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Abstract 

Oligodendrocytes are specialised glial cells that myelinate CNS axons. Myelinated axons are 

bundled together into white matter tracts that interconnect grey matter areas of the brain 

and are essential for rapid, integrated neuronal communication and cognitive function. Life-

long generation of oligodendrocytes is required for myelination of new neuronal 

connections and repair of myelin lost through natural ‘wear and tear’. This is the function of 

a substantial population of adult oligodendrocyte progenitors (OPs). Notably, there is white 

matter shrinkage and decreased myelination in the ageing brain, which is accelerated in 

dementia. The underlying causes of myelin loss in dementia are unresolved, but it implies a 

decline in the regenerative capacity of OPs. A feature of OPs is that they form neuron-glial 

synapses and respond to glutamate released by neurons via a range of glutamate receptors. 

Glutamate neurotransmission onto OPs is proposed to regulate their proliferation and 

differentiation into myelinating oligodendrocytes. Here, we discuss evidence that 

deregulation of glutamate neurotransmission in dementia and compromised generation of 

oligodendrocytes from OPs are key features of myelin loss and associated cognitive decline. 
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INTRODUCTION 

The massive computing power of the human brain depends on bundles of myelinated axons 

that form the white matter which interconnects widely dispersed neuronal networks in the 

grey matter areas of the brain. Myelin is produced by specialised cells called 

oligodendrocytes that insulate nerve cell axons or fibres to form the white matter and is 

essential for cognitive functions [1]. Notably, myelin is generated throughout life by 

oligodendrocyte progenitors (OPs), but declines in humans after 50 years of age. White 

matter loss is among the earliest brain changes in Alzheimer’s disease (AD), preceding the 

tangles and plaques that characterize neuronal deficits [2]. This has led to the hypothesis 

that myelin loss may be related to a failure in recruiting OPs in the ageing brain, which is 

accelerated in AD. Furthermore, synaptic activity is believed to be important in regulating 

both the expansion of OPs and their differentiation into oligodendrocytes. Here, we propose 

that disruption of synaptic signalling in AD may be important in the decreased capacity for 

OP regeneration. 

 

Oligodendrocytes and myelin are generated throughout adult life 

In humans, white matter volume steadily  increases until the age of 50, but declines 

thereafter [3]. Studies in primates and rodents provide evidence that the generation of new 

oligodendrocytes in the adult is essential for continued growth and replacement of myelin 

loss through natural ‘wear and tear’ [4, 5]. Learning in adult humans and rodents results in 

structural changes in white matter and formation of new neuronal connections that depend 

on oligodendrocytes for myelination [6, 7]. Fate-map studies in mice demonstrate that new 

oligodendrocytes are generated from a pool of adult OPs [5, 8, 9]. Adult OPs are primarily 

identified by their expression of NG2 and PDGFR  and represent the largest proliferative 
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cell population in the adult brain [10]. Like stem cells, OPs divide asymmetrically to form 

‘sister OPs’, one for self-renewal of the OP population and the other differentiates into an 

oligodendrocyte. In this way, adult OPs generate new oligodendrocytes at a slow rate 

throughout life and this is increased following CNS injury or demyelination, where 

proliferation of OPs is vital for regenerating oligodendrocytes and myelin [5, 11-15]. 

However, OP’s capacity for self-renewal decreases with age [5, 16, 17]. This is concomitant 

with white matter shrinkage and an accumulation of white matter lesions in the ageing 

brain [18], which appears to be due to a combination of myelin loss and a decline in 

remyelination [19]. This has led to the hypothesis that decreased recruitment of OPs is 

central to the failure of myelination in the ageing brain [20-22]. Moreover, a failure of 

oligodendrocyte regeneration from OPs is a major feature of multiple sclerosis (MS), 

amyotrophic lateral sclerosis sclerosis (ALS), and stroke, emphasizing the criticality of 

regenerative processes in maintenance and functioning of the nervous system [20, 23, 24]. 

