
© Springer International Publishing Switzerland 2015
H. Liu et al. (Eds.): ICIRA 2015, Part I, LNAI 9244, pp. 604–615, 2015.
DOI: 10.1007/978-3-319-22879-2_55

Fast Transformations to Provide Simple Geometric
Models of Moving Objects

David Adrian Sanders1(), Giles Tewkesbury1, and Alexander Gegov2

1 School of Engineering, University of Portsmouth, Portsmouth, UK
david.sanders@port.ac.uk

2 School of Computing, University of Portsmouth, Portsmouth, UK

Abstract. Models are compared for use with a sensor system working in real
time (in this case a simple image processing system). A static robot work-cell is
modelled as several solid polyhedra. This model is updated as new objects enter
or leave the work-place. Similar 2-D slices in joint space, and spheres and sim-
ple polhedra are used to model these objects. The three models are compared
for their ability to be updated with new information and for the efficiency of the
whole system in accessing data concerning new objects. The system supplies
data to a “Path Planner” containing a geometric model of the static environment
and a robot. The robot structure is modelled as connected cylinders and spheres
and the range of motion is quantised.

Keywords: Manufacturing · Navigation obstacles · Robot · Model

1 Introduction

Industrial processes are being improved to meet the requirements of lean and agile
manufacturing. Navigation in these dynamic industrial environments is challenging,
especially when the motion of the obstacles populating the environment is unknown
beforehand and is updated at runtime. Although computers are getting faster and
faster, real time applications still require efficient modelling and programming tech-
niques. Some traditional motion planning approaches can be relatively slow when
applied in real-time, whereas reactive navigation methods often have too short a look-
ahead horizon. This paper presents simple but fast transformations to improve exist-
ing manufacturing processes by providing simple geometric models of objects moving
through the workspaces of industrial robots. This can improve path and trajectory
planning in real time.

A complex industrial environment consists of moving machinery, objects to be
manipulated and worked, and obstacles to be avoided [1,2,3,4,5]. Free space available to
the moving machinery depends on the accuracy of the models used for this changing
environment. Robot navigation in dynamic environments is a challenging task [6],
especially when the motion of obstacles is unknown beforehand. Traditional motion
planning approaches can be too slow to be applied in real-time, whereas reactive naviga-
tion methods have generally a too short look-ahead horizon. Van-der-Stappen [7]
presented an efficient paradigm for computing the exact solution of the motion planning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29589318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 605

problem with very few obstacles but he accepted that motion planning algorithms often
use long worst-case running times [8]. These running times are why exact algorithms
are rarely used in real-time. Processing speed depends on the complexity of the prob-
lem, the complexity of the models used and system processing speed. Process speed is
increasing but problems are also becoming more complex.

Assumptions about size and distribution of obstacles leads to a significant reduc-
tion in complexity. The complexity of the free space is known to be linear in the
number of obstacles and De-Berg [9] studied the complexity of the motion planning
problem for a bounded-reach robot with few obstacles and Tang [10] investigated
how to topologically and geometrically characterize the intersection relations between
movable polygon models often used for manufacturing environments. Large presented
real-time motion planning approaches based on the concept of the Non-Linear Vobst
(NLVO) [11]. Given a predicted environment, velocities which lead to collisions with
static and moving obstacles, were modeled.

The complexity of motion planning algorithms depends on the complexity of the
models used for moving obstacles to provide the set of collision-free placements left
to the robot. Complexity can be high, resulting in relatively long computing times.
Reducing complexity reduces the running time of motion-planning-algorithms.

In this paper, models in two different spaces are considered and they are tested
with a simple image processing system working in real-time. A static geometric mod-
el of a robot work-cell is held in computer memory as solid polyhedra. This static
model is updated as new objects enter or leave the work-place. 2-D slices of joint
space, spheres and simple polyhedra are used to model these objects. Spheres are
suggested as the simplest models of dynamic obstacles. Halperin [12] devised tech-
niques to manipulate a collection of loosely connected spheres in three-dimensional
space. He analyzed sphere models and pointed to properties that make them easy to
manipulate. He presented efficient algorithms for computing union boundaries.

