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Abstract—FSM is one of few database models that support entities: K = {(e, ux(e)) : e € E A pug(e) > 0}. ux is a
fuzziness, uncertainty and impreciseness of real-world at the clas characteristic omembership functiomnd wr(e) represents
definition level. FSM authorizes an entity to be partially member the degree of membershig.o.m) of the fuzzy entity. in the

of its class according to a given degree of membership that reflest f lassK’. Membershio functi the el t
the level to which the entity verifies the extent properties of this uzzy classk . viembership functionuyx maps the elements

class. This paper deals with the conceptual design of FSM and Of ' to the rang€0, 1] where 0 implies no-membership and
adresses some implementation issues. 1 implies full membership. A value between 0 and 1 indicates

Index Terms—Database design, Fuzzy database, Databasethe extent to which entity can be considered as an element
mapping, Imperfect information. of fuzzy classk.

|. INTRODUCTION B. Entity/Class membership functions in FSM

N database literature, we enumerate several extensions of fuzzy class is a collection of fuzzy entities having some
semantic and object-oriented database models to Supp%p@_llar properties. Fuzz_mess is thus induced wher_1ever an
the fuzziness, uncertainty and impreciseness of realdwofNtity Vverifies only (partially) some of these propertiese W
[1], [5], [10], [12], [13]. Most of these extensions introck  d€note byXx = {p1, p, ..., pa} (With n > 1) the set of these
fuzziness only at the attribute level and consider thattiesti Properties for a given fuzzy class. Xy is called theextent
are fully encapsulated into their classes, which meanstiegt Of fuzzy classk’. The extent properties may be derived from
fully verify the properties of these classes. the attrlbutes_ of the class and/or from common sema_ntlos. Th
There are, however, some proposals for extending Objeg{a_gree tg which each of the extent properties determme.\yfu;
oriented [7], [8], [11], [15] and semantic [6], [14] datakasClass K is not the §ar.‘ne..lndeed, there are some properues
models to support fuzziness, uncertainty and impreciseogs that are more discriminative than others. To.ensur.e this, we
real-world at the class definition level. In the same dimeeti SSOCiate to each extent propeptya non-negative weight;
of research, the authors have proposed a new data mof@fiecting its importance in deciding whether or not an gntit
namely fuzzy semantic model (FSM) [2], [4], that authorize§ IS @ member of a given fuzzy clags. We also impose that
an entity to be partially member of its class according to iz Wi > 0. _ _ _
given degree of membership that reflects the level to whié the other hand, an entity may verify fully or partially the
the entity verifies the extent properties of this class. extent properties of a given fuzzy class. Ligt be the basic
This paper deals with the conceptual design of FSM a,t,{g)_maln_ of extent property; values an.dPZ is a subset of
adresses some implementation issues. Section Il intredudé Which represents the set of possible values of property
briefly FSM. Section Il details the conceptual design ofi- The partial membership functiorof an extent property
classes and subclasses in FSM. Section IV discuses soffi!€ ispp; which maps elements db" into [0, 1]. For any

implementation issues. Section V concludes the paper. ~ attribute valuev; € D, pps (v;) = 0 means that fuzzy entity
e violates propertyp;, and pp: (v;) = 1 means that this entity

verifies fully the property. The numbey; is the value of the
attribute of entitye on which the property; is defined. For
extent properties based on common semanticis, a semantic
Thespace of entitie#’ is the set of all entities of the interestphrase and the partial d.o.m;;( (v;) is supposed to be equal
domain. Afuzzy entitye in E is a natural or artificial entity to 1 but the user may explicitly provide a value less than 1.
that one or several of its properties are fuzzy. In other wordMore generally, the value qu;{ (v;) represents the extent to
a fuzzy entity verifies only (partially) some extent projest which entitye verifies propertyp; of fuzzy classk. Thus, the
of its class. Afuzzy classK in E is a collection of fuzzy global d.o.m of the fuzzy entity in the fuzzy classx is:
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II. Fuzzy SEMANTIC MODEL
A. Basic idea
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To make the paper short, the ways to define membership
functions at the interaction, subclass/superclass oglstiips,
composition, aggregation and grouping, and the more genera
class/class relationships are not addressed here. They are
detailed in [2], [3].

e

px(e)

TABLE |
FSM COMPLEX FUZZY CLASSES

C. Constructs of FSM
In FSM each fuzzy class is uniquely identified with a name.

Each class has a list of characteristics or propertieseaall Class Description
attributes. Some of these attributes are used to constnect |t Interaction fuzzy| A fuzzy class that describe the interactign
extent setXx defined above. To be a member of a fuzzy clagsZl2ss of two or more fuzzy classes

K, a fuzzy entitye must verify (fully or partially) at least one

“Fuzzy superclass

A generalization of one or many, simple d
complex, fuzzy classes

=

of the extent properties, i.eux (e) > 0.