 

Oligodendrocyte and myelin pathology are major factors in AD 

The loss of myelin with age is central to cognitive decline in dementia [3]. MRI studies 

indicate that myelin loss contributes to the cognitive deficits observed in dementia through 

disruption of rapid transmission and the loss of synchronization of higher cognitive functions 

[25]. Ultrastructural analysis of the normal ageing brain has confirmed a 20% decrease in 

the number of myelinated nerve fibres of cerebral white matter fibre tracts associated with 

frontal lobe areas critical in cognitive processing [26]. Post-mortem studies have identified 

myelin loss from frontal and temporal lobes as a key feature of vascular dementia, dementia 

with Lewy bodies and AD [27]. Furthermore, myelin disruption has been demonstrated as an 

early feature of animal models of AD, correlating with the earliest appearance of Aβ 
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accumulation in the 3×Tg-AD mouse model [28]. There is clear evidence of Aβ toxicity in 

oligodendrocytes [29, 30], and myelin disruption is correlated with increased levels of Aβ in 

human AD [31]. The close correlation between myelination defects and learning/memory 

deficits implicate loss of oligodendrocytes early in disease-related cognitive decline.  

 

Synaptic control of myelination 

There is evidence that OPs receive instructive signals from axons for myelination in an 

activity dependent manner via glutamate signalling [32, 33]. A key feature of OPs is that 

they form synapses with neurons and respond to glutamate released by neurons at grey 

matter synapses and along white matter axons [34-39]. OPs have prominent expression of 

both AMPA- and NMDA-type glutamate receptors, with evidence that activation of AMPA 

receptors regulates OP proliferation and migration [2, 6], and NMDA receptors mediate 

activity-dependent myelination [7, 32]. Axons have mechanisms for vesicular release of 

glutamate during action potential propagation [37, 38, 40] and glutamate signalling provides 

a mechanism of adaptive myelination of electrically active axons [7, 32]. Blockade of axonal 

electrical activity slows down OP proliferation and myelination, whereas stimulation 

increases OP proliferation and myelination [41-43]. In addition, AMPA and NMDA receptors 

are expressed by mature oligodendrocytes and myelin, which has led to the hypothesis that 

communication between axons and myelin represents a new type of ‘axon-myelin synapse’ 

[44]. After demyelination, neuron-OP synapses are formed during spontaneous 

remyelination, suggesting that synaptic glutamate signalling is important in the early stages 

of remyelination [45]. Thus, myelination/remyelination is dependent on axonal electrical 

activity and glutamatergic signalling even in adulthood. 
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Neurotransmission is altered in ageing white matter 

Many studies have demonstrated that in AD synaptic activity is impaired in grey matter, e.g. 

in the 3xTg-AD mouse [46]. However, white matter has been largely overlooked in this 

context. We have used a whole genomic approach to examine neurotransmission in the 

ageing mouse optic nerve, one of the most commonly studied white matter preparations, 

which we and others have shown has prominent glutamate-mediated signalling [47]. 

Microarray analysis highlights the prominent expression of transcripts for vesicular release 

machinery in CNS white matter, with significant changes in the SNAP-SNARE complex, from 

SNAP23/Synaptobrevin2/Synaptotagmin4/syntaxin6,7 in the mature adult nerve to 

SNAP25/Cellubrevin/Synaptotagmin4/syntaxin12 in the 18-month ageing optic nerve (Figure 

1). Differential regulation of synaptic proteins in the frontal and temporal cortex is a feature 

of the ageing brain and AD [48]. Our analysis of the optic nerve indicates similar important 

age-related changes in synaptic signaling in CNS white matter, which may play a role in 

white matter loss in AD. Moreover, altered synaptic signaling is implicated in other 

neuropathologies in which OP regeneration is compromised, including MS, ALS, and stroke, 

further emphasizing how critical these mechanisms for the maintenance of CNS function 

[20, 23, 24, 47]. Microarray analysis of transcripts for the different glial cell types indicates a 

clear reduction of oligodendrocyte/myelin genes with age (Figure 2A). Notably, there was a 

marked decrease in the OP marker Pdgfra in the aging nerve, as well striking decreases in 

transcription factors that regulate OP differentiation - Nkx2.2, Sox10 and Olig2 (Figure 2A) - 

which are essential for initiating oligodendrocyte differentiation [49]. The microarray 

analysis also indicated increased glutamatergic and GABAergic signaling in the ageing optic 

nerve, whereas purinergic and adenosine signaling were proportionally decreased (Figure 

