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Highlights: 

 Explosive ordnance disposal predisposes technicians to physiological strain.  

 The current measurement of physiological strain is expensive and often impractical. 

 The perceptual strain index is able to accurately estimate physiological strain. 
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ABSTRACT 

 

Objective: Explosive ordnance disposal (EOD) often requires technicians to wear 

multiple protective garments in challenging environmental conditions. The accumulative effect 

of increased metabolic cost coupled with decreased heat dissipation associated with these 

garments predisposes technicians to high levels of physiological strain. It has been proposed 

that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived 

exertion as surrogate measures of core body temperature and heart rate, may provide an 

accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI 

could estimate the physiological strain index (PSI) across a range of metabolic workloads and 

environments while wearing heavy EOD and chemical protective clothing. Methods: Eleven 

healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 

2.5, 4 and 5.5 km·h-1 at 1% grade in environmental conditions equivalent to wet bulb globe 

temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a 

maximum of three randomised treadmill walking trials were completed in a single testing day. 

Trials were ceased at a maximum of 60-mins or until the attainment of termination criteria. A 

Pearson’s correlation coefficient, mixed linear model, absolute agreement and receiver 

operating characteristic (ROC) curves were used to determine the relationship between the 

PeSI and PSI. Results: A significant moderate relationship between the PeSI and the PSI was 

observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of 

agreement -1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power 

when used with two, single-threshold cut-offs to differentiate between low and high levels of 

physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). 

Conclusions: These findings support the use of the PeSI for monitoring physiological strain 

while wearing EOD and chemical protective clothing. However, future research is needed to 

confirm the validity of the PeSI for active EOD technicians operating in the field. 
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1. Introduction 

The use of improvised explosive devices in modern warfare has led to an increased role 

for explosive ordnance disposal (EOD) technicians, faced with the arduous task of identifying, 

disarming and clearing these devices [1]. If the relative chemical and biological risk is 

unknown, EOD technicians may be required to wear multiple protective garments in 

combination [2]. Personal protective clothing (PPC) may consist of multiple layers of vapour 

impermeable materials and is often heavy and fully encapsulating [3]. The combination of the 

PPC, physical nature of the work and potentially challenging environment can result in 

substantial thermoregulatory and cardiovascular strain [3,4]. Recent field [5,6] and laboratory 

[1,7] based investigations have reported high levels of thermoregulatory and cardiovascular 

strain when completing simulated operational tasks in an EOD ensemble. These high levels of 

strain have resulted in EOD technicians reporting symptoms of light headedness, nausea, 

confusion, irrational behaviour and altered levels of consciousness [5,6]. These symptoms arise 

from exposure to conditions of uncompensable heat stress where evaporative heat loss is 

compromised, impairing thermoregulation [4,8]. 

Prolonged exposure to uncompensable heat stress results in an uncontrollable elevation 

in core body temperature (TC), increasing heat strain and thus increasing the risk of heat injury 

and illness (including heat syncope, physical exhaustion and heat stroke) [3,9]. Between 1980 

and 2002, 37 American military personnel deaths resulted from heat-related injuries [10]. 

Recent deployments of military troops to hot regions of the world such as Iraq and Afghanistan 

have resulted in a significant number of hospitalisations due to heat-related injuries, with more 

than 1,050 heat injury cases reported in American soldiers serving in these regions from 2008 

to 2012 [11]. As a result of this occupational hazard it is imperative that heat strain is 

monitored, to ensure the safety of personnel [12].  

The most common method used to assess heat strain is via the physiological strain index 

(PSI) developed by Moran and colleagues in the late 1990’s [13]. Attributing equal weight to 

thermoregulatory and cardiovascular strain via the physiological measures of TC and heart rate 

(HR), the PSI classifies strain from zero to 10, where zero represents ‘no strain’ and 10 ‘very 

high strain’ [13]. The PSI has been validated during rest, exercise and recovery [13], across 

genders [14], under differing levels of hydration [15], clothing types [16] and environmental 

conditions [16]. Unfortunately, calculation of the PSI is reliant on physiological measures 

requiring direct contact with the individual and sensitive equipment not suitable for extreme 

environments. Moreover, in the absence of prior planning, expensive telemetry, or the 

necessary resources for large cohorts, the measurement of the PSI may not be possible.  



