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Abstract. We propose an approach based on DRSA (Dominance-
based Rough Set Approach) method for synthesizing preference in-
formation of multiple decision makers in a multicriteria classification
problem. The proposed approach takes as input a common informa-
tion table and generates a set of collective decision rules representing
a generalized description of the preference information of the deci-
sion makers.

1 INTRODUCTION

DRSA (Dominance-based Rough Set Approach) [3] is an extension
of rough sets theory [5] to deal with multicriteria classification prob-
lems. It takes as input adecision tabledescribing thedecision objects
and generates as output a set ofdecision rules. DRSA is a single de-
cision maker oriented method. However, there are some proposals to
extend DRSA to group decision making [7][4][1]. But these propos-
als have several shortcomings as discussed in Section 7.

The objective of this paper is to introduce a DRSA-based approach
for synthesizing preference information of multiple decision mak-
ers in a multicriteria classification problem. The proposed approach
takes as input a common information table and generates a set of col-
lective decision rules representing a generalized description of the
preference information of the decision makers.

The paper goes as follows. Section 2 presents the background.
Section 3 introduces the approach. Section 4 presents the aggregation
procedure. Section 5 deals with collective decision rules generation.
Section 6 illustrates the approach through an application. Section 7
discusses some related work. Section 8 concludes the paper.

2 BACKGROUND

DRSA [3][4] is a rough sets-based multicriteria classification
method. This method has been developed to overcome the shortcom-
ings of rough set [5] in multicriteria classification problems. The idea
of DRSA is to replaceindiscernibility relation in rough approxima-
tions bydominancerelation.

2.1 Basic notations and assumptions

Information about decision objects are often represented in terms of
an information tablewhere rows correspond toobjectsand columns
correspond toattributes. The information tableS is a 4-tuple<
U, Q, V, f > where:U is a finite set of objects,Q is a finite set
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of attributes,V =
⋃

q∈Q
Vq, Vq is a domain of attributeq, and

f : U × Q → V is an information functiondefined such that
f(x, q) ∈ Vq,∀q ∈ Q, ∀x ∈ U . The set of attributesQ is often
divided into a sub-setC of condition attributesand a sub-setD of
decision attributes. In this case,S is calleddecision table.

A series of assumptions are established first. The domain of condi-
tion attributes are supposed to be ordered to decreasing or increasing
preference. Such attributes are calledcriteria. We assume that the
preference is increasing with the value off(·, q) for everyq ∈ C.
We also assume that the set of decision attributesD is a singleton
{d}. Decision attributed makes a partition ofU into a finite number
of decision classesCl = {Clt, t ∈ T}, T = {0, · · · , n}, such that
eachx ∈ U belongs to one and only one class inCl. Further, we
suppose that the classes are preference-ordered, i.e. for allr, s ∈ T ,
such thatr > s, the objects fromClr are preferred to the objects
from Cls.

The idea of rough set approach is the approximation of knowledge
generated by the decision attributes by “granules of knowledge” gen-
erated by condition attributes. The sets to be approximated are:

Cl≥t =
⋃

s≥t
Cls, Cl≤t =

⋃
s≤t

Cls, t = 0, · · · , n.

SetCl≥t is called theupward union. The assertionx ∈ Cl≥t means
that “x belongs to at least classClt”. SetCl≤t is called thedownward
union. The assertionx ∈ Cl≤t means that “x belongs to at mostClt”.

2.2 Approximation of unions of classes

In DRSA the represented knowledge is a collection of upward and
downward unions of classes and the “granules of knowledge” are
sets of objects defined using a (weak) dominance relation. The domi-
nance relation∆P , whereP ⊆ C, is defined for each pair of objects
x andy as follows:

x∆P y ⇔ f(x, q) ≥ f(y, q),∀q ∈ P .

The “granules of knowledge” used for approximation in DRSA with
respect to a set of criteriaP ⊆ C and objectx ∈ U are:

• ∆+
P (x) = {y ∈ U : y∆P x}: the set of objects that dominatex,

• ∆−
P (x) = {y ∈ U : x∆P y}: the set of objects dominated byx.

∆+
P and ∆−

P are respectively calledP -dominating set andP -
dominatedset. For each set of criteriaP ⊆ C, the P -lower and
P -upper approximations ofCl≥t are defined as follows:

• P (Cl≥t ) = {x ∈ U : ∆+
P (x) ⊆ Cl≥t },

• P̄ (Cl≥t ) =
⋃

x∈Cl
≥
t

∆+
P (x) = {x ∈ U : ∆−

P (x)
⋂

Cl≥t 6= ∅}.
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P -lower approximation ofCl≥t contains all the objects withP -
dominating set are assigned with certitude to classes at most as good
asClt. P -upper approximation ofCl≥t contains all the objects with
P -dominating set is assigned to a class at least as good asClt.