The mapping from workspace to configuration space (or joint space) is important
and then the avoidance of the obstacles in one or other space is then important. Sand-
ers [1],[3,4,5] completed studies of geometric modelling techniques and regarded the
following as meaningful criteria in depicting a robot and its work place: Fast intersec-
tion calculations, ease of use with path planning algorithms, fast model generation,
low memory storage requirements, and efficiency. Sharma [13] for example recently
studied minimum time needed to transfer vehicles from source to destination, avoid-
ing conflicts with other vehicles. The other vehicles were effectively obstacles and a
conflict occurred when the distance between any two vehicles was smaller than a
velocity-dependent safety distance. Fiorini [14] presented a method for robot motion
planning in dynamic environments in a velocity space. The models considered in this
paper are compared for their ability to be updated with new information to provide
data to planning systems like that. Efficiency in accessing data concerning new ob-
jects is also considered.

The robot machinery structure is modelled as connected cylinders and spheres and
the range of motion is quantized. A fast sub-optimal path is to be derived using sim-
plified models that avoids the modelled objects and seeks a direct path in terms of
total actuator movement. The approach depends on inspecting a 3-D graph of quan-
tised joint space.

606 D.A. Sanders et al.

The static model of the robot work-cell consists of solid polyhedra. The remaining
free space model is updated as new objects penetrate or depart from the working
volume. 2-D slices in joint space, multiple spheres, and six sided parallelepiped are
used to model the dynamic objects in order to compare them.

2 Robot and Static Environment

Most computer representations of factory surroundings have flat surfaces and straight
linear edges and this geometry resembles the objects often found in manufacturing
work cells. These models are difficult to deal with in real-time. If both robot and
dynamic objects are modelled by polyhedral shapes then the accuracy may be high
but computation time is extended. The transformation of the static environment need
only be made once though, so that computation time is not a problem. An accurate
model was therefore selected and Polyhedra were used to model the static environ-
ment. The most influential factor in representing the robot was speed of intersection
calculation (providing the model enclosed the whole robot). A large number of indus-
trial robots have two major links, (an upper arm and a forearm) and three major joints
(Base, Shoulder and Elbow). The simplest possible representation for this type of
robot was two lines jointed at one end. Fixed distances from the lines were then de-
fined as enclosing the outer casing of the robot. This gave two connected cylinders
with hemispherical ends. The advantages of this representation were that the cylinders
modelled the robot links efficiently and the intersection calculations between the ro-
bot arm and obstacles were simple. The end effector was then represented as a sphere
with a radius adequate to surround the end effector. Work-pieces were included by
increasing the radius of the sphere.

2.1 Dynamic Mapping

Speed of intersection calculation was compared for several models representing
dynamic objects, that is objects that moved in the working volume of the robot.
Three models compared favourably: 2-D slices in joint space, spheres and six sided
parallelepiped in cartesian space. In all cases it was assumed that at least the 2-D cross
section of the dynamic object in the X-Y plane and the height (Z) of the dynamic
object was available from a sensor system (a simple vision system in this case). The
dynamic objects were effectively only two and a half dimensional. That is, they had a
two dimensional shape and a height. 3-D dynamic object shapes considered during
the work described in this paper were cylinders and cubes. Parallelepiped models,
spheres or similar 2-D planar slices in joint space modelled these 3-D shapes to a
workable accuracy and in the case of the 2-D slices, more quickly in discretised 3-D
space.

2-D slices are described here. Models were calculated by considering two pairs of
boundaries: the angles of the base joint, θ1, which bounded the dynamic object
(Θ1min and Θ1max); and the maximum distance Dmax and minimum distance Dmin
from the origin (maximum and minimum radii). The dynamic object was then mod-
elled as a series of 2-D planar slices. The reference slice was calculated within a

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 607

boundary of a line from the Origin bounded by Dmax and Dmin and the limits of the
Z axis. The "blocked" configurations for the shoulder and elbow joints θ2 and θ3 were
then calculated for this bounded plane and copied for all θ1 within the two bounding
angles, Θ1min and Θ1max. For the global path planning methods described in
the literature, this reduced the number of searches and tests for "blocked" points. The
major part of the algorithm was reduced to copying values within a 3-D graph. The
dynamic object was first modelled as a 2-D rectangle as this was the simplest model
which could be derived from the row and column limits of an object under a camera.