Alternatively, it has been proposed that the subjective measures of thermal sensation 

and perceived exertion, whereby an individual expresses their satisfaction with elements of 

their environment (e.g., temperature, physical task) may offer an insight into physiological 

strain from a psychological perspective [17]. Previous research has suggested that a perceptual 

strain index (PeSI) may be able to estimate the PSI, by using thermal sensation and perceived 

exertion as surrogate measures of TC and HR respectively [17]. To date, only three studies [17-

19] have investigated the relationship between a PeSI and the PSI during physical exertion 

while wearing PPC. The findings from these studies suggest the existence of a moderate 

correlation [18,19] and no significant difference [17] between the PeSI and PSI. This research 

has incorporated short duration high intensity [18,19] or long duration low intensity physical 

tasks [17], with garments weighing ~ 25 kg or less [17-19] in a single climate [17-19]. A 

moderate correlation between the two indices suggests a PeSI may be able to estimate the PSI, 

however further investigations are required [17,18]. 

EOD technicians would benefit from a valid, non-invasive, inexpensive and more 

practical measure of physiological strain. Therefore, the purpose of the present study was to 

examine the relationship between a PeSI and the PSI across a range of environments and 

workloads, while wearing heavy EOD and chemical PPC. 

 

2. Methods 

2.1 Participants 

Eleven healthy, unacclimatised young males recruited from the university community, 

participated in this study (age: 24.0 ± 2.8 years; height: 181 ± 5.5 cm; body mass: 76.9 ± 8.7 

kg; sum of eight-site skin fold thickness: 77.0 ± 32.2 mm; body surface area: 2.0 ± 0.1 m2; 

V̇O2max: 57.1 ± 4.8 ml·kg-1·min-1; maximal HR: 195 ± 8.7 bpm; 90% maximal HR: 175 ± 7.9 

bpm). Prior to testing, participants provided written informed consent indicating that they 

understood the risks associated with the study. All experimental procedures were approved by 

the university human research ethics committee at the Queensland University of Technology 

and all participants completed an informed consent form and medical history questionnaire. 

 

  



2.2 Personal Protective Clothing 

During each trial participants wore a National Fire and Protection Association (NFPA) 

1994 Class 3 chemical protective garment (Emergency Response Suit, Lion Apparel, Dayton, 

Ohio, USA) underneath an explosive ordnance disposal suit and helmet (Med-Eng™ EOD9, 

Allen Vanguard, Ogdensburg, New York, USA). The NFPA Class 3 chemical protective 

undergarment consisted of a one-piece fully encapsulating suit, outer glove and respirator 

(DUCOT, Promask NP Facemask, USA) weighing 2.05 kg; and the EOD9 suit consisted of a 

jacket, trousers, groin protection and a helmet weighing 33.35 kg. Participants’ base clothing 

consisted of a t-shirt, shorts, socks, and underwear and athletic shoes with a soft rubber sole 

were also worn during testing. These base ensemble requirements are standardised in 

accordance with American Society for Testing and Materials F2688-07 [20]. 

 

2.3 Environmental Conditions and Metabolic Workloads 

Trials were completed in an environmental chamber with a 4.7 km·h-1 simulated wind 

speed. The wet bulb globe temperature (WBGT) 21, 30, and 37 °C conditions were obtained 

by the following ambient temperatures and relative humidity’s: 24 °C, 50%; 32 °C, 60%; and 

48 °C, 20%, respectively. WBGT conditions were randomly presented and a maximum of three 

trials were completed per day. Between visits, participants had a minimum of seven days’ rest. 