2C). Purine receptors mediate both oligodendrocyte protection and destruction, and 
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dysregulation of purine signaling may be important in white matter shrinkage in the ageing 

brain [50]. GABA signalling was highest in the ageing nerve and inhibits OP proliferation 

[51], and increased glutamatergic signaling is consistent with oligodendrocyte pathology 

[23, 47]. Closer examination of glutamate receptors identified marked changes in vesicular 

glutamate transporters and NMDA receptors in the ageing optic nerve, with an 80-fold 

increase in the vesicular glutamate transporter VGLUT1 and a 25-fold increase in GluN2B 

and GluN2C (Figure 2C). OPs express GluN1, GluN2B and GluN2D, whereas oligodendrocyte 

NMDA receptors are likely to be formed from two GluN1, one GluN2 and one GluN3 

subunit, which reduces their Mg2+ block and makes them active at resting membrane 

potential [52-54]. In addition, OPs express AMPA receptors that have significant Ca2+ 

permeability suggesting they lack the GluA2 subunit [35, 36]. There was an apparent 

increase in GluA2 and decrease in GluA4 in the ageing optic nerve, which may reflect a shift 

in AMPA receptor functionality. These results indicate that multiple aspects of glutamate 

signaling are deregulated in ageing white matter, which has implications for regulation of 

OP recruitment and myelination. Furthermore, there was a 3-fold decrease in the glial 

glutamate uptake transporter GLAST1 (EAAT1/Slc1a3), suggesting extracellular glutamate 

levels may be raised in the ageing nerve (Figure 2C). A concomitant decrease in glutamate 

uptake and increase in NMDA receptors would have major implications for 

oligodendrocyte/myelin pathology [55] and is consistent with changes in synaptic glutamate 

signalling being interwoven with disruption of OPs and myelin loss in AD, resulting in white 

matter shrinkage and cognitive decline.  

 

Early changes in OPs in AD 
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Myelin defects are a prominent feature of human AD and animal models of AD. For 

example, in the 3xTg-AD model myelin defects coincide with A plaques and impairment of 

synaptic activity [28, 46]. The 3xTg-AD mouse harbours three mutations: human presenilin-1 

M146V (PS1M146V), human amyloid precursor protein Swedish mutation (APPSwe) and the 

P301L mutation of human tau (tauP301L). This model develops both plaque and tangle 

pathology, in an age-related and progressive manner, in AD-relevant brain regions such as 

hippocampus, amygdala and cerebral cortex [46]. It is notable, therefore, that our 

examination of the 3xTg-AD mouse demonstrates marked changes in OPs throughout the 

hippocampus (Figure 3). OPs are widely distributed throughout the brain, including the 

hippocampus, a primary site of pathology in AD (Figure 3A). In age-matched non-Tg mice, 

OPs have a characteristic multi-processed morphology (Figure 3Bi) and often appear as 

duplets or triplets (Figure 3Ci, Cii), which indicates they were recently divided [56]. In the 

3xTg-AD mouse, early changes in OPs are detected at 6-months, with apparent OP atrophy 

(Figure 3Bii, Biii) and a significant decrease in OP sister cells (Figure 3Ciii). At later stages, in 

the 24-month 3xTg-AD brain, OPs are intimately associated with A plaques, which appear 

to be circumscribed by OPs and infiltrated by their processes (Figure 3D). This is consistent 

with changes in NG2 cells in human AD [57] and demonstrate disruption of OPs is an early 

feature of the disease and precedes overt myelin loss and synaptic dysfunction. 