Fuzzy subclass

A specialization of one or many, simple @
complex, fuzzy classes

=

The classes in FSM are categorized as exact or fuzzy:
o An exact classK is a class that all its members have

Composite fuzzy
d class

A fuzzy class that has other fuzzy class|
as members

d.o.m equal to 1; i.epx(e) = 1Ve € K.
« A fuzzy clasds is a class that at least one of its membe

Aggregate fuzzy
Sclass

A fuzzy class that its members are he
erogeneous and exhaustive collection frg
several fuzzy classes

—
T

m

has a d.o.m strictly inferior to 1; i.eJe € K such that
pi(e) < 1.

Grouping
class

fuzzy

A fuzzy class that its members are homod
nous collection of members from the san

ne

fuzzy class

Classes may also be categorized as strong or weak:

o A strong fuzzy class a fuzzy class whose members can
exist on their own, i.e., they are not depending on other
classes y P 9 I1l. SCHEMA DEFINITION IN FSM

« A weak fuzzy classs a fuzzy class whose members This section provides a proposal for specifying schema of

depend on the existence of other (strong or weak) clas$eaM-based databases. All examples of this section rely on
for their existence. the database example of Figure 1. In the example database,

These two classifications are orthogonal and all combinatic®ALAXY is an aggregate fuzzy class whose members are
are possible. unique collections of members from COMETS, STARS and

The elements of a fuzzy class are caltedmbersin FSM, PLANETS fuzzy grouping classes. These last ones are ho-

a-MEMBERS denotes for a given fuzzy clags the set MOgenous collections of members from strong fuzzy classes
COMET, STAR and PLANET, respectively. NOVA and SU-

{e:e € KAug(e) > a}; wherea € [0,1]. It is easy to ) ,
see thatn-MEMBERS C 3-MEMBERS for all & and 3 in PERNOVA are two attribute-defined fuzzy subclasses of

[0,1] and verifyinga > 3. Note that 1-MEMBERS may also STAR basing ontype-of-starattribute. PLANET-TYPES is
be refereed tdrue or exact memberdn turn. o-MEMBERS an attribute-defined fuzzy composite class. This compuwsiti
with 0 < a < 1 are calledfuzzy members ' is from PLANET fuzzy class basing on thage attribute.

The concept oh-MEMBERS may be mapped to the Concep?ERSON is an exact class. It has three enumerated subclasses
of a-cut associated with fuzzy sets and which is defined f@C/ENTIST, TECHNICIAN and OFFICER. Each person is af-

ur(z) > a) with filiated with at least one LABORATORY. SCIENTIST is a col-
- lection of scientists and DISCOVERY is an interaction fuzzy
class between SUPERNOVA and SCIENTIST. SCIENTIST-

rule, membering and interaction. Property relationshigate 1Y ES IS @ fuzzy composite class from SCIENTIST basing

fuzzy classes to domain classes. Each property relatipnsfl! field-of-researcrattribute. _
creates an attribute and each attribute has a unique datatfpthe generic definitions below we have adopted the follgwin
and may be single-valued, unknown, undefined, null or mulfonventions:

valued. Decision rule relationships are implementationhef ~ « [ | : optional parameter(s).

extents of fuzzy classes, i.e., the set of properties-based o { } ! list of parameters or values.

used to assign fuzzy entities to fuzzy classes. Memberinge | : the equivalent of the binary operator “xor”.
relationships relate fuzzy entities to fuzzy classes thhothe ~ « < > : obligatory parameter(s).

definition of d.o.m. Interaction relationships relate mensb « () @ series of parameters connected with the “xor”
of one fuzzy class to other members of one or several fuzzy Operator, i.e. only one of the parameters delimited with
classes. “("and “)" is chosen.