3 Transformation into Joint Space

Data were processed to transform dynamic objects into a joint configuration space.
A point in cartesian space is not transformed into a point in joint space. If the point is
within the working volume of the robot then it is transformed into one or more com-
plex three dimensional shapes. These complicated profiles may be depicted within a
computer as geometric shapes, units of space or by approximating the profiles by
mathematical curves. The method selected in this work represented the dynamic ob-
jects as regions within joint space consisting of small units. The technique was not
limited to any specific design of machinery and may be used with any number of
degrees of freedom. The work described here was based on the implementation for
the three major axes of a KUKA KR125 robot at Ford Motor Company. A graph was
created which consisted of a three dimensional structure of unit regions. The 3-D
graph had each dimension corresponding to a principal degree of freedom of the robot
arm, Θ1, Θ2 and Θ3. The wrist configurations were not considered but these were
included as being within a sphere. Each unit was initially set to `"clear"' status and
the positions (in joint space) at which the robot intersected dynamic objects were then
calculated. Each unit represented a range of configurations for the robot, in terms of,
(Θ1cent, Θ2cent, Θ3cent), plus a degree of movement away from these central joint
values. All units together represented the whole robot work-space and the number of
units in the graph, NodeTotal, was given by:

 {(Θ1max-Θ1min)/2 x δΘ1}*{(Θ2max–Θ2min)/2 x δΘ2}*{(Θ3max–Θ3min)/2*δΘ3} (1)

where, Θ1max, Θ1min = upper, lower limits of Θ1.
Θ2max, Θ2min = upper, lower limits of Θ2
Θ3max, Θ3min = upper, lower limits of Θ3.

If at any configuration in a unit, the robot intersected a dynamic object, then the
unit was set to "blocked". If at all configurations within a unit the robot did not inter-
sect a dynamic object then the unit remained "clear". The path planning problem
for the global approach was then reduced to finding a series of neighbouring units
between the START and GOAL configurations that were still "clear". If free space is
assumed to be larger than blocked space then a fast method was to consider each

608 D.A. Sanders et al.

dynamic object and test for the nodes which could contain the transformed dynamic
object. This was the method adopted and the algorithm was as follows:

For a node where the robot could intersect the dynamic object, recursively test all
the neighbouring units to see if they are also within the reach of the robot.

Data structures were initialised to form a 3-D graph of joint space and trigonome-
tric solutions were calculated. All units in the graph were set to `"clear"' status and
flags were associated with each node. The static model of the work cell left a number
of clear nodes that represented safe configurations that would not collide with the
static environment. Dynamic object data was simulated or received from the vision
system and the first task for the program was to read this data. The two and a half
dimensional model was then created.

3.1 2-D Slices

Firstly the limits in x were increased by the radius of the upper-arm:

 StartRow_clearance = StartRow - UpperRad% (2)

 EnddRow_clearance = EndRow + UpperRad% (3)

The modulus of the ends and centre point on an edge StartCol were calculated.
This is shown below for the furthest end from the Origin.

 Corner(TopLeft, Angle%) = InvTan (StartCol / EndRow_clearance) (4)

 Corner(TopLeft, Modulus%) = √(EndRow² + StartCol²) (5)

The following parameters of the model were found: the inside radius from the ori-
gin, (Dmin), outside radius from the origin, (Dmax), smallest base angle, (Θ1min),
and largest base angle, (Θ1max).

If the dynamic object was matched to a template then the height of the dynamic ob-
ject was extracted from the template, otherwise if the dynamic object height was un-
known, the height (Z) was set to infinity. The segment was extrapolated to the Y axes
so that calculation took place in the Y, Z plane. The modelled dynamic object was
expanded by the radius of the robot's upper-arm in the Y and Z plane. Θ1 was set to
its new lower limit and the inverse kinematic solution was found for all the points
within the dynamic object, as shown in the following code:

FOR Yaxis = (Radius%(min%)UpperRad%) TO (Radius%(max%) +
UpperRad%)
 FOR Zaxis = 255 TO (Radius%(Z%) + UpperRad%)
 CALL InvKinematics
 NEXT Zaxis
NEXT Yaxis