Similarly, theP -lower andP -upper approximations ofCl≤t are
defined as follows:

• P (Cl≤t ) = {x ∈ U : ∆−
P (x) ⊆ Cl≤t },

• P̄ (Cl≤t ) =
⋃

x∈Cl
≤
t

∆−
P (x) = {x ∈ U : ∆+

P (x)
⋂

Cl≤t 6= ∅}.

P -lower approximation ofCl≤t contains all the objects withP -
dominated set are assigned with certitude to a class at most as good
asClt. P -upper approximation ofCl≤t contains all the objects with
P -dominated set is assigned to a class at least as good asClt.

We also define theP -boundary sets ofCl≥t andCl≤t as follows:

• BnP (Cl≥t ) = P̄ (Cl≥t )− P (Cl≥t ),
• BnP (Cl≤t ) = P̄ (Cl≤t )− P (Cl≤t ).

BnP (Cl≥t ) contains all the objects which are assigned both to a
class better thanClt and to one or several classes worse thanClt.
In other words, it contains objects withP -dominating set cannot be
assigned with certitude to classes at least as good asClt. Similarly,
BnP (Cl≤t ) is the set of objects withP -dominated set cannot be as-
signed with certitude to classes at most as good asClt.

2.3 Decision rules

The approximations of upward and downward unions of classes can
serve to induce a set of “if · · ·, then · · ·” decision rules relating con-
dition and decision attributes. An objectx ∈ U supportsa decision
rule if its description matchs both the condition part and the decision
part of this rule. A decision rulecoversobjectx if the description of
x matches at least the condition part of the rule. Thestrengthof a
decision rule is the number of objects supporting this rule.

2.4 Quality of classification

Thequality of classificationis defined by the following ratio:

γP =
card(U−(

⋃
t=1,···,n BnP (Cl

≥
t

)))

card(U)

=
card(U−(

⋃
t=0,···,n−1

BnP (Cl
≤
t

)))

card(U)
.

(1)

It expresses the pourcentage of objects that are assigned with certi-
tude to a given class.

3 COLLECTIVE DECISION RULES
CONSTRUCTION APPROACH

The proposed approach is composed of three phases: individual clas-
sification, aggregation, and generation of collective decision rules.
The main input of the approach is a common information tableI
defined as< U, C, V, f > with a finite setU of objects and a fi-
nite setC of criteria. The output is a collection of collective decision
rules representing a generalized description of the preference infor-
mation provided by the decision makers. LetH = {1, · · · , i, · · · , h}
be a finite set of decision makers corresponding toh decision at-
tributesD1, · · · , Di, · · · , Dh. Further, we suppose that decision at-
tributes are defined on the same domain. We also assume that each
decision makeri ∈ H has a preference order on the universeU and
that this preference order is represented by a finite set of preference
ordered classes:

Cli = {Clt,i, t ∈ Ti}, Ti = {0, · · · , ni},

such that
⋃ni

t=1
Clt,i = U, Clt,i ∩ Clr,i = ∅,∀r, t ∈ Ti, r 6= t, and

if x ∈ Clr,i, y ∈ Cls,i andr > s, thenx is better thany for decision
makeri.

3.1 Phase 1: Individual classification

In this first phase, each decision maker uses the common infor-
mation tableI to construct its own decision tableSi defined as
< U, C ∪ Di, V, fi > whereDi is a new decision attribute and
fi is an information function, both associated with decision makeri.
Then, each decision maker runs the DRSA method using its decision
tableSi as input. In terms of this phase, the classification conducted
by each decision maker is characterized, among others, by:

• the P -lower approximation and andP -boundary ofCl≤t,i and

Cl≥t,i, for eacht ∈ Ti, and
• the quality of classificationγi

P defined in similar way to Eq. (1).

3.2 Phase 2: Aggregation

The objective of this phase is to combine the outputs of the first phase
in order to assign to each objectx ∈ U a collective assignment inter-
val by using an aggregation procedure detailed in Section 4. First, we
design byCl the collective preference order obtained by the union of
individual preference orders:

Cl = {Clt, t ∈ T}, T = {0, · · · , n},

such that eachx ∈ U belongs to one and only one classClt ∈ Cl.
This operation is correct since, as stated before, decision attributes
are defined on the same domain. According to this definition, we
have:x ∈ Clt,i ⇔ x ∈ Clt, ∀x ∈ U , ∀t ∈ T , and∀i ∈ H.