In FSM there are several complex fuzzy classes (see TableTihe generic definition of a fuzzy class in FSM is as follows:
that permit to implement the semantics of real-world among

objects in terms of generalization, specialization, agatien,

grouping and composition relationships, which are commonl

used in purely semantic modelling.

a fuzzy subsetF’ as the setf,, = {x :
0<a<l.
FSM supports four different relationships: property, deni-
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CLASS <class-namg WITH DOM OF <don>

{
SUPERCLASS:

OF <sclass-name-¢ WITH DOM OF <dom-1>

OF <sclass-namezk WITH DOM OF <dom-k>

INTERACTION CLASS OF <class-list-1>

EXTENT:

<ext-pr-I> WITH WEIGHT OF <w;> DECISION RULE IS (Kattr-name-

1><op> (<s-attr-name-3>| <value>))|<op> <sphrase-1>)

<ext-pr-m> WITH WEIGHT OF <w, > DECISION RULE IS (Kattr-name-

n><op> (<s-attr-name-p>| <value>)) | <op><sphrase-n-)

ATTRIBUTES:
<attr-name-3>: [FUZZY] DOMAIN <domaine->: TYPE OF <type-I> WITH
DOM OF <dom-1>: [REQUIRED[UNIQUE] [MULTI-VALUED]

<attr-name-r>: [FUZZY] DOMAIN <domaine-t>: TYPE OF <type-r> WITH
DOM OF <dom-r>: [REQUIRED[UNIQUE] [MULTI-VALUED]

CONTENTS:
[ENUMERATED COMPOSITION FROM(< class-name-1:members-list>])]

[SELECTED COMPOSITION ON ATTRIBUTES<attr-list-1> FROM <class-list-

2>]
[AGGREGATION OF (<class-name-2:members-list>2)]
[GROUPING FROM< class-name-3:members-lis>3

INTERACTION:
<inter-name-I> WITH (<class-name-* INVERSE IS <inv-inter-name-3 |
<inter-class-list-1>) [CLASS IS <inter-class-name-%]

<inter-name-z» WITH (<class-name-z INVERSE IS <inv-inter-name-z |
<inter-class-list-z>) [CLASS IS <inter-class-name-:z]

}

in section IV.D. The right-side of the attribute-based may
be a crisp (e.gage=21) or fuzzy (e.g.age=young) value.

For semantic phrase-based decision rules,ofhés an “is-a”
operator and the right-side is a semantic phrase (e.g. the
decision rule “is-a person” may be associated with the
class PERSON in Figure 1). The semantic phrase-based
rules are optional—but recommended to make the database
schema more comprehensible. For instance, we may have the
following extent properties definitions:

p1 WITH WEIGHT OF 0.8 DECISION RULE ISuminosity= very high

p2 WITH WEIGHT OF 0.3 DECISION RULE ISweightin [0.01W — 1W,]
ps WITH WEIGHT OF 0.5 DECISION RULE ISage= young

pg WITH WEIGHT OF 0.5 DECISION RULE ISagein [17-21]

psa WITH WEIGHT OF 1.0 DECISION RULE IS is-a galaxy

ps WITH WEIGHT OF 1.0 DECISION RULE IS is-a person

The symbol W,” above is the weight of the sun; it is
often used as a measurement unit. The four first decision
rules are attribute-based ones while the last two decision
rules are semantic phrase-based ones. Decision pylesd

ps may be associated with classes GALAXY and PERSON,
respectively.

In the ATTRIBUTES component we specify the list of the
attributes of the fuzzy class. We note that attributes défmi

is partially inspired from [11]. This definition of attribes
apply for both exact and fuzzy ones. An exact attribute
requires the definition of a datatype (e.g. integer, striuggl

a domain as a range of possible values for the attribute.
A fuzzy attribute requires the definition of a fuzzy type
and a fuzzy domain. The fuzzy types are based on simple
(e.g. integer) or complex types (e.g. set-valued typestyent
valued attributes) that allow the representation of imiseec
information. Fuzzy domains may be represented simply as a
list of fuzzy linguistic terms (e.g. young, near). Other way
may also apply as for example possibility theory (e.g. the ag
of a young person may be represented through a possibility
distribution asage= 0.1/17 + 1.0/18 + 0.2/19) or evidence