 

Summary and Conclusions 

Studies by ourselves and others have demonstrated that neurotransmitter signalling is a 

prominent feature of white matter. As in grey matter, there is a predominance of 

glutamate-mediated synaptic signalling. Our microarray analysis identified that mechanisms 

for vesicular glutamate release are prominent in CNS white matter and physiological studies 



9 

 

have demonstrated glutamate release is triggered by axonal electrical activity. Glutamate 

released by axons activates AMPA- and NMDA-type glutamate receptors on OPs and 

oligodendrocytes to regulate OP recruitment and myelination throughout life. Notably, 

there is myelin loss and white matter shrinkage in the ageing brain, which is accelerated in 

dementia. We provide evidence that glutamate signalling is deregulated in ageing white 

matter, which provides a potential mechanism for glutamate-mediated damage of 

oligodendrocytes/myelin. In addition, we show that OPs are disrupted at an early stage in 

the 3xTg-AD model, consistent with a potential disruption of glutamate-mediated 

recruitment of OPs. Several studies have described altered glutamate receptors in the 

hippocampus in the 3xTg-AD model and in human AD [58], and a study in the 3xTg-AD 

mouse brain has described that increased synaptic spontaneous vesicular glutamate release 

is an early feature of the disease [59]. These studies paint a picture in AD of a vicious cycle 

of disruption of synaptic glutamate signalling and impaired OP regenerative potential, 

coupled with loss of oligodendrocytes and myelin, resulting in further impairment of 

synaptic signaling and OP recruitment. In this respect, NMDA receptors are central to both 

neuronal and oligodendrocyte/myelin pathology. Memantine blocks excessive NMDA 

receptor activation and is an effective treatment for both mild and moderate-to-severe AD 

[60]. The increase in NMDA receptors indicated in our analysis of ageing white mater 

suggests that oligodendroglial NMDA receptors may be a target of memantine in AD, 

rescuing white matter and breaking the cycle of synaptic disruption and 

oligodendrocyte/myelin loss. 

 



10 

 

Acknowledgements: The authors would like to acknowledge funders of their research, the 

University of Portsmouth Research Development Fund (AMB), Anatomical Society (AMB, 

AR), Marie Curie FP7 (AMB, IV) and BBSRC (AMB). 

  



11 

 

References 

1. Kumar, A. and I.A. Cook, White matter injury, neural connectivity and the pathophysiology of 
psychiatric disorders. Dev Neurosci, 2002. 24(4): p. 255-61. 

2. Haroutunian, V., et al., Myelination, oligodendrocytes, and serious mental illness. Glia. 
62(11): p. 1856-77. 

3. Bartzokis, G., et al., Age-related changes in frontal and temporal lobe volumes in men: a 
magnetic resonance imaging study. Arch Gen Psychiatry, 2001. 58(5): p. 461-5. 

4. Peters, A. and C. Sethares, Oligodendrocytes, their progenitors and other neuroglial cells in 
the aging primate cerebral cortex. Cereb Cortex, 2004. 14(9): p. 995-1007. 

5. Rivers, L.E., et al., PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform 
projection neurons in adult mice. Nat Neurosci, 2008. 11(12): p. 1392-401. 

6. Sampaio-Baptista, C., et al., Motor skill learning induces changes in white matter 
microstructure and myelination. J Neurosci. 33(50): p. 19499-503. 

7. Scholz, J., et al., Training induces changes in white-matter architecture. Nat Neurosci, 2009. 
12(11): p. 1370-1. 

8. Young, K.M., et al., Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin 
remodeling. Neuron, 2013. 77(5): p. 873-85. 

9. Zhu, X., et al., Age-dependent fate and lineage restriction of single NG2 cells. Development, 
2011. 138(4): p. 745-53. 

10. Richardson, W.D., et al., NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 
2011. 70(4): p. 661-73. 

11. Dimou, L., et al., Progeny of Olig2-expressing progenitors in the gray and white matter of the 
adult mouse cerebral cortex. J Neurosci, 2008. 28(41): p. 10434-42. 

12. Zhu, X., R.A. Hill, and A. Nishiyama, NG2 cells generate oligodendrocytes and gray matter 
astrocytes in the spinal cord. Neuron Glia Biol, 2008. 4(1): p. 19-26. 