The aggregation procedure can be represented as follows:

U → Cl × Cl
x → I(x) = [l(x), u(x)]

It is a mapping fromU to Cl × Cl that associates to eachx ∈ U a
collective assignment intervalI(x) = [l(x), u(x)], wherel(x) and
u(x) are respectively the lower and upper classes to which objectx
can be assigned. Details are given in Section 4.3.

3.3 Phase 3: Generation of collective decision rules

The objective of this phase is to use the DRSA method to infer a
set of collective decision rules representing a generalized descrip-
tion of the preference information provided by the different decision
makers. The application of DRSA method requires that the decision
attribute be mono-valued. Thus, some simple rules are first used to
construct a collective decision table with a mono-valued decision at-
tribute (Section 5.1). Then, the DRSA method may be applied using
the obtained collective decision table as input (Section 5.2).

4 AGGREGATION PROCEDURE

The aggregation procedure is composed of three steps.



4.1 Step 2.1: Normalization

The objective of this first step is to standardize the quality of classi-
ficationsγi

P (∀i ∈ H) using the following formula:

iγ′P =
1

h
·

h∑
i=1

γi
P , (i = 1, · · · , h). (2)

4.2 Step 2.2: Computing the concordance and
discordance powers

The aggregation procedure is based on the majority principle which
is defined through the concordance and discordance powers. The se-
mantic interpretation of these powers is similar to the same concepts
employed in ELECTRE family of multicriteria methods; see[2].
However, they are defined, computed and used differently in the
present paper.

4.2.1 Concordance power

First, we define the setsL(x, Cl≤t ) andL(x, Cl≥t ) as follows:

• L(x, Cl≤t ) = {i : i ∈ H ∧ x ∈ P (Cl≤t,i)},
• L(x, Cl≥t ) = {i : i ∈ H ∧ x ∈ P (Cl≥t,i)}.
The first set represents the decision makers for which objectx be-
longs to the lower approximation ofCl≤t . The second one represents
the decision makers for which objectx belongs to the lower approxi-
mation ofCl≥t . Next, theconcordance powersfor the assignment of
x to Cl≤t and toCl≥t are computed as follows:

L+(x, Cl≤t ) =
∑

i∈L(x,Cl
≤
t

)

iγ′P . (3)

L+(x, Cl≥t ) =
∑

i∈L(x,Cl
≥
t

)

iγ′P . (4)

L+(x, Cl≤t ) ∈ [0, 1] measures the power of coalition of deci-
sion makers that assignx to the lower approximation ofCl≤t .
L+(x, Cl≥t ) ∈ [0, 1] measures the power of coalition of decision
makers that assignx to the lower approximation ofCl≥t .

4.2.2 Discordance power

First, we define the setsB(x, Cl≤t ) andB(x, Cl≥t ) as follows:

• B(x, Cl≤t ) = {i : i ∈ H ∧ x ∈ BnP (Cl≤t,i)},
• B(x, Cl≥t ) = {i : i ∈ H ∧ x ∈ BnP (Cl≥t,i)}.
The first set represents the decision makers for which objectx be-
longs to the boundary ofCl≤t . The second one represents the decision
makers for which objectx belongs to the boundary ofCl≥t . Then, the
discordance powersfor the assignment ofx to the boundary ofCl≤t
andCl≥t are computed as follows:

B+(x, Cl≤t ) =
∑

i∈B(x,Cl
≤
t

)

iγ′P . (5)

B+(x, Cl≥t ) =
∑

i∈B(x,Cl
≥
t

)

iγ′P . (6)

B+(x, Cl≤t ) ∈ [0, 1] measures the power of coalition of decision
makers that assignx to the boundary ofCl≤t . B+(x, Cl≥t ) ∈ [0, 1]
measures the power of coalition of decision makers that assignx to
the boundary ofCl≥t .

4.3 Step 2.3: Definition of assignment intervals

Let θ ∈ [.5, 1.0] be a majority threshold andθ′ ∈ [0, .5] be a veto
threshold. Based on the concordance and discordance powers, we
may distinguish four situations for the assignment ofx to Cl≤t :

B+(x, Cl≤t ) < θ′ B+(x, Cl≤t ) ≥ θ′

L+(x, Cl≤t ) ≥ θ x ∈ Cl≤t x /∈ Cl≤t
L+(x, Cl≤t ) < θ x /∈ Cl≤t x /∈ Cl≤t

These situations are summarized by the following assignment rule:

if L+(x, Cl≤t ) ≥ θ ∧B+(x, Cl≤t ) < θ′, then x ∈ Cl≤t
else x /∈ Cl≤t ( rule 1 )

This assignment rule can be explained as follows. An objectx is
assigned toCl≤t if and only if:

• there is a “sufficient” majority of decision makers (in terms of
their quality of classification) that assignx to Cl≤t , and

• when the first condition holds, none of the minority of decision
makers shows an “important” opposition to the assignment ofx to
Cl≤t .