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 609

The coordinates in Y and Z were converted to robotic joint angles using the inverse
kinematic solution in the subroutine InvKinematics. Firstly the distance from the
origin to the cartesian point (L3) and the angle to the point (CurvΘ) were calculated:

 CurvΘ = InvTan Zaxis / Yaxis (6)

 sqL3 = Yaxis² + Zaxis² (7)

 L3 = √sqL3 (8)

The upper-arm was checked against L3 to see if a collision was possible. If within
the reach of the upper-arm and if Θ2 was within its limit, then Θ2 was set to CurvΘ
and Θ3 was set to "blocked" between its limits. If L3 was less than the Forearm plus
upper-arm then the Forearm collided with the point. Θ2 and Θ3 were calculated using
the cosine rule and if Θ2 and Θ3 were within their limits a flag was set to "blocked".

The method is being successfully used with sensors [15,16] mobile robots
[17,18,19,20,21] and wheelchairs [22,23].

3.2 Spheres

The graph data structure described earlier was initialised. Limits of the graph corres-
ponded to the angular limits for the robot's joints within the range of the work cell and
obstacles outside this work-space were ignored. As the graph carried out intersection
checks at a limited number of positions, only a limited number of trigonometric solu-
tions were required and these were calculated at the start. Before the obstacles were
calculated all the units in the graph had a flag set to `CLEAR' status. Four other flags
were used with each node, these were: `New obstacle', `Forearm tested', `Upper arm
tested', and `On list'. Each unit code was stored as one byte of computer memory in
an array and the flags used one bit each. The obstacle data was received from a file or
from the vision system and the first task for the program was to read this data.

The task was then split into two sub-tasks, firstly to calculate the upper arm and
then to calculate the forearm blocked space on the graph. A configuration was calcu-
lated at which the part of the arm under consideration was closest to the obstacle cen-
tre. If the forearm was being considered, then the configuration where the Foretip
was at the centre of the sphere was calculated. For the upper arm, the configuration
was calculated for which the centre line of the upper arm pointed at the sphere centre.
If the obstacle was within the reach of the link being tested, then this configuration
was the first unit for the transformed obstacle. The base angle was calculated from
the X,Y coordinates of the sphere. Firstly the modulus (L3) and the angle (SphΘ)
from the robot to the centre of the sphere was calculated and a test was conducted to
see if the sphere was out of range, in which case no further processing was necessary.

 Waist Angle Θ1 =InvTan(Y/X) (9)

 Modulus XY=√(X²+Y²) (10)

 SphΘ=InvTan(Z/ModulusXY) (11)

610 D.A. Sanders et al.

 L3
 = √ (X² + Y² + Z²) (12)

The cosine rule was used to calculate the shoulder Θ2 and elbow Θ3 angles.
L1 = Upper-Arm = 220mm
L2 = ForeArm = 160mm

 Θ3 = InvCos [(L1² + L2² - L3²) / (2 * L1 * L2)] (13)

 Θ2 = InvCos [(L1² + L3² - L2²) / (2 * L1 * L3)] + SphΘ (14)

If the sphere centre was too close to the robot then Θ3 would exceed its lower limit
(Θ3 < 90°). In this case Θ3 was set to 90° and Θ2 was calculated using InvTan:

If Θ3 < 90° THEN
 Θ3 = 90°
 Θ2 = InvTan (L2 / L1) + SphΘ
END

This gave a starting configuration close to the centre. When the lower limit of Θ2
was exceeded, (Θ2 < -30°), the angle was set to minus 30° and the distance between
the upper-arm and sphere centre was calculated (the modulus) using the subroutine
FindModulus, from which the cosine could be used to find the new Θ3:

If -30° < Θ2 THEN
 Θ2 = -30°
 Θ3 = InvCos[(L1² + L2² - Modulus²) / (2* L1 * Modulus)]
END

The first configuration was set to blocked . Its neighbouring units were also tested
and if they were set to blocked then their neighbours were checked. The position
problem was solved using forward kinematic calculations and the minimum distance
between the obstacle and the robot arm was calculated, (provided that it had not com-
pleted the calculation before). The method continued recursively until the whole
obstacle transformation was found. All units were set to blocked, which had any two
opposite neighbouring units which were also blocked. Any units which were on the
edge of the now solid obstacle were recorded on a list. All the neighbours of the units
on the list were tested, and the process repeated until the surface of the transformed
sphere was completely defined.