Within each WBGT condition the following treadmill-walking trials were randomly presented: 

2.5, 4 and 5.5 km·h-1 with a 1% grade.  

 

2.4 Pre-experimental and Experimental Protocol 

The initial visit to the laboratory consisted of the acquisition of V̇O2max, body composition and 

a familiarisation with the protective clothing, perceptual scales and testing procedures. During 

this visit the participants donned the protective clothing and practiced walking at each of the 

three work intensities (2.5, 4 and 5.5 km·h-1) on the treadmill. On trial days participants rested 

for 10 minutes allowing the recording of baseline measurement. Participants then donned the 

EOD and chemical PPC and entered the environmental chamber to commence the trial. 

Standard termination criteria were applied in accordance with the American Society for Testing 

and Materials guidelines F2688-07 [20]: (1) TC reaching 39 °C; (2) 60-mins trial time; (3) HR 

reaching 90% of maximum; or (4) due to fatigue or nausea. Following the attainment of one of 

the termination criteria the participant exited the environmental chamber and removed all PPC. 

Participants were then instructed to rest in an air-conditioned room. In the following recovery 



period participants were provided with food and fluid. This has previously been shown to 

ensure adequate recovery of body mass and hydration status prior to commencement of 

subsequent trials [1,7]. Core temperature and heart rate were continuously monitored and 

following their return to baseline levels, baseline thermal sensation was recorded and the 

participant commenced donning the EOD protective clothing for the subsequent trial. A 

maximum of three trials were conducted in this manner per trial day. 

 

2.5 Physiological Outcome Measures 

HR was measured using a polar monitor and a chest strap (Polar Team2, Kempele, 

Finland). TC was obtained using an ingestible TC sensor and radio receiver (CorTemp, HQ Inc., 

Palmetto, FL, USA). Participants were provided with an ingestible TC sensor to swallow a 

minimum of six hours prior to arriving at the laboratory. This was to allow sufficient time for 

the sensor to pass from the stomach to the gastrointestinal tract avoiding the confounding effect 

of food and fluid [21,22]. HR and TC were recorded at 15-min intervals in addition to baseline 

and immediately prior to trial termination, allowing the PSI to be calculated at these same 

intervals. These intervals were selected based on a previous investigation [17]. The PSI 

employed in the current study was originally developed by Moran et al. [13] and later modified 

by Tikuisis et al. [17]. Presented in Equation 1, the PSI attributes equal weight to 

thermoregulatory and cardiovascular parameters, and rates physiological strain on a zero to 10 

scale. 

 

Equation 1. Physiological strain index 

PSI = 5 · ((TCT − TC0)/(39.5 − TC0)) + 5 · ((HRT − 60)/(HRmax − 60)) 

 

In the equation, TCT and HRT are the TC and HR recordings at the time of interest; TC0 is 

initial TC; and HRmax is the individuals maximal attainable HR. For the purpose of this study, 

strain was considered as: no/little (0 – 2.9), low-moderate (3 – 6.9) and high-very high (7 – 10) 

[13]. Classifying strain in this manner allowed the adoption of corresponding green (no/little), 

amber (low-moderate) and red (high-very high) strain ‘warning’ levels; the relevance of which 

will be discussed in a subsequent section (see 4. Discussion). 

 

  



2.6 Perceptual Outcome Measures 

Thermal sensation was measured using a modified Gagge 7-point scale which had 

previously been validated [23], where thermal sensation ratings and corresponding anchors 

ranged from seven ‘neutral’ to 13 ‘unbearably hot’. RPE was obtained using the previously 

validated [24] Borg 15-point scale where ratings and corresponding written anchors of exertion 

range from six ‘very, very light’ to 20 ‘very, very hard’. This RPE was used due to its sensitivity 

in determining exertion compared to the Borg 10-point RPE [12,25]. The thermal sensation 

and RPE scales were visually presented to participants and accompanied with the standardised 

written and verbal instructions of ‘rate your perception of thermal sensation in the current 

environment’ [23] and ‘currently, how hard do you feel the work rate is’ [24], to which 

participants verbally responded. For a direct comparison of the PeSI and PSI, thermal sensation 

and RPE were recorded at 15-min intervals and immediately prior to trial termination. A 

modified PeSI first proposed by Tikuisis et al. [17] and later adapted by Petruzzello et al. [18] 

was used (see Equation 2). 