In similar way, four situations can be distinguished for the assign-
ment ofx to Cl≥t :

B+(x, Cl≥t ) < θ′ B+(x, Cl≥t ) ≥ θ′

L+(x, Cl≥t ) ≥ θ x ∈ Cl≥t x /∈ Cl≥t
L+(x, Cl≥t ) < θ x /∈ Cl≥t x /∈ Cl≥t

These situations are summarized by the following assignment rule:

if L+(x, Cl≥t ) ≥ θ ∧B+(x, Cl≥t ) < θ′, then x ∈ Cl≥t
else x /∈ Cl≥t (rule 2)

This assignment rule can be explained as follows. An objectx is
assigned toCl≥t if and only if:

• there is a “sufficient” majority of decision makers (in terms of
their quality of classification) that assignx to Cl≥t , and

• when the first condition holds, none of the minority of decision
makers shows an “important” opposition to the assignment ofx to
Cl≥t .

The application of these assignment rules on the set of objectsU
permits to associate to each objectx a collective assignment interval
I(x) = [l(x), u(x)] where:

l(x) =

{
argmaxClt

N1(x), if N1(x) 6= ∅,
Cl0, otherwise.

(7)

u(x) =

{
argminClt

N2(x), if N2(x) 6= ∅,
Cln, otherwise.

(8)

whereN1(x) = {Clt : x ∈ Cl≥t } and N2(x) = {Clt : x ∈
Cl≤t }. SetN1(x) contains the set of classes to whichx is assigned
by applyingrule 2, while setN2(x) contains the set of classes to
whichx is assigned by applyingrule 1.

The aggregation procedure is summed up in Algorithm 1. This
algorithm runs inO(|U | · n · h) where|U | is the cardinality ofU , n
is the number of classes andh is the number of decision makers.



Algorithm 1 AggregationProcedure
Input:P (Cl≤t,i), P (Cl≥t,i): P -lower approx. (i ∈ H; t ∈ Ti)

BnP (Cl≤t,i), BnP (Cl≥t,i): P -boundary (i ∈ H; t ∈ Ti)
γi

P : quality of classification (i ∈ H)
Output:I(x): Collective assignment interval (∀x ∈ U )
1. Normalizeγi

P (i ∈ H)
2.for eachx ∈ U
3. for eacht ∈ T

4. compteL(x, Cl≤t ), B(x, Cl≤t ), L(x, Cl≥t ), B(x, Cl≥t )

5. compteL+(x, Cl≤t ), B+(x, Cl≤t ), L+(x, Cl≥t ), B+(x, Cl≥t )

6. if L+(x, Cl≤t ) ≥ θ andB+(x, Cl≤t ) < θ′, then x ∈ Cl≤

7. elsex /∈ Cl≤ end if
8. if L+(x, Cl≥t ) ≥ θ andB+(x, Cl≥t ) < θ′, then x ∈ Cl≥

9. elsex /∈ Cl≥ end if
10. end for
11. N1(x) ← {Clt : x ∈ Cl≥t }
12. N2(x) ← {Clt : x ∈ Cl≤t }
13. if N1(x) 6= ∅, then l ← argmaxCltN1(x)
14. elsel ← Cl0 end if
15. if N2(x) 6= ∅ then u ← argminCltN2(x)
16. elseu ← Cln end if
17. I(x) ← [l, u]
18.end for

5 INFERENCE OF DECISION RULES

5.1 Construction of a collective decision table

The objective of this step is to construct a collective decision table
S defined as< U, C ∪ D, V, g > whereD is a collective decision
attribute andg is a collective information function defined as follows:

g(x, q) =

{
f(x, q), if q ∈ C,
g(x, D), if q = D.