13. Kang, S.H., et al., NG2+ CNS glial progenitors remain committed to the oligodendrocyte 
lineage in postnatal life and following neurodegeneration. Neuron, 2010. 68(4): p. 668-81. 

14. Tripathi, R.B., et al., NG2 glia generate new oligodendrocytes but few astrocytes in a murine 
experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci, 
2010. 30(48): p. 16383-90. 

15. Guo, F., et al., Macroglial plasticity and the origins of reactive astroglia in experimental 
autoimmune encephalomyelitis. J Neurosci, 2011. 31(33): p. 11914-28. 

16. Psachoulia, K., et al., Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. 
Neuron Glia Biol, 2009. 5(3-4): p. 57-67. 

17. Simon, C., M. Gotz, and L. Dimou, Progenitors in the adult cerebral cortex: cell cycle 
properties and regulation by physiological stimuli and injury. Glia, 2011. 59(6): p. 869-81. 

18. de Leeuw, F.E., et al., Prevalence of cerebral white matter lesions in elderly people: a 
population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol 
Neurosurg Psychiatry, 2001. 70(1): p. 9-14. 

19. Shen, S., et al., Age-dependent epigenetic control of differentiation inhibitors is critical for 
remyelination efficiency. Nat Neurosci, 2008. 11(9): p. 1024-34. 

20. Franklin, R.J., Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci, 2002. 3(9): 
p. 705-14. 

21. Shields, S.A., et al., Remyelination occurs as extensively but more slowly in old rats compared 
to young rats following gliotoxin-induced CNS demyelination. Glia, 1999. 28(1): p. 77-83. 

22. Sim, F.J., et al., The age-related decrease in CNS remyelination efficiency is attributable to an 
impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci, 
2002. 22(7): p. 2451-9. 

23. Fern, R.F., C. Matute, and P.K. Stys, White matter injury: Ischemic and nonischemic. Glia, 
2014. 62(11): p. 1780-9. 



12 

 

24. Kang, S.H., et al., Degeneration and impaired regeneration of gray matter oligodendrocytes 
in amyotrophic lateral sclerosis. Nature neuroscience, 2013. 16(5): p. 571-9. 

25. Bartzokis, G., P.H. Lu, and J. Mintz, Quantifying age-related myelin breakdown with MRI: 
novel therapeutic targets for preventing cognitive decline and Alzheimer's disease. J 
Alzheimers Dis, 2004. 6(6 Suppl): p. S53-9. 

26. Bowley, M.P., et al., Age changes in myelinated nerve fibers of the cingulate bundle and 
corpus callosum in the rhesus monkey. J Comp Neurol, 2010. 518(15): p. 3046-64. 

27. Ihara, M., et al., Quantification of myelin loss in frontal lobe white matter in vascular 
dementia, Alzheimer's disease, and dementia with Lewy bodies. Acta Neuropathol, 2010. 
119(5): p. 579-89. 

28. Desai, M.K., et al., Triple-transgenic Alzheimer's disease mice exhibit region-specific 
abnormalities in brain myelination patterns prior to appearance of amyloid and tau 
pathology. Glia, 2009. 57(1): p. 54-65. 

29. Desai, M.K., et al., An Alzheimer's disease-relevant presenilin-1 mutation augments amyloid-
beta-induced oligodendrocyte dysfunction. Glia, 2011. 59(4): p. 627-40. 

30. Desai, M.K., et al., Early oligodendrocyte/myelin pathology in Alzheimer's disease mice 
constitutes a novel therapeutic target. Am J Pathol, 2010. 177(3): p. 1422-35. 

31. Roher, A.E., et al., Increased A beta peptides and reduced cholesterol and myelin proteins 
characterize white matter degeneration in Alzheimer's disease. Biochemistry, 2002. 41(37): 
p. 11080-90. 

32. Wake, H., P.R. Lee, and R.D. Fields, Control of local protein synthesis and initial events in 
myelination by action potentials. Science, 2011. 333(6049): p. 1647-51. 

33. Gibson, E.M., et al., Neuronal activity promotes oligodendrogenesis and adaptive 
myelination in the mammalian brain. Science, 2014. 344(6183): p. 1252304. 