 

Equation 2. Modified perceptual strain index   

PeSI = 5 · ((TST − 7)/6) + 5 · ((RPET − 6)/14) 

 

In the equation, TST and RPET are the thermal sensation and RPE recordings at the time 

of interest. Similarly to the PSI, strain was considered as: no/little (0 – 2.9), low-moderate (3 – 

6.9) and high-very high (7 – 10). 

 

2.7 Statistical Analysis 

The normal distribution of data was confirmed using descriptive methods (skewness, 

outliers and distribution plots) and inferential statistics (Shapiro-Wilk Test). Multiple statistical 

methods were used to assess the relationship between the PeSI and PSI. Firstly, the absolute 

agreement between PeSI and PSI was assessed by calculating the mean difference (MD) and 

limits of agreement (LoA) across the entire zero to ten scale, in addition to three arbitrary 

physiological strain categories of no/little (0 – 2.9), low-moderate (3 – 6.9) and high-very high 

(7 – 10) outlined by Moran et al. [13]. To account for the repeat measures on each participant, 

the LoA were calculated using a modified standard deviation (SD) according to the equation 

proposed by Bland and Altman (see Equation 3) [26].  

 

  



Equation 3. Modified standard deviation 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝐷 = √((𝑀𝑆𝐵 − 𝑀𝑆𝑊) (((∑𝑚𝑖)2 − ∑𝑚𝑖
2)/((𝑛 − 1)∑𝑚𝑖))⁄ ) + 𝑀𝑆𝑊) 

 

In the equation, MSB and MSW are the between-participant and within-participant mean 

sums of squares computed by a one-way ANOVA; 𝑖 is the participant; 𝑚𝑖 is the number of 

observations on a participant; and 𝑛 is the number of participants. Thereafter, the modified 

LoA were calculated as: MD ± 1.96 · modified SD [26]. 

Secondly, the predictive ability of the PeSI was evaluated with reference to three 

arbitrary strain categories previously outlined. It is important to note that due to the bounds of 

the PSI and PeSI metrics, under the classification system used to assess the predictive ability 

of the PeSI, physiological strain is unable to be underestimated in the no/little category, or 

overestimated in the high-very high category.  

Thirdly, the predictive power of the PeSI was evaluated by deriving two receiver 

operating characteristic (ROC) curves [27,28], with the area under the curve quantifying the 

predictive power of the PeSI (perfect prediction = 1.0; random prediction = 0.5). For these 

calculations, two arbitrary single-threshold cut-offs were used to differentiate between 

individuals with low (PSI three cut-off) and high (PSI seven cut-off) levels of physiological 

strain. 

Fourthly, a Pearson’s correlation coefficient was used to determine the relationship 

between the PeSI and PSI, HR and RPE, and TC and thermal sensation.  

Finally, where a moderate relationship was observed (r > 0.5 or < -0.5) between the 

PeSI and PSI, a mixed linear model (dependant variable: PeSI; covariate: PSI; random factors: 

participant and time; fixed factors: temperature and speed), was used to determine statistical 

significance.  

All statistical analyses were performed using SPSS (Statistical Package for the Social 

Sciences), version 21.0 (SPSS Inc., Chicago, IL) and statistical significance was set at p < 0.05. 

Values are reported as mean ± standard deviation. 

 

3. Results 

In total eleven participants completed 70 trials. Six participants completed three separate 

testing days at each of the WBGT 21, 30 or 37 °C. Four participants undertook WBGT 21 and 

either 30 or 37 °C, with one participant completing the WBGT 30 °C only. Five of the eleven 



undertook all nine trials; three completed greater than six, with the remaining three participants 

undertaking two, three or four trials in total.  