(9)

Two cases may be distinguished for the definition ofg(x, D). The
first holds whenl(x) = u(x). Here, objectx is assigned to a sin-
gle class and consequently we can setg(x, D) = l(x) (or similarly
g(x, D) = u(x)). The second case holds whenl(x) < u(x). This
corresponds to the situation where objectx is assigned to more than
one class. To defineg(x, D) we may apply one of the following rules
to reduce the collective assignment intervalI(x) to a single class:

• use the “min” operator on the collective assignment intervalI(x).
This leads tog(x, D) = l(x). (rule 3)

• use the “max” operator on the collective assignment intervalI(x).
This leads tog(x, D) = u(x). (rule 4)

• use the “median” operator onl′, · · · , u′, where l′, · · · , u′ is an
ordered list issued froml(x), · · · , u(x). (rule 5)

The proposed approach assumes an ordinal measurement scale.
Hence, the median value may correspond to no decision class (when
there is an even number of values). To avoid this problem,rule 5can
be subdivided into two rules:

• use the “floor” of the median value:g(x, D) = bµ(l′, · · · , u′)c.
(rule 5.1)

• use the “ceil” of the median value:g(x, D) = dµ(l′, · · · , u′)e.
(rule 5.2)

Functionµ(·) returns the median value. The collective assignment in-
terval reduction step is formalized in Algorithm 2.OrderedList

in Algorithm 2 returns an ordered list from(l(x), · · · , u(x)). Algo-
rithm 2 runs inO(|U | ·k log k) where|U | is the cardinality ofU and
k is the number of values in(l(x), · · · , u(x)).

Algorithm 2 AssignmentIntervalReduction
Input: I(x): Collective assignment interval (∀x ∈ U )

rule: Interval reduction rule
Output:g(x, D), ∀x ∈ U
1. for eachx ∈ U
2. l ← l(x)
3. u ← u(x)
4. if l = u, then g(x, D) ← l
5. else ifrule is ‘min’, then g(x, D) ← l
6. else ifrule is ‘max’, then g(x, D) ← u
7. else(l′, · · · , u′) ← OrderedList(l(x), · · · , u(x))
8. m ← median(l′, · · · , u′)
9. if rule is ‘floor’, then g(x, D) ← bmc end if
10. if rule is ‘ceil’, then g(x, D) ← dme end if
11. end if
12. end if
13. end if
14.end for

5.2 Inference of collective decision rules

The objective here is to apply DRSA using the collective decision
tableS as input. The application of DRSA at this level is the same
as for a single decision maker. The output is a collection of decision
rules synthesizing the preference information of the different deci-
sion makers. These rules can then be included in a knowledge-based
decision support system [6] and used as basis for decision making.

6 APPLICATION

The problem considered concerns post-accident nuclear risk manage-
ment in the southern France in which one of the authors was implied.
For the purpose of this paper, only a subset of data is used. Further
decision objects and names of decision makers are codified (con-
fidentiality reasons). The problem considered involves 10 decision
objects, 7 evaluation criteria, 3 decision makers (CM, PP and CAL),
and six decision classes (Cl0 to Cl5). Decision objects correspond
to a subset of the districts of the study area. The list of evaluation
criteria is given in Table 1 and decision classes are given in Table 2.

Table 1. List of evaluation criteria

Code Description
C1 Radioecological vulnerability of agricultural area
C2 Radioecological vulnerability of forest area
C3 Radioecological vulnerability of urban area
C4 Real estate vulnerability
C5 Tourism vulnerability
C6 Economic vulnerability of companies
C7 Employment vulnerability

Table 2. Decision classes

Level Class Name
0 Cl0 Normal situation
1 Cl1 Very minor
2 Cl2 Minor
3 Cl3 Moderate
4 Cl4 Major
5 Cl5 Major and long-lasting



6.1 Phase 1: Individual classification

First, each decision maker runs the DRSA3 method using its own de-
cision table obtained by adding a new decision attribute to the com-
mon information table. Decision tables used here are given in Table
3 where decision attributesD1, D2 andD3 correspond to decision
makers CM, PP and CAL. The obtained quality of classifications are
γ1

P = 0.61 (CM), γ2
P = 0.33 (PP), andγ3

P = 0.33 (CAL).

Table 3. Decision tables

Object C1 C2 C3 C4 C5 C6 C7 D1 D2 D3
x1 4 5 5 5 4 1 1 4 4 5
x2 4 5 5 5 4 2 2 4 4 5
x3 4 5 5 5 4 2 1 4 4 5
x4 4 5 5 5 4 3 1 5 4 5
x5 3 2 2 4 4 2 0 3 2 3
x6 1 1 1 2 4 1 0 0 0 1
x7 2 2 1 2 4 1 0 3 2 2
x8 1 2 1 2 2 1 0 0 0 1
x9 3 2 2 4 4 2 0 3 2 2
x10 3 3 3 4 4 1 0 3 2 3

6.2 Phase 2: Aggregation

6.2.1 Step 2.1: Normalization

First, Eq. (2) is used to normalize the quality of classificationsγ1
P ,

γ2
P , andγ3

P , which leads to:1γ′P = .48., 2γ′P = .26. and3γ′P = .26.