Nodes which were blocked were stored on a list of units to be expanded later.
When a unit was expanded it was retrieved from the list and new blocked points were
added to the list. When all the nodes on the list were exhausted the obstacle transfor-
mation was complete. The most important consideration was processing speed.
Times for calculating obstacles were recorded during the project and examples are
presented in the results section.

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 611

3.3 Simple Polyhedral Shapes

Polyhedra are commonly used to model dynamic objects. The third modelling
method described in this paper modelled the dynamic objects as simple six sided
parallelepiped. This was the most elementary polyhedral model. The system found
the position of the edges of the model in X and Y by calculating the limits of the rows
and columns set by the vision program. If possible, the height of the object was then
retrieved from an associated template. Edge positions were expanded with the model
radius of the part of the robot under test (ie upper-arm or forearm), as demonstrated
below for an expansion of the forearm in X.

 Expand_XLow% = EdgePosition%(LowX%) - ForRad (15)

 Expand_XHigh% = EdgePosition%(HighX%) + ForRad (16)

The cartesian coordinates of the arm were then tested against the expanded polyhe-
dral edge limits.

4 Results

The most important consideration for the system was that it should be suitable for real
time applications. Times for transforming dynamic objects were recorded during
the project and as an example, the times for the three models to transform a large cube
into joint space are shown in Table 1. The times were recorded with the Z axis of the
cylinder at X = 0 mm and Y = 300 mm with respect to the origin.

Table 1. Transformation times for a cube.

The 2-D Slice Model: The advantage of modelling the dynamic object as a series

of similar 2-D slices was that once the collision coordinates of Θ2 and Θ3 had been
calculated for a particular Θ1 then these collisions could be repeated for the limits of
Θ1 which collided with the dynamic object. This reduced the main processing task to
copying data rather than calculating forward or reverse kinematic solutions. The re-
presentation of dynamic objects using similar 2-D slices was the fastest to transform
into discrete 3-D joint configuration space.

Once a dynamic object increased above a certain size or was moved closer to the
origin, part of the dynamic object intersected both the Upper Arm and ForeArm joint
space. Thus the joint-space occupied by the dynamic object suddenly increased and

 Model Time
(Seconds)

 Number of blocked
 nodes recorded.

 One Sphere 8.8 2426
 Two Spheres 14.1 2336
 Simple Polyhedron 26.3 1983
 2-D Slices 5.3 2489

612 D.A. Sanders et al.

calculation time increased. For the transformation methods a graph of calculation time
vs discrete work-space volume can be expected to be linear, that is the calculation
time for a dynamic object was approximately proportional to the number of units
tested, the total number of nodes being the work-space volume.

The computer time required for dynamic object transformations was short. The
initial conversion time to model the static environment was slow; Up to three minutes
of computer time depending on the complexity of the model, but the transformation
was only performed when the system was powered up.

The Sphere Model: An obstacle was modelled first as a single sphere of the smal-
lest radius which would enclose the obstacle. Later, if time allowed it was modelled
by two smaller spheres and then four spheres. Nodes set to blocked associated with
the first sphere tested usually also collided with other spheres. The forward kinematic
solutions did not need to be recalculated for these nodes but the total calculation time
increased with the number of spheres because the overhead of calculation for each
sphere was greater than the saving in time achieved as the spheres became smaller.
This meant the single sphere calculation was faster than the calculations for multiple
spheres although the single sphere model was less accurate and had a larger volume.
The problem when using more than one sphere was that the centre of several spheres
would be set to blocked (with some surrounding nodes) after the expansion of the first
sphere. As these nodes were blocked, later spheres were sometimes not retested so
that many nodes were not added to the list.

5 Discussion

Transforming a geometric algorithm into an effective computer program is a difficult
task. The accuracy of the models affected the performance of the Path Planner. High
accuracy models required more computation time and therefore longer solution times.
Low accuracy models required links or dynamic objects to be oversized to eliminate
the chance of undetected collisions. Lowering the accuracy led to the rejection of
valid solutions.