The SUPERCLASS component of the fuzzy class definitidheory (e.g. through evidence theory, the age of young perso
enumerates all the subclasses of the class along with thsirage = 0.1/{18} + 0.1/{18,19} + 0.8/{17,18,19}). In
d.o.m relatively to this class. This component is omittethé addition, attributes may be specified as required, unique
fuzzy class has no fuzzy subclass(es). The INTERACTIOdF multi-valued (Note: if the MULTI-VALUED keyword is
CLASS OF component is for fuzzy interaction classes onlgot specified, the attribute is a single-valued one.) Requir

It permits to specify the list of the participant classes faattributes are those that must have non-null values and
which the interaction class is defined. One, two and at leastique attributes are those for which no two members
three class names are required for recursive, binary, sany n-of the same class may have the same value. All required
(n > 3) fuzzy interaction classes, respectively. Next in thand unique attributes may serve &dentifiers (or key3
EXTENT part, we list all the extent properties of the clasthat mean to identify all the members of a fuzzy class. For
(We remak that fuzzy interaction classes have no EXTENaxample, we may have the following declarations of attebut
component since they have no extent properties.) For each

extent property we indicate the name, the weight and thkeaton FUzzy DOMAIN {in, near, very near, distant, very distgnt TYPE
decision rule on which this extent property is based. As di real WITH DOM OF 1.0

is quoted earlier, decision rules may be attribute-based =& Fuzzy DOMAIN {very old, old, young, very youg TYPE OF integer WITH
semantic phrase-based. The left-side of the attributeebade pom oF 1.0

indicates the attribute name on which the rule is based. T&&-name TYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE

op operator may be a scalar comparator (e-g#,<,>,<,>) phone-numbersTYPE OF string WITH DOM OF 1.0: MULTI-VALUED

or a set-operator (e.g=, C, C). The extension of all these

operators to operate on imperfect information is provideficcording to these declarationgcation and age attributes
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may have either exact values (elgcatior= 12LY; age=55) list of members. For attribute-defined subclasses, we dhoul
or fuzzy values (e.glocation=very distant;age=old). The indicate the list of the attributes on which the ISA relasbip
“LY” symbol is the abbreviation of light year. Thetar-name is defined. For set-intersection-defined subclasses weaiteli
attribute may have only exact values (estar-name Vega). simply the list of the other superclasses that participate i
In addition, star-nameattribute may be used as an identifiethe intersection. Finally for difference-defined subobsss/ie
since it is required and unique. Thplone-numbersttribute mention the name of the other fuzzy class that participate in
is an exact and multi-valued one. the difference operation.

The next component of fuzzy class definition is specifito better illustrate these definitions, we provide in the
for fuzzy composite and grouping classes. For enumerateflowing several examples based on Figure 1.
composition, we indicate the list of classes and for each

one we specify the entities that are member of the fuzzyass galaxywITH DOM OF gdom

composite class. For attribute-based composition we fix the

list of the selection attributes and the list of the classesTenT:

from which selection is accomplished. For fuzzy aggregatgg, WITH WEIGHT OF 1.0 DECISION RULE IS set of galaxies

classes we indicate the list of the classes that are parteof th

aggregation and for each one we specify the entities that areriBuTEs:

member of the fuzzy aggregate class. And finally for fuzzyslaxy-nameTYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE

grouping classes, we indicate the name of the class fregs Fuzzy DOMAIN {very young, young, old, very did TYPE OF integer WITH
which grouping is realized along with the list of members. powm oF 1.0: REQUIRED

The last part of fuzzy class definition indicates the evdntuacation FUzzY DOMAIN {in, near, very near, distant, very distdntTYPE OF real
interaction relationship(s) of the fuzzy class. As mergn wiTH DOM OF 1.0: REQUIRED

earlier, interaction relationships may be binary or n-dny.

both cases a name should be provided. Binary interactioonTENTS:

relationships require also the name of the other partitigat AGGREGATION OFcomets:c, ca, ¢, Stars: s1, sa, planets:p1, p2, ps, pa, ps
fuzzy class and the name of the inverse attribute. For n-ary

interaction relationships we need to mention the list of the

classes that participate in this interaction. In both cas®b CLASS star WITH DOM OF sdom

when it is necessary, the name of the fuzzy interaction clags

can be specified with the CLASS IS component. SUPERCLASS:

Since subclasses may have their own subclasses, they h@v@pernovawITH DOM OF scdom-sn

the same components as for fuzzy classes. In particular, the novaewITH DOM scdom-n

may have SUPERCLASS components that indicate the list

of their own subclasses. In turn, subclasses have a spedificenT:

component, called SPECIALIZATION, that is designed t@p, WITH WEIGHT OF 0.8 DECISION RULE ISiuminosity > 0.005L

map to their fuzzy superclasses. The generic definition @f, wiTH WEIGHT OF 0.3 DECISION RULE ISweight > 0.05W,

a fuzzy subclass in FSM is as follows (in this definition,

only the SPECIALIZATION component is provided; thearTRiBUTES:

definitions of the other components is similar to the ones &#r-name TYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE

the fuzzy class and they are not reproduced): type-of-star TYPE OF symboli¢nova, supernovyaWITH DOM OF 1.0: REQUIRED
age FUZZY DOMAIN {very young, young, old, very dild TYPE OF integer WITH
SUBCLASS <sclass-namg WITH DOM OF <don> DOM OF 1.0: REQUIRED
{ location FUZZY DOMAIN {in, near, very near, distant, very distgntTYPE OFreal
SPECIALIZATION : WITH DOM OF 1.0: REQUIRED
OF <class-name- WITH DOM OF <dom-1>: luminosity FUZZY DOMAIN {very low, low, medium, high, very highTYPE OF
[BY ENUMERATION <members-list-1] real WITH DOM OF 1.0: REQUIRED
[ON ATTRIBUTES <attr-list-1>] weight FUZZY DOMAIN [0.01W s — 100W]: TYPE OFreal WITH DOM OF 1.0:
[BY INTERSECTION WITH <class-list-1>] REQUIRED
[BY DIFFERENCE WITH <d-class-name-t] }
OF <class-name-3 WITH DOM OF <dom-¢>: SUBCLASS supernovaWITH DOM OF sndom
{
} SPECIALIZATION :

OF star WITH DOM OF scdom
For each superclass of the subclass, we indicate the nameATTRIBUTES type-of-star
the superclass and the d.o.m of the subclass in this supgrcla
A subclass may be defined in four ways. Enumerated fuzeyrenr:
subclasses require the enumeration of the fuzzy classés tha, wiITH WEIGHT OF 0.6 DECISION RULE ISuminosity > high
participate in the generalization relationship along witle snp, WITH WEIGHT OF 0.5 DECISION RULE ISweight> 11,
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ATTRIBUTES:

snova-nameTYPE OF string WITH DOM OF 1.0: REQUIRED UNIQUE
type-of-snovaTYPE OF symboli¢la, Ib, Ic, Ib/c, Ic/b, II-P, 1I-L) WITH DOM OF 1.0:
REQUIRED

luminosity FUZZY DOMAIN {high, very high: TYPE OFreal WITH DOM OF 1.0:
REQUIRED

weight FUZZY DOMAIN [1W, — 100W,]: TYPE OF real WITH DOM OF 1.0:
REQUIRED

INTERACTION:
discovererWITH scientistiINVERSE IS discoversCLASS IS discovery
}

CLASS personWITH DOM OF 1.0
{

SUPERCLASS:

OF scientistWITH DOM OF 1.0
OF technicianWITH DOM OF 1.0
OF officer WITH DOM OF 1.0

EXTENT:
pp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of persons

ATTRIBUTES:

name-of-persanTYPE OF string WITH DOM OF 1.0: REQUIRED

age FUZZY DOMAIN {very young, young, old, very old TYPE OF integer WITH
DOM OF 1.0: REQUIRED

address TYPE OF string WITH DOM OF 1.0: REQUIRED

phone-numbersTYPE OF string WITH DOM OF 1.0: MULTI-VALUED

INTERACTION:
works-atWITH laboratory INVERSE IS working-place-of
}

CLASS discoveryWITH DOM OF sndom

{
INTERACTION CLASS OFsupernovascientist

ATTRIBUTES:
date-of-discoveryTYPE OF datetimeWITH DOM OF 1.0
place-of-discoveryTYPE OF string WITH DOM OF 1.0

}

SUBCLASS scientistWITH DOM OF 1.0

{

SPECIALIZATION:

OF personWITH DOM OF 1.0:

BY ENUMERATION name-of-personshame-of-persons8ame-of-person;8ame-of-
person-4

EXTENT:
scp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of scientists

ATTRIBUTES:
field-of-research TYPE OF string WITH DOM OF 1.0: REQUIRED

INTERACTION:

discoversWITH supernovaNVERSE IS discovererCLASS IS discovery

}

IV. IMPLEMENTATION ISSUES

This section first shows how different kinds of imperfect

information are represented and internally implemented. |
then provides a formal approach to map FSM-based model
to a fuzzy relational object (FRO) database model. Finally,
it shows how scalar and set-operators should be extended to
operate on imperfect information.