6.2.2 Step 2.2: Computing the concordance/discordance
powers

Concordance power For illustration, we only show the computing
of L+(x5, Cl≤3 ). The lower approximations forCl≤3 according to
decision makers CM, PP and CAL are as follows:

• P (Cl≤3 ) = {x5, x6, x7, x8, x9, x10}. (CM)
• P (Cl≤3 ) = {x5, x6, x7, x8, x9, x10}. (PP)
• P (Cl≤3 ) = {x8}. (CAL)

Hence, we haveL(x5, Cl≤3 ) = {1, 2}. This means that only decision
makers CM and PP assignx5 to the lower approximation ofCl≤3 .
Now, Eq. (3) can be used to compute the concordance power for
objectx5 with respect toCl≤3 :

L+(x5, Cl≤3 ) =
∑

i∈L(x5,Cl
≤
3 )

iγ′P =1γ′P + 2γ′P =.48+.26=.74.

The concordance powers of decision objectx5 with respect toCl≤t
(t = 0, · · · , 4) andCl≥t (t = 1, · · · , 5) are given in Table 4.

Discordance power For illustration, we only show the comput-
ing of B+(x5, Cl≥4 ). The boundaries forCl≥4 according to decision
makers CM, PP and CAL are as follows:

• BnP (Cl≥4 ) = ∅. (CM)
• BnP (Cl≥4 ) = ∅. (PP)
• BnP (Cl≤4 ) = {x5, x6, x7, x9, x10}. (CAL)

Then, we getB(x5, Cl≥4 ) = {3}. This means that only decision
maker CAL assignsx5 to the boundary ofCl≥4 . By Eq. (6), the dis-
cordance power for the assignment of objectx5 to Cl≥4 is:

B+(x5, Cl≥4 ) =
∑

i∈B(x5,Cl
≥
4 )

iγ′P = 3γ′P =.26

The boundary powers of decision objectx5 with respect toCl≤t
(t = 0, · · · , 4) andCl≥t (t = 1, · · · , 5) are summed up in Table 4.

3 Using 4eMKa, which is a stand-alone and free software implementing the
DRSA method. See: http://idss.cs.put.poznan.pl/site/4emka.html.

Step 2.3: Definition of assignment intervals Here, assignment
rules rule 1 and rule 2 given in Section 4.3 are used to associate
to each objectx ∈ U a collective assignment intervalI(x). The
majority and veto thresholds used in this application areθ = .5 and
θ′ = .25, respectively. Then, assignmentrule 1 andrule 2 become:

if L+(x, Cl≤t ) ≥ .5 ∧B+(x, Cl≤t ) < .25, then x ∈ Cl≤t
else x /∈ Cl≤t

if L+(x, Cl≥t ) ≥ .5 ∧B+(x, Cl≥t ) < .25, then x ∈ Cl≥t
else x /∈ Cl≥t

The application of these rules tox5 is summarized in Table 4 (fourth
row). According to this table, it is easy to see that the first assignment
rule is verified only forCl≤3 andCl≤4 while the second assignment
rule is verified only forCl≥1 andCl≥2 . In conclusion, we obtain:x5 ∈
Cl≤3 , x5 ∈ Cl≤4 , x5 ∈ Cl≥1 andx5 ∈ Cl≥2 .

Table 4. Application of assignment rules (rule 1andrule 2) to objectx5

Cl·t Cl
≤
0 Cl

≤
1 Cl

≤
2 Cl

≤
3 Cl

≤
4 Cl

≥
1 Cl

≥
2 Cl

≥
3 Cl

≥
4 Cl

≥
5

L+(x5, Cl·t) 0 0 0 .74 1 1 1 .48 0 0
B+(x5, Cl·t) 0 0 .52 .26 0 0 0 .52 0.26 0
Decision No No No Yes Yes Yes Yes No No No

Now, to define the assignment intervalI(x5) = [l(x5), u(x5)], we
use Eqs. (7) and (8) to definel(x5) andu(x5). Based on Table 4, we
get:N1(x5) = {Clt : x5 ∈ Cl≥t } = {Cl1, Cl2}, andN2(x5) =
{Clt : x5 ∈ Cl≤t } = {Cl3, Cl4}. Then, Eqs. (7) and (8) lead to:

• l(x5) = argmaxClt
N1(x5) = argmaxClt

{Cl1, Cl2} = Cl2.
• u(x5) = argminClt

N2(x5) = argminClt
{Cl3, Cl4} = Cl3.