At the start of each trial, TC, HR and USG were as follows: TC: 37.20 ± 0.32 °C; HR 

96.5 ± 14.3 bpm; and USG 1.013 ± 0.007. At the termination of each trial TC and HR were as 

follows: TC: 38.12 ± 0.45 °C; and HR: 170.0 ± 13.6 bpm. The majority of trials (57/70; 81.4%) 

were terminated due to participants’ HR exceeding 90% of their maximum. A total of six 

(8.6%) trials lasted the full duration of 60-mins. Finally, five (7.1%) trials were terminated due 

to volitional fatigue and two (2.9%) due to TC reaching 39 °C. 

The average tolerance time per trial was 29.8 ± 15.4 mins, producing 150 recordings of 

both the PSI and PeSI, with an average duration of 89.0 ± 18.0 (57.5 – 136.0) mins recovery 

between each trial when multiple trials were performed on the same day. The mean bias 

between the PeSI and PSI across the entire scale (zero to 10) was 0.8 ± 1.1 and the modified 

95% LoA ranged from -1.3 to 3.0 (see Figure 1). Further, the mean bias (modified 95% LoA) 

for the three arbitrary strain categories was: 1.3 ± 0.7 (-0.1 to 2.8) for no/little; 0.8 ± 1.1 (-1.3 

to 2.9) for low-moderate; and -0.2 ± 1.0 (-2.2 to 1.9) for high-very high. 

 

 

Figure 1. Bland and Altman plot of the physiological strain index and the modified perceptual 

strain index. Solid line indicates the mean bias; dashed lines represent the modified 95% limits 

of agreement. Each unique symbol represents data from a single participant. 

 



In total, 66.0% (99/150) of the PeSI responses correctly estimated the PSI, 28.7% 

(43/150) overestimated and 5.3% (8/150) underestimated the PSI (see Figure 2). When the PSI 

was considered no/little, the PeSI correctly estimated 16.0% (4/25) and overestimated 84.0% 

(21/25) of the time. The PSI low-moderate category comprised 110 PeSI responses, of which 

80.0% (88/110) correctly estimated and 20.0% (22/110) overestimated the PSI. When the PSI 

was considered high-very high, 46.7% (7/15) of PeSI responses correctly estimated and 53.3% 

(8/15) underestimated the PSI. 

 

 

Figure 2. The physiological strain index (PSI) correlated to modified perceptual strain index 

(PeSI). Vertical and corresponding horizontal reference lines define the three strain categories: 

no-little (0 – 2.9), moderate (3 – 6.9) and high-very high (7 – 10). Symbols:  PeSI correctly 

estimated PSI;  PeSI overestimated PSI;  PeSI underestimated PSI. 

 

The areas under the ROC curves were 0.936 (95%CI: 0.896 – 0.977) for a PSI of three 

and 0.841 (95%CI: 0.757 – 0.926) for a PSI of seven (see Figure 3). 

 



 

Figure 3. The receiver operating characteristic curves for the modified perceptual strain index 

with reference to two arbitrary cut-offs of low (PSI of three) and high (PSI of seven) 

physiological strain. The areas under these curves are 0.936 (95% confidence interval 0.896 to 

0.977) and 0.841 (95% confidence interval 0.757 to 0.926). A perfect prediction will have an 

area of 1.0, while completely random predictions will have an area of 0.5. 

 

A moderate correlation was observed between the PeSI and PSI (r = 0.77; see Figure 

4), HR and RPE (r = 0.81), and TC and thermal sensation (r = 0.62). The mixed linear model 

revealed the correlation between the PSI and PeSI was significant (p < 0.001). 

 



 
Figure 4. Regression of the physiological strain index and the modified perceptual strain index 

for all participants across all trials and time points. Solid line represents the trend line; each 

participant is represented by a unique symbol; the dashed line represents the line of identity. 