34. Butt, A.M., et al., Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS 
white matter. Glia, 1999. 26(1): p. 84-91. 

35. Hamilton, N., et al., Axons and astrocytes release ATP and glutamate to evoke calcium 
signals in NG2-glia. Glia, 2010. 58(1): p. 66-79. 

36. Bergles, D.E., et al., Glutamatergic synapses on oligodendrocyte precursor cells in the 
hippocampus. Nature, 2000. 405(6783): p. 187-91. 

37. Kukley, M., E. Capetillo-Zarate, and D. Dietrich, Vesicular glutamate release from axons in 
white matter. Nat Neurosci, 2007. 10(3): p. 311-20. 

38. Ziskin, J.L., et al., Vesicular release of glutamate from unmyelinated axons in white matter. 
Nat Neurosci, 2007. 10(3): p. 321-30. 

39. Butt, A.M., et al., Synantocytes: the fifth element. J Anat, 2005. 207(6): p. 695-706. 
40. Alix, J.J., A.C. Dolphin, and R. Fern, Vesicular apparatus, including functional calcium 

channels, are present in developing rodent optic nerve axons and are required for normal 
node of Ranvier formation. J Physiol, 2008. 586(Pt 17): p. 4069-89. 

41. Barres, B.A. and M.C. Raff, Proliferation of oligodendrocyte precursor cells depends on 
electrical activity in axons. Nature, 1993. 361(6409): p. 258-60. 

42. Li, Q., et al., Electrical stimulation of the medullary pyramid promotes proliferation and 
differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. 
Neurosci Lett. 479(2): p. 128-33. 

43. Demerens, C., et al., Induction of myelination in the central nervous system by electrical 
activity. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9887-92. 

44. Stys, P.K., The axo-myelinic synapse. Trends Neurosci, 2011. 34(8): p. 393-400. 
45. Etxeberria, A., et al., Adult-born SVZ progenitors receive transient synapses during 

remyelination in corpus callosum. Nat Neurosci, 2010. 13(3): p. 287-9. 
46. Oddo, S., et al., Triple-transgenic model of Alzheimer's disease with plaques and tangles: 

intracellular Abeta and synaptic dysfunction. Neuron, 2003. 39(3): p. 409-21. 



13 

 

47. Butt, A.M., R.F. Fern, and C. Matute, Neurotransmitter signaling in white matter. Glia, 2014. 
62(11): p. 1762-79. 

48. Counts, S.E., et al., Differential expression of synaptic proteins in the frontal and temporal 
cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol, 2006. 
65(6): p. 592-601. 

49. Zhu, Q., et al., Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing 
of oligodendrocyte differentiation in the developing CNS. Development, 2014. 141(3): p. 548-
55. 

50. Butt, A.M., Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and 
pathology. Glia, 2006. 54(7): p. 666-75. 

51. Yuan, X., et al., A role for glutamate and its receptors in the regulation of oligodendrocyte 
development in cerebellar tissue slices. Development, 1998. 125(15): p. 2901-14. 

52. Karadottir, R., et al., NMDA receptors are expressed in oligodendrocytes and activated in 
ischaemia. Nature, 2005. 438(7071): p. 1162-6. 

53. Micu, I., et al., NMDA receptors mediate calcium accumulation in myelin during chemical 
ischaemia. Nature, 2006. 439(7079): p. 988-92. 

54. Salter, M.G. and R. Fern, NMDA receptors are expressed in developing oligodendrocyte 
processes and mediate injury. Nature, 2005. 438(7071): p. 1167-71. 

55. Matute, C., et al., Excitotoxic damage to white matter. J Anat, 2007. 210(6): p. 693-702. 
56. Boda, E., et al., Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after 

mitosis and its modulation by aging and extrinsic factors. Glia, 2014. 63(2): p. 271-86. 
57. Nielsen, H.M., et al., NG2 cells, a new trail for Alzheimer's disease mechanisms? Acta 

Neuropathol Commun, 2013. 1(1): p. 7. 
58. Lacor, P.N., Advances on the understanding of the origins of synaptic pathology in AD. Curr 

Genomics, 2007. 8(8): p. 486-508. 
59. Chakroborty, S., et al., Early presynaptic and postsynaptic calcium signaling abnormalities 

mask underlying synaptic depression in presymptomatic Alzheimer's disease mice. J Neurosci, 
2012. 32(24): p. 8341-53. 