Finally, the assignment interval for decision objectx5 is I(x5) =
[Cl2, Cl3]. For convenience, the assignment intervals for all decision
objects are given in Table 5 (second column).

6.3 Phase 3: Generation of collective decision rules

Step 3.1: Construction of a collective decision table The ob-
jective here is to construct the collective decision table< U, C ∪
D, V, g >. The definition ofg(x, D), ∀x ∈ U is summarized in
Table 5 where columns “min”, “max”, “floor” and “ceil” refer to in-
terval reduction rulesrule 3, rule 4, rule 5.1andrule 5.2.

Table 5. The definition ofg(x, D) for different interval reduction rules

xi I(xi) min max floor ceil
x1 [Cl4, Cl4] Cl4 Cl4 Cl4 Cl4
x2 [Cl4, Cl4] Cl4 Cl4 Cl4 Cl4
x3 [Cl4, Cl4] Cl4 Cl4 Cl4 Cl4
x4 [Cl5, Cl5] Cl5 Cl5 Cl5 Cl5
x5 [Cl2, Cl3] Cl2 Cl3 Cl2 Cl3
x6 [Cl0, Cl0] Cl0 Cl0 Cl0 Cl0
x7 [Cl3, Cl3] Cl3 Cl3 Cl3 Cl3
x8 [Cl0, Cl0] Cl0 Cl0 Cl0 Cl0
x9 [Cl3, Cl3] Cl3 Cl3 Cl3 Cl3
x10 [Cl2, Cl3] Cl2 Cl3 Cl2 Cl3

Step 3.2: Inference of collective decision rules The quality of
classifications according to different interval reduction rules are
given in Table 6. As it is shown in this table, interval reduction using
the “max criterion” (rule 4) leads to the highest quality of classifica-
tion (.83). The quality of classifications obtained byrule 5.1 (floor)
andrule 5.2 (ceil) are equal to .72. In the three cases, we can con-
clude that the number of objects assigned with certitude to a given



class is acceptable. In the contrary, the quality of classification ob-
tained by the “min” criterion (rule 3) is relatively low. Hence, the
use ofrule 3 is not recommended in this illustrative application.

Table 6. The classification quality for different interval reduction rules

Rule min max floor ceil
γP .28 0.83 .72 .72

A selection of collective decision rules generated usingrule 5.1
for interval reduction is given in Table 7. The first column in this
table contains the decision rule. The second column contains objects
supporting the rule. The last column indicates the strength of the rule.
The description of these rules is straightforward. For illustration, we
briefly comment two ones:

• Rule 4: if f(x, q5) ≤ 3, thenCl≤2
• Rule 20: if f(x, q2) ≤ 2 ∧ f(x, q5) ≤ 4, thenCl≥2

Rule 4 means that an objectx is assigned toCl≤2 if its evaluation
with respect to “Tourism vulnerability” criterion (q5) is less or equal
to 3. Rule 4 is supported only by decision objectsx8 andx15. Its
strength is equal to 40%.

Rule 20 says that objectx is assigned toCl≥2 once (i) its evalu-
ation with respect to “Radioecological vulnerability of forest area”
criterion (q2) is less or equal to 2, and (ii) its evaluation with respect
to “Tourism vulnerability” criterion (q5) is less or equal to 4. The de-
cision objects supporting Rule 20 are:x1, x2, x3, x4, x5, x7, x9, and
x10. The strength of Rule 20 is equal to 92.86%.

Table 7. A selection of collective decision rules

Rule Supporting objects Strength

Rule1: iff(x, q5) ≤ 2, thenCl
≤
0

x8 100%

Rule2: iff(x, q1) ≤ 1, thenCl
≤
2

x6 ,x8 80%

Rule4: iff(x, q5) ≤ 3, thenCl
≤
2

x8 ,x15 40%

Rule13: iff(x, q6) ≤ 3, thenCl
≥
5

x4 100%

Rule19: iff(x, q1) ≤ 2,thenCl
≥
2

x1, x2, x3, x4, x5, x7, x9, x10 100%

Rule20:iff(x, q2) ≤ 2 ∧ f(x, q5) ≤ 4, thenCl
≥
2

x1, x2, x3, x4, x5, x7, x9, x10 92.86%

Rule22: iff(x, q2) ≤ 2 ∧ f(x, q5) ≤ 3, thenCl
≥
2

x1, x2, x3, x4, x5, x7, x9, x10 100%

7 RELATED WORK

In [7], the authors propose a DRSA-based methodology to group de-
cision making with application to knowledge management. It con-
tains four steps. First, a common decision table is constructed. Sec-
ond, decision rules for each assignment example determined in the
first step are inferred. The obtained results are checked for incon-
sistencies problems. Third, each decision maker solves the eventual
inconsistence problems. Fourth, the analyst identifies collectively ac-
cepted decision rules. The main shortcoming of [7]’s methodology is
its time consuming. In fact, the methodology requires, in conflicting
situations, that the analyst conducts an in-depth discussion with the
different decision makers in order to solve the conflicts. This is a
time-consuming and difficult task.