 

4. Discussion 

This is the first study to examine the ability of a PeSI to estimate the PSI across a range 

of workloads and environments while wearing heavy PPC. The primary findings to emerge 

from this research are: (1) a statistically significant moderate relationship exists between the 

PeSI and PSI; and (2) the PeSI correctly or conservatively (over) estimated the PSI 94.7% of 

the time. These findings suggest that the PeSI provides a good estimation of physiological 

strain while wearing heavy encapsulating PPC across a range of environmental and metabolic 

work intensities. 

The current study employed multiple statistical methods to examine the relationship 

between the PeSI and PSI. In agreement with a previous investigation by Petruzzello et al. [18], 

a significant moderate relationship existed in the present study between the PeSI and PSI (see 

Figure 4). In addition, moderate relationships between the interrelated variables of TC and 

thermal sensation and HR and RPE were also observed. These findings are consistent with 

those of Gallagher et al. [19] who reported moderate-to-strong relationships between TC and 

thermal sensation (r = 0.679 - 0.826) and HR and RPE (r = 0.862 - 0.916). Furthermore the 

current study highlights the absolute agreement between the PeSI and PSI improved with 

increasing physiological strain. Collectively, the findings to emerge from the current 



investigation confirm and expand the results observed by Petruzzello et al. [18] and Gallagher 

et al. [19], as a moderate relationship between a PeSI and the PSI has now been demonstrated 

across a range of environments and workloads.  

The ROC curves (Figure 3) further indicated that the PeSI was a good predictor of the 

PSI when used with two arbitrary, single cut-offs to differentiate between low (PSI three cut-

off) and high (PSI seven cut-off) levels of physiological strain. These arbitrary cut-offs could 

be adopted as corresponding warning stages: green (no/little strain), amber (low-moderate 

strain) and red (high-very high strain), creating a ‘traffic light’ warning system [29]. From a 

practical standpoint, the PeSI could potentially be employed as an additional field monitoring 

tool, as an individual’s relative risk of suffering a heat related injury is easily identifiable when 

adopting these warning stages. Occupational safety standards often employ multi-staged 

warning systems to ensure that a worker can complete the critical task associated with their 

occupation without undue risk to their health [30]. Perhaps surprisingly, current safety 

standards do not include perceptual outcome measures for the monitoring of an individual’s 

physiological condition [12,31]. Insight from a psychological perspective would allow a more 

holistic evaluation of an individual’s readiness for further work, potentially leading to a safer 

working environment. Therefore, future occupational safety standards should consider 

incorporating perceptual indices in addition to traditional physiological measures. 

In the current investigation 34% of the total PeSI responses did not correctly estimate 

the PSI (see Figure 2). This may be explained by: (1) the thermal sensation and RPE indices 

used in the current investigation are not appropriately sensitive and therefore not accurate in 

providing surrogate measures of TC and HR respectively; or (2) the potential for factors other 

than thermoregulatory and cardiovascular parameters influencing perception during exercise-

heat exposure. In the no/little strain category, the PeSI overestimated the PSI 84% (21/25) of 

the time compared to the low-moderate category where PeSI overestimated the PSI 20% 

(22/110) of the time. A potential learning effect [32] may in part explain the initial over 

estimation of the PSI (via the PeSI) regarding the familiarisation and use of the thermal 

sensation and RPE scales. Despite familiarising participants with these perceptual scales during 

the pre-experimental protocol, a potential learning effect may exist. Furthermore, perception 

may be influenced by a number of physiological (e.g., sleep deprivation, physical fatigue), 

psychological (e.g., mood state, task incentives, emotional stress) and metabolic (e.g., 

overtraining) factors [33-36]. 