A. Imperfect information representation

FRO supportes a rich set of imperfect data types that are

listed below. Note that these data types are extensions of
the ones proposed in [9]. We also added several new ones.
Especially, linguistic labels defined on sinusoidal pasisib
distributions and the “more than” and “less than” data types
are not defined in [9].

o Fuzzy rangeThis data type handles the “more or less”

information between two numeric values. The graphical
representation of possibility distribution of this datpdy

is shown through Model I.1 in Table Il and may be written
as{u(z)/z : z € D}. D is the domain of the attribute
values andu(z) is the d.o.m ofz in the fuzzy set on
which the attribute is defined. This set is denotédn
Table II. As it is shown in Table II, four parameters are
required to define the possibility distribution of this data
type: a, 8, and A. The parameterg and v represent
the support of the fuzzy set associated with the attribute
values andv and \ represent the limits of the transition
zones;

Approximate valueThis data type handles the “about”
some numeric value information. The graphical represen-
tation of possibility distribution of this data type is show
through Model 1.2 in Table Il and may be written as
{u(z)/z : = € D}. Here, three parameters are required:
the central value of the concept the limit of left
transition zonec— and the limit of right transition zone
ct;

Interval. Model 1.3 in Table Il shows the graphical
representation of the possibility distribution of a classi
crisp range. Mathematically, this possibility distrilari
may be written as{u(z)/z : z € D}. The parameters
required here are the limits of the rangeand g;
Less/More than valueThese data types focalize only on
one side of a value. The graphical representations of the
possibility distributions of “less than” and “more than”
data types are shown in Models I.4 and 1.5 in Table II,
respectively. Mathematically, the possibility distritmurt
associated with both of them may be written{agz)/z :

z € D}. Two parameters are required to define this data
type: the value of interesty(or 5) and the limit of the
transition range X or «);

Set of possible scalar assignmenfhis permits to handle
attributes defined on a set of scalars. For example, the
height of a person may be defined aeight={tall,very
tall}, which is represented through possibility distribution
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as {1.0/tall,1.0/very tal}. A proximity relation is often
defined on the domain of this data type. We denote this
data type with Model IlI.1;

o Set of possible numeric assignmerithis data type is
similar to the previous one. It differs only on the fact that «
is defined on a set of numeric values. For example, the
heightof a person may be defined as the §&i85,1.95,
which is represented through possibility distribution as
{1.0/1.85,1.0/1.95 This data type will be designed as
Model 111.2;

« Possibility distribution over discrete domaihis data
type is represented through standard possibility distri-
bution where possibility degrees in [0,1] are associated.
with each of the domain values. More formally, we have
{p1/di, -+ ,pn/ds}; wherep; and d; for i trough 1
to n are the possibility degrees and the domain values,
respectively. Note that the domain values may be numbers
as well as scalars. A proximity relation is often associ-
ated with scalar-based domains. This data type will be
designed as Model 1lI.3;

« Possibility distribution over a numeric ordered domain
In this data type, the possibility distribution is defined
on an ordered set of numeric values as for exam-
ple age={0.7/25,0.8/26,1.0/27,0.8/28,0.8/30More gen-
erally, we have{p, /d1, - -+, pn/dyn} With p; < p;11. This
data type will be designed as Model Ill.4.