For dynamic models, speed of calculation was important. The simplest possible in-
tersection calculations for the local methods were made using the sphere model.
Calculation was reduced to finding the distance from the robot to a point and subtract-
ing the radius of the sphere to give the distance to the surface of the sphere. Modelling
with more than one sphere was considered. As the real environment for a robot be-
comes more complex so more spheres are needed for the model. It was considered
how increasing the number of spheres might increase the accuracy of the model.
A cubic number of spheres was used, i.e. 1, 8, 27, 64 etc. The spheres formed a regu-
lar pattern and were equal in size. An infinite number of spheres was required to
model the cube completely but modelling objects using the same sized spheres was
inefficient. For example, in modelling a cube using sixty-four spheres of the same
size, eight of the spheres are totally enclosed and might easily be replaced by a single
larger sphere without increasing the model volume.

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 613

To compare the modelling of obstacles using single and multiple spheres, as an ex-
ample, a model of a cylinder using one and two spheres is compared. The volume of
two spheres of radii 35 mm was compared to that of one sphere of 70 mm as shown
below.

Volume of Two Spheres: 2 x 4/3 x π x 353 = 359,188 mm3
Volume of One Sphere: 4/3 x π x 703 = 1,436,755 mm3
The area of the two spheres would be much smaller except that the model of the

robot must then be considered to find the union volume,

 Robot ∪ Model. (17)

The Upper-arm model radius= 80mm so: Union radius for a single sphere is 70+
80 = 150. Union radius for two spheres is 35+80 = 115. Union volume of a single
sphere is 4/3 x π x 1503 = 14,137,167 mm3. Union volume of two spheres is 2 x 4/3
x π x 1153 = 12,741,211 mm3.

There was a similar number of collisions for both models. When points within the
second sphere were not tested to see if they had collided during the calculations for a
previous sphere, this partially explained the lack of improvement in processing time
for the model using two spheres.

Considering the simple six sided parallelepiped model, the volume of the model for
the horizontal cylinder was less than that of the 2-D slice model.

Parallelepiped Volume = (60 + 160)² x (140 +80) = 10,648,000 mm3. This poten-
tially reduced the number of blocked nodes, but shape and therefore the calculations
were more complex so calculation time increased.

6 Conclusions

Using the two dimensional slice model of the cylinder, Θ2 and Θ3 were only deter-
mined for a single slice. This reduced the processing time as this slice of "blocked"
nodes was copied for all Θ1 within the bounding base joint angles.

The number of "blocked" nodes produced was similar to other models, so that the
intersection volume was approximately the same as for the sphere and polyhedral
models. This suggested an equivalent accuracy.

The method of modelling dynamic objects by similar 2-D slices had the fastest in-
tersection calculation times. Using the 2-D slices described, software models of the
dynamic work-place were quickly passed to the main computer by the vision system.
Similar 2-D slices were less complex than polyhedra, only requiring the two bounding
angles of the base joint Θ1, the inner and outer radius and a height (five items of
data).

2-D slices in a joint actuator space are the most efficient of the three models consi-
dered and they represent dynamic obstacles at least as effectively as the other two
models.

614 D.A. Sanders et al.

References

1. Sanders, D.A.: Recognizing shipbuilding parts using artificial neural networks and Fourier
descriptors. Proc. Institution of Mechanical Engineers Part B-Journal of Eng. Man. 223(3),
337–342 (2009)

2. Rasol, Z., Sanders, D.A.: An automatic system for simple spot welding tasks. Total
Vehicle Technology Conf., pp. 263−272 (2001)

3. Sanders, D.A., Harris, P.: Image modelling for real time manufacturing applications using
2-D slices in joint space and simple polyhedra. Journal of Design and Manufacturing 3,
21–27 (1993)

4. Sanders, D.A.: Real time geometric modelling using models in an actuator space and
cartessian space. Journal of Robotic Systems 12(1), 19–28 (1995)

5. Sanders, D.A., Lambert, G., Pevy, L.: Pre-locating corners in images in order to improve
the extraction of Fourier descriptors and subsequent recognition of shipbuilding parts.
Proc. Institution of Mechanical Engineers Part B-Journal of Eng. Man. 223(9), 1217–1223
(2009)

