

The Sphere Model:  An obstacle was modelled first as a single sphere of the smal-
lest radius which would enclose the obstacle.  Later, if time allowed it was modelled 
by two smaller spheres and then four spheres.  Nodes set to blocked associated with 
the first sphere tested usually also collided with other spheres.  The forward kinematic 
solutions did not need to be recalculated for these nodes but the total calculation time 
increased with the number of spheres because the overhead of calculation for each 
sphere was greater than the saving in time achieved as the spheres became smaller.  
This meant the single sphere calculation was faster than the calculations for multiple 
spheres although the single sphere model was less accurate and had a larger volume.  
The problem when using more than one sphere was that the centre of several spheres 
would be set to blocked (with some surrounding nodes) after the expansion of the first 
sphere. As these nodes were blocked, later spheres were sometimes not retested so 
that many nodes were not added to the list. 

5 Discussion 

Transforming a geometric algorithm into an effective computer program is a difficult 
task.  The accuracy of the models affected the performance of the Path Planner. High 
accuracy models required more computation time and therefore longer solution times. 
Low accuracy models required links or dynamic objects to be oversized to eliminate 
the chance of undetected collisions.  Lowering the accuracy led to the rejection of 
valid solutions. 

For dynamic models, speed of calculation was important.  The simplest possible in-
tersection calculations for the local methods were made using the sphere model.  
Calculation was reduced to finding the distance from the robot to a point and subtract-
ing the radius of the sphere to give the distance to the surface of the sphere. Modelling 
with more than one sphere was considered.  As the real environment for a robot be-
comes more complex so more spheres are needed for the model.  It was considered 
how increasing the number of spheres might increase the accuracy of the model.  
A cubic number of spheres was used, i.e. 1, 8, 27, 64 etc.  The spheres formed a regu-
lar pattern and were equal in size.  An infinite number of spheres was required to 
model the cube completely but modelling objects using the same sized spheres was 
inefficient.  For example, in modelling a cube using sixty-four spheres of the same 
size, eight of the spheres are totally enclosed and might easily be replaced by a single 
larger sphere without increasing the model volume. 
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To compare the modelling of obstacles using single and multiple spheres, as an ex-
ample, a model of a cylinder using one and two spheres is compared.  The volume of 
two spheres of radii 35 mm was compared to that of one sphere of 70 mm as shown 
below. 

Volume of Two Spheres: 2 x 4/3 x π x 353 = 359,188 mm3 
Volume of One Sphere: 4/3 x π x 703 = 1,436,755 mm3 
The area of the two spheres would be much smaller except that the model of the 

robot must then be considered to find the union volume, 

 Robot ∪ Model. (17) 

The Upper-arm model radius= 80mm so: Union radius for a single sphere is 70+ 
80 = 150.  Union radius for two spheres is 35+80 = 115.  Union volume of a single 
sphere is 4/3 x π x 1503  = 14,137,167 mm3.  Union volume of two spheres is 2 x 4/3 
x π x 1153  = 12,741,211 mm3. 

There was a similar number of collisions for both models.  When points within the 
second sphere were not tested to see if they had collided during the calculations for a 
previous sphere, this partially explained the lack of improvement in processing time 
for the model using two spheres. 

Considering the simple six sided parallelepiped model, the volume of the model for 
the horizontal cylinder was less than that of the 2-D slice model. 

Parallelepiped Volume = (60 + 160)² x (140 +80) = 10,648,000 mm3.  This poten-
tially reduced the number of blocked nodes, but shape and therefore the calculations 
were more complex so calculation time increased.  

6 Conclusions 

Using the two dimensional slice model of the cylinder, Θ2 and Θ3 were only deter-
mined for a single slice.  This reduced the processing time as this slice of "blocked" 
nodes was copied for all Θ1 within the bounding base joint angles. 

The number of "blocked" nodes produced was similar to other models, so that the 
intersection volume was approximately the same as for the sphere and polyhedral 
models.  This suggested an equivalent accuracy. 

The method of modelling dynamic objects by similar 2-D slices had the fastest in-
tersection calculation times.  Using the 2-D slices described, software models of the 
dynamic work-place were quickly passed to the main computer by the vision system. 
Similar 2-D slices were less complex than polyhedra, only requiring the two bounding 
angles of the base joint Θ1, the inner and outer radius and a height (five items of  
data). 

2-D slices in a joint actuator space are the most efficient of the three models consi-
dered and they represent dynamic obstacles at least as effectively as the other two 
models. 
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