60. Lipton, S.A., The molecular basis of memantine action in Alzheimer's disease and other 
neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res, 2005. 2(2): 
p. 155-65. 

 
 

  



14 

 

Figure Legends 

Figure 1. Changes in vesicular apparatus in ageing white matter. Axons release glutamate 

by vesicular mechanisms to regulate OPs and myelination in CNS white matter, which is 

devoid of neuronal cell bodies and conventional neuronal synapses. Microarray analysis of 

optic nerves aged 6-weeks and 18-months indicate there is a major shift in vesicular release 

machinery that may have important implications for myelin loss in ageing white matter. 

Figure 2. Glutamate signaling and oligodendrocyte/myelin genes are dysregulated in 

ageing white matter. Microarray analysis of optic nerves aged 6-weeks and 18-months, 

indicating a summary of the relative expression levels of the main oligodendrocyte and OP 

genes (A), the main neurotransmitter receptors (B), and fold-changes in the levels og 

transcripts associated with glutamate signaling(C). There was marked increase in vesicular 

glutamate transporter VGLUT1 and NMDA-receptor subunits GluN2A and GluN2B, in 

addition to a 3-fold decrease in the glial glutamate uptake transporter GLAST1. These 

changes in multiple aspects of glutamate signaling correlate with dysregulation of genes 

involved in OP differentiation and myelination in ageing white matter. In addition, an 

increase in glutamate release and decrease in glutamate uptake, coupled with and increase 

in oligodendroglial NMDA receptors, would have potential pathological consequences for 

oligodendrocytes/myelin, resulting in white matter shrinkage and cognitive decline. Hence, 

blocking excessive activation of oligodendroglial NMDA receptors with memantine, which is 

an effective treatment for AD, would potentially rescue white matter loss in AD and slow 

down cognitive decline. Glutamate released vesicularly by axons acts on AMPA- and NMDA-

type receptors on OPs and oligodendrocytes to regulate myelination and mediate myelin 

pathology in CNS white matter. 

Figure 3. Oligodendrocyte progenitors (OPs) are altered in AD. Immunolabelling for the 

NG2 was used to identify OPs. (A) Collage of confocal micrographs illustrating the overall 

distribution of OPs in the hippocampus. (B) Representative images of OPs in the 

hippocampus of 6-month old non-Tg (Bi) and 3xTg-AD (Bii), illustrating OP atrophy at an 

early stage of the disease, which was confirmed by quantification of OP total cell volume 

(Biii); data are mean ± SEM from 25 cells from 3 sections from n=3 mice, ***p<0.001, 

ANOVA with Newman–Keuls multiple comparison post-hoc analysis. (C) NG2 

immunostaining (green) and nuclear labeling with Hoechst (blue) illustrates the presence of 

OP duplets, an indication of recently divided ‘sister cells’; maximum intensity projection of z-

stack (Ci), together with a single z-section and orthogonal section through the y-y plane 

showing juxtaposed OP duplets (Cii), and quantification of sister cells per constant field of 

view (FOV) in the hippocampus (Ciii), indicating a significant decrease in OP cell division at 6-

months in the 3xTG-AD model compared to age-matched non-Tg (data are mean ± SEM 

from 3 sections per animal, n=3 or 4 animals; **p<0.01, ANOVA with Newman–Keuls 

multiple comparison post-hoc analysis). (D) Confocal images of hippocampus from 24-

month 3xTg-AD mouse double immunostained for NG2 (green) and A (red), illustrating the 
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intimate association of OPs with A plaques in a maximum intensity z-stack projection (Di) 

and single z-section (Dii). Scale bars = 100 m in A and 20 m in B-E.  

 