« Simple numberThis is a crisp data type which is handled
as in conventional databases. The possibility distrilmdtio
based representation of a simple numbeis {1.0/n}.
Model 1.8 in Table Il shows the graphical representation
of the possibility distribution of this data type;

« Simple scalarThis is a crisp data which is handled as in
conventional databases. The possibility distributioadnh
representation of a simple scatais {1.0/s}. A proximity
relation is often associated with the domain of this data
type. We denote this data type with Model Il1.5;

« Matching degreeThis is a real number in [0,1] that refers
to the degree to which a concept is achieved (qual-
ity=0.7). The possibility distribution-based representatio
of a matching degree: is {1.0/m}. This data type will
be designed as Model III.6;

« Unknown This data type means that we cannot decide
which is the value of the attribute among several plausible
values. But the attribute may take any value from its
domain. Accordingly, the possibility distribution-based
representation of the unknown data type {i5.0/z :

z € D}. Model 1.6 in Table Il shows the graphical
representation of the possibility distribution of this aat
type;

o Undefined This data type means that there is not any *®
defined value that can be assigned to the attribute. This
means that no one of the domain values is authorized.®
Accordingly, the possibility distribution-based repnese
tation of undefined data type i®)/z : z € D}. Model
I.7 in Table Il shows the graphical representation of the
possibility distribution of this data type;

o Null. This data type means that we cannot even
know whether the attribute’s value is unknown or

undefined. Accordingly, the possibility distribution-
based representation of undefined data type is
{1.0/Unknownl.0/Undefined. This data type will

be designed as Model III.7;

Symbolic This is a crisp data type which takes its
values on a set of symbolic values related with the XOR
operator. For instance, the attribtype-of-starassociated
with the class STAR in Figure 3 may be onhova or
supernovaThe possibility representation of this data type
is {0/s1,---,1.0/s;,---,0/s,} which means that the
attribute value iss;. This data type will be designed as
Model II1.8;

Linguistic label Models II.1-11.4 in Table Il are the
graphical representation of the possibility distribution
of the linguistic label data types. Model 1.1 represents
the sinusoidal model. The parameters required here are
the central value of the attribute and the parameter
that governs the shape of the d.oan Model 11.2 is

an extension of the previous one that applies when the
central value of the concept may take a range of values
instead of only one value. Four parameters are required
here: the limits of the central rangg andas; and the

left and right transition zone$; and by, respectively.
Note thata; and a, are thecrossover(or transition)
points defined such thati(a;) = p(az) = 0.5. Models

1.3 and 1.4 are the asymmetric extensions of Model
II.1 that apply when only the left or right side of the
concept is of interest. The required parameters are
andb; for Model 11.3; andas andb, for Model 11.4. The
mathematical representation of all these data types is
{u(z)/z : z € D}. Finally, note that proximity relations
need to be associated with the domains of these four
data types.

B. Imperfect information implementation

In order to store the specificity of all the attributes, we miefi
a meta-relation, called ATTRIBUTES, at the metadata level
with the following attributes:

attribute-id it uniquely identifies each attribute defined
at the database level. It constitutes also the primary key
of the ATTRIBUTES meta-relation. Note that the key
attribute(s) in this relation and in the other ones are
underlined.

attribute-nameit stores the name of an attribute. As for
classical databases, the same fuzzy class can not have
two attributes with the same name but the same attribute
name may appear in different fuzzy classes.
class-namedenotes the fuzzy class to which the attribute
belongs.

data-type which is a multi-valued attribute that stores the
attribute type which may take any one of the lisgtf.A.

For crisp attributes, this attribute works as in converdlon
databases (it may take the values of integer, real, float,
etc.). For fuzzy attributes, thdata-typeattribute stores
the fuzzy data type itself and the basic crisp data type on
which the fuzzy data type is based.
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TABLE Il