6. Carpin, S.: Randomized motion planning: A tutorial. Int. Jrnl. of Robotics & Automation
21(3), 184–196 (2006)

7. Berretty, R.-P., Overmars, M.H., van der Stappen, A.F.: Dynamic motion planning in low
obstacle density environments. Computational Geometry 11(3–4), 157–173 (1998)

8. Sanders, D.A., Moore, A., Luk, B.L.: A Joint Space Technique for Real Time Robot Path
Planning. Robots in Unstructured Environments, IEEE, 91TH376-4, pp. 1683−1689
(1991). ISBN 0-7803-0078-5

9. de Berga, M., Katzb, M.J., Overmarsa, M.H., van der Stappena, A.F., Vleugels, J.: Models
and motion planning. Computational Geometry 23(1), 53–68 (2002)

10. Tang, K.: A geometric method for determining intersection relations between a movable
convex object and a set of planar polygons. IEEE Transactions on Robotics 20(4),
636–650 (2004)

11. Large, F., Laugier, C., Shiller, Z.: Navigation Among Moving Obstacles Using the NLVO:
Principles and Applications to Intelligent Vehicles. Autonomous Robots 19(2), 159–171
(2005)

12. Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal. In: Proc.
10th Annual. Symp. on Computational Geometry, pp. 113−122 (1994)

13. Sharma, V., Savchenko, M., Frazzoli, E., Voulgaris, P.G.: Transfer time complexity of
conflict-free vehicle routing with no communications. International Journal of Robotics
Research 26, 255–271 (2007)

14. Fiorini, P.: Robot motion planning among moving obstacles, PhD disertation, University
of California (1995)

15. Sanders, D.A.: Environmental sensors and networks of sensors. Sensor Review 28(4),
273–274 (2008)

16. Sanders, D.A., Lambert, G., Graham-Jones, J., et al.: A robotic welding system using im-
age processing techniques and a CAD model to provide information to a multi-intelligent
decision module. Assembly Automation 30(4), 323–332 (2010)

17. Sanders, D.A.: Comparing ability to complete simple tele-operated rescue or maintenance
mobile-robot tasks with and without a sensor system. Sensor Review 30(1), 40–50 (2010)

18. Sanders, D.A.: Comparing speed to complete progressively more difficult mobile robot
paths between human tele-operators and humans with sensor-systems to assist. Assembly
Automation 29(3), 230–248 (2009)

 Fast Transformations to Provide Simple Geometric Models of Moving Objects 615

19. Sanders, D.A., Graham-Jones, J., Gegov, A.: Improving ability of tele-operators to
complete progressively more difficult mobile robot paths using simple expert systems and
ultrasonic sensors. Industrial Robot 37(5), 431–440 (2010)

20. Sanders, D.A., Stott, I.J., Robinson, D.C., et al.: Analysis of successes and failures with a
tele-operated mobile robot in various modes of operation. Robotica 30, 973–988 (2012)

21. Sanders, D.A., Tewkesbury, G.E., Stott, I.J., et al.: Simple expert systems to improve an
ultrasonic sensor-system for a tele-operated mobile-robot. Sensor Review 31(3), 246–260
(2011)

22. Sanders, D.A., Langner, M., Tewkesbury, G.E.: Improving wheelchair-driving using a
sensor system to control wheelchair-veer and variable-switches as an alternative to digital-
switches or joysticks. Industrial Robot 37(2), 157–167 (2010)

23. Sanders, D.A., Stott, I.J., Graham-Jones, J.: Expert system to interpret hand tremor and
provide joystick position signals for powered wheelchairs with ultrasonic sensor systems.
Industrial Robot 38(6), 585–598 (2011)

	Fast Transformations to Provide Simple Geometric Models of Moving Objects
	1 Introduction
	2 Robot and Static Environment
	2.1 Dynamic Mapping

	3 Transformation into Joint Space
	3.1 2-D Slices
	3.2 Spheres
	3.3 Simple Polyhedral Shapes

	4 Results
	5 Discussion
	6 Conclusions
	References