The authors in [1] propose an argumentative multi-agent model
based on a mediator agent in order to automate the resolution of con-
flicts between decision makers in [7]’s methodology. This approach
allows the mediator agent to elicit preference of decision makers
while exploiting and managing their points of view. Although this
multi-agent system-based approach permits to automatize conflict
resolution, it has one major shortcoming. In fact, the aggregation rule
used in [1] is defined as a weighted-sum of four criteria: the number

of agents, the quality of classification, the number of rules and the av-
erage strength of rules. However, we think that the second and fourth
criteria are similar, which may lead to over-evaluation.

Another extension of DRSA to support multiple decision makers is
reported in [4] where the authors extend the lower and upper approx-
imations and boundary concepts. More specifically, they introduce
the concepts of downward and upward multi-union and mega-union.
These concepts are then used to define lower and upper approxima-
tion for unions of classes. We think that this extension has three main
shortcomings. First, it is difficult for decision makers to understand
the aggregation mechanism adopted in [4]. Second, [4]’s approach is
expensive in computational time. Third, there is no dialogue between
the different decision makers.

8 CONCLUSION

We proposed a three-phase DRSA-based approach for group multi-
criteria classification problems. The proposed approach takes as in-
put a common information table and generates a set of collective
decision rules representing a generalized description of the prefer-
ence information of the decision makers. The paper detailed the ap-
proach and illustrates it through a real-world application. The pro-
posed approach has several merits. First, as it is based on DRSA,
the approach: (i) does not require any preference parameter, (ii) is
able to deal with lack of information, and (iii) is able to detect and
handle inconsistency problems in the decision table. Second, the ap-
proach uses the majority rule which is characterized by (i) its sim-
plicity, anonymity and neutrality, and (ii) its low-demanding in terms
of computational time. Third and in contrary to [7][1] (which are
very demanding in terms of dialogue) and [4] (which requires no di-
alogue), the proposed approach is not very demanding in terms of
dialogue between the different decision makers.

Several topics need to be investigated in the future. The first one
concerns the use of decision rules-related information to define the
assignment rules. The second one is related to the use of other clas-
sification methods that accept interval-based assignment for decision
objects. The third one concerns the use of input level aggregation-
oriented schema.

REFERENCES
[1] I. Brigui-Chtioui and I. Saad, ‘A multi-agent approach for collective de-

cision making in knowledge management’,Group Decision and Negoti-
ation, (2010). to appear.

[2] J.R. Figueira, S. Greco, and M. Ehrgott, eds.,Multiple criteria decision
analysis: State of the art surveys, chapter ELECTRE methods, 133–162,
Springer-Verlag, New York, 2005.

[3] S. Greco, B. Matarazzo, and R. Slowinski, ‘Rough sets theory for mul-
ticriteria decision analysis’,European Journal of Operational Research,
129(1), 1–47, (2001).

[4] S. Greco, B. Matarazzo, and R. Slowinski, ‘Dominance-based rough set
approach to decision involving multiple decision makers’, inProceed-
ings of the 5th International conference Rough sets and current trends
in computing (RSCTC), Kobe, Japan, November 6-8, eds., S. Greco,
Y. Hata, S. Hirano, M. Inuiguchi, S. Miyamoto, H.S. Nguyen, and
R. Slowinski, volume 4259 ofLNAI, 306–317, Springer-Verlag, Berlin
Heidelberg, (2006).

[5] Z. Pawlak, Rough set. Theoretical aspects of reasoning about data,
Kluwer Academic Publishers, Dordrecht, 1990.

[6] I. Saad and S. Chakhar, ‘A decision support for identifying crucial
knowledge requiring capitalizing operation’,European Journal of Op-
erational Research, 195(3), 889–904, (2009).

[7] I. Saad, C. Rosenthal-Sabroux, and M. Grundstein, ‘Improving the deci-
sion making process in the design project by capitalizing on company’s
crucial knowledge’,Group Decision and Negotiation, 14(2), 131–145,
(2005).