To our knowledge, this is the first study to assess the relationship between a PeSI and 

PSI across a range of workloads and environments. Previous investigations have used either 



single [17,18] or interval workloads [18,19] in a solitary environment [17-19]. Furthermore, 

the weight of PPC used in the current study is considerably heavier compared to previous 

investigations [17-19]. Only one study [18] has explicitly stated garment weight, reported to 

be approximately 20 kg, while other studies [17,19] have used fire-fighting (including a self-

contained breathing apparatus) and chemical protective garments, which are ~ 10 kg lighter 

than the EOD and chemical PPC ensemble used in the present study. 

Previous research by Tikuisis et al. [17] observed no difference between a PeSI and the 

PSI when analysing the combined participant data from trained and untrained groups. 

However, when analysing these groups individually, Tikuisis et al. [17] found that trained 

participants significantly underestimated the PSI during the first 60-mins of treadmill walking 

(3.5 km·h-1, 0% grade) to volitional fatigue while wearing semi-permeable PPC (weight not 

specified). Compared to previous literature, the participant cohort of the current study is similar 

to the ‘trained’ group recruited by Tikuisis et al. [17] based on age, aerobic capacity and 

anthropometric data. Tikuisis’s observations (that trained individuals underestimated the PSI) 

are not consistent with those from the present investigation [17]. Indeed, the results of the 

current study suggest that individuals are more likely to overestimate physiological strain when 

considered no/little and low-moderate. The discrepancy in findings observed by Tikuisis et al. 

[17] and the current investigation may be explained by differences in thermoregulatory strain 

experienced by participants in both studies. 

The disparity between these termination data may be explained by the substantial 

cardiovascular burden created by the higher work intensities and PPC ensemble used in the 

present investigation [7]. PPC garments are known to increase an individual’s metabolic 

requirement and decrease movement efficiency, while the use of an air purifying respirator is 

associated with a reduction in maximal oxygen consumption; all of which exacerbate 

cardiovascular strain [37,38]. The effects of the cardiovascular strain experienced by 

participants in the present investigation are clear, with 82% of trials terminated due to the 

attainment of the maximal HR criteria. Therefore, participants in the current investigation were 

primarily limited by cardiovascular as opposed to thermoregulatory strain. In contrast, Tikuisis 

et al. [17] observed no trials terminated due to the attainment of maximal HR criteria. The 

termination and final physiological data of Petruzzello et al. [18] and Gallagher et al. [19] are 

not known, making further comparisons not possible. 

There are several methodological discrepancies between the current study and the three 

previous studies investigating the relationship between the PeSI and PSI in PPC. Firstly, the 

present investigation and Petruzzello et al. [18] used the Borg 6-20 RPE. Borg’s 6-20 RPE is 



considered more sensitive and closely correlated to HR in comparison to the Borg 10-point 

[17] and OMNI [19] RPE scales. Primarily this can be attributed to the 6-20 RPE’s greater 

response range [24]. This sensitivity is particularly important in the formulation of the PeSI, as 

the calculation is reliant on RPE providing a surrogate measure of HR.  

Petruzzello et al. [18] and Gallagher et al. [19] used different thermal sensation scales 

in comparison to Tikuisis et al. [17] and the current study. The current study observed only a 

moderate (r = 0.62) relationship between TC and thermal sensation. Despite Gallagher et al. 

[19] using a less sensitive thermal sensation index due to the small scale range compared to the 

Gagge 7-13 thermal sensation used in the current investigation, a similar correlation between 

TC and thermal sensation was observed (r = 0.679). This suggests that these thermal sensation 

scales are not sufficiently sensitive in providing a surrogate measure of TC. Indeed, a recent 

study by Savage et al. [39] concluded that the subjective reporting of thermal sensation was a 

poor and unreliable means of gauging TC. Perhaps the use of a stronger surrogate measure of 

TC is required in the formulation of the PeSI. Arguably this may lead to a stronger overall 

relationship between the PeSI and PSI.  

The current study and Petruzzello et al. [18] used a modified PSI which incorporated 

each individual’s maximal HR. Comparatively, Tikuisis et al. [17] employed a PSI with a 

nominal maximal HR of 180 bpm for all participants, only incorporating an individual’s age-

predicated maximal HR when this nominal HR value was exceeded in any given trial. In the 

current investigation, theoretical analysis indicated that replacing a participant’s calculated 

maximal HR with the arbitrary value of 180 bpm, the PSI values at the termination of the trials 

would have increased on average by 0.5 au or 5%. Therefore, variations in the formulation of 

PSI have the potential to affect the overall relationship observed between the PeSI and PSI. It 

is noteworthy that the current findings may not reflect a true upper level of physiological strain 

due to the maximal constraints of TC and HR used in the calculation of PSI. The ethical 

constraints of the termination criteria and subsequent formulation of the PSI used in the present 

study made it impossible for an individual to achieve a PSI value of 10. Theoretical analysis 

indicated the maximal attainable PSI value achievable was 8.4 a.u.  

Previous research has shown that commencing tolerance tests in a hypohydrated state 

has led to a 20% reduction in performance time [40,41]. Participants in the current study were 

subject to a more stringent USG value determining euhydration (USG ≤ 1.020) in comparison 

to Gallagher et al. [19] (USG ≤ 1.025). Conversely, Tikuisis et al. [17] and Petruzzello et al. 

[18] did not consider participant pre-trial hydration status. The encapsulating nature of the PPC 

ensemble and the respirator used in the current investigation made fluid consumption during 



trials unfeasible; therefore a more rigorous euhydration measure was adopted prior to the 

commencement of trials. Moreover, fluid consumption during exercise with PPC in the heat is 

known to improve tolerance time and decrease perceptual strain [42,43]. Therefore, the absence 

of fluid consumption during trials in the current study limits the potential confounding of 

perceptual strain, which may have been present in the study by Tikuisis et al. [17] who allowed 

participants to consume fluid during trials. 

These findings may have limited application in females and individuals with lower 

aerobic fitness. Given that females are employed as EOD technicians, and previous studies 

have reported some EOD technicians as having lower aerobic fitness levels (average participant 

V̇O2max ~ 46 ml·kg-1·min-1) [6], this may limit the application of findings from the current 

investigation. It has been suggested that repeated exercise with PPC results in a psychological 

habitual adaptation, partially attributed to an improved ability to tolerate the psychological 

discomfort associated with high levels of skinwettedness [44-46]. Although residents in a sub-

tropical region, participants in the current investigation were not acclimatised to each of the 

environments used in the experimental design. Moreover, it is debatable whether three trials 

randomised across three environments, each separated by a minimum of one-week would have 

any influence on psychological heat adaptation; however, dose-response conclusions of heat 

acclimation remain limited [47]. 

Future research should consider the relationship between the PeSI and PSI in a broader 

cross-section of individuals (e.g., gender, age, body composition and surface area), during very 

high levels of physiological strain and using a more sensitive thermal sensation scale. Finally, 

exploring the relationship between the PeSI and PSI under field conditions may establish if 

these laboratory findings are able to be translated to situations of an uncontrolled working 

environment. 

 

5. Conclusion 

This is the first study to explore the ability of a non-invasive, inexpensive PeSI to 

estimate the PSI across a range of workloads and environments. In the present study, the PeSI 

correctly or conservatively estimated the PSI 94.7% of the time. Similar predictive precision 

was observed when these same data were analysed using ROC curves and the absolute 

agreement between the PeSI and PSI. Moreover, a significant moderate relationship was 

observed between the PeSI and PSI. Collectively, these results support the use of a PeSI 

comprised of the Gagge 7-13 thermal sensation and Borg 6-20 RPE in providing an estimation 



of physiological strain in young, healthy, aerobically fit males across a range of workloads and 

environments during prolonged walking (up to 60-mins) while wearing PPC weighing 

approximately 35 kg. Moreover, these findings suggest the PeSI has the potential to be used as 

a monitoring tool for physiological strain, although future research is needed to confirm the 

validity and utility of the PeSI during field operations. 
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