DIFFERENT DATA TYPES SUPPORTED B¥SS

Data typeA1 Model Representation Parameters pa(2)
A
Fuzzy range label 1
e.g. age= more or @, B, v, A 1, ifB<z<n~;
less between 20 and R ;72 iy <z < A
30 11 1 z wp(2) = - '
a 8 v A HA z—a . a.
T—a ifa < z< g
0, Otherwise.
A
Approximate  value 1 . .
e.g.age=about 35 S 1, ifz=¢
MRS C+_z, c<z<ct;
1.2 L — z wa(z) = ¢t —c
— cT < z<g
c—c
0, Otherwise.
A
Interval e.g.age € 1
[25, 35] . B
| _ 1, ifa <z<g;
13 o B z ra(z) = { 0, Otherwise.
A
Less than value e.g. 17
age= less than 35 ' N
. v 1, if z < ~;
1.4 1 PR A =4 % itz <X
Ao ify <z < A
A
More than value e.g. 1
age= more than 35 . 8
. & 1, ifz > 8;
15 T 5 2 pa(z) = 0, if z < o
Z ifa <z < B
Unknown I
1.6 L > pa(z)=1;2z2>0
Undefined 1
1.7 ‘L‘z pa(z) =0;2>0
Real number e.g. 1
age=30
c
1, if z=c
18 c = ra(z) = { 0, Otherwise.
1
Linguistic label e.g.
age=young a c
1 R = ——1 z>0
¢ : HAS T GHacaz 2
b1 b2
- 1
Linguistic label e.g. 1 " b
T 2 —as—b: I < B
ageyoung ® ay,ag, by, by 1+Z*ab1*b1 FLo1Th
1
1.2 T ay a2 z pa(z) = if ag + b1 < 2z < ag — by;
1 .
m, if 2> ag — boy.
+T
b1
1
Linguistic label
age-very old .5 b
ayp, by — L ifz<ay+by;
i z=—a1—by
1.3 - z pa(z) = "
L , fa; +by <z
2
. 1
Linguistic label e.g.
age=very young .5
ag, by 1, if 2z < ag — by;
! 1
.4 L = —_— > if z > — bo.
an z A (2) 1+z,ab2+b2 ; z > a2 2
2
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The ATTRIBUTES meta-relation associated with the modeheta-relation, denoted by PARAMETERS, contains one line
in Figure 1 is as follows (only some attributes are shown): for each linguistic value that appears in the domain of any
linguistic data type attribute (or the list of the authodzalues

attribute-id | attribute-name | class-name [ data-type ] for Symb0|IC data type) |tS attrlbutes are:
attr-15 star-name STAR {string} ) ) . .
aur-16 type-of-star STAR {symbolic} « attribute-id references one attribute that appears in the
attr-17 age STAR {linguistic label, rea}
attr-18 luminosity STAR {linguistic label, rea} meta_rela‘tlon ATTR'BUTES
attr-19 location STAR {linguistic label, rea} ) L. ) )
att-20 weight STAR {interval, rea} « label: stores a linguistic term belonging to the attribute
attr-60 name-of-person PERSON {string} . . N )
-61 dd PERSON
a6l e mbers | oo | {ara) do_maln. For symbolic data types this attribute takes a
- field-of- h I “ ”
Breo | oo | Boawer | {inguise ibel rea) nil” value. _ ,
o parameters is a multi-valued attribute used to store
The parameters associated with different linguistic tetinags the parameters required for generating the possibility

appear in the domain of any linguistic data type are stored at distribution of the linguistic term.
the metadata level. They will be used to compute the differefyitively, attributes with no parameters, will not be linded
d.o.m and for query processing. The number of parametgsSpARAMETERS meta-relation.

needed is different from one linguistic data type to anoth@fy example of a PARAMETERS meta-relation associated
and it may vary from zero to four parameters. Thus, seveiglt, the model in Figure 1 is as follows:

solutions are possible to store these parameters. We can, fo

attribute-id [ label [ _parameters |

example, use one common meta-relation with four attributes T A Trova, soparron
devoted to store the different parameters. In that time, we | yeryouna | {00 0 0% 8
may have “null” values any time the number of parameters mir | veyod | fia7.50 000

associated with one linguistic value is less than four. ABOt ag it is shown in the ATTRIBUTES meta-relatiomttr-16
solution is to group data types along the number of requirgghy 4117 correspond to théype-of-starand age attributes
parameters. After that, four relations are needed for d@st i, 1,77y class STAR, respectively; and values on attribute
with one, two, three or four parameters, respectively (We pyrameters(for attr-17) are expressed in million of years.

not have to define a relation for unknown and undefinefhe meta-relation PARAMETERS permits also to generate
attribute data and other data types that need no parametgd 4omain of linguistic or symbolic data types. This needs
An ameliorated version of this solution is adopted in [Q]EThonly to group together all the linguistic labels having taene
authors use a common meta-relation similar to ATTRIBUTERribyte-idin the meta-relation PARAMETERS. For example
and a specific attribute serves as a pointer 10 tWo Meify Gomain of attributettr-17 above is{very young, young,
relations. One meta-relation is used to store the margigiy very old. The domain of a symbolic data type is the list
parameter needed for approximately data type (Model 1.2 i§ ihe terms in theparametersattribute.

Table Il). The second meta-relation contains a list of fUzzyhe metadata level contains also the information requiced t
objects defined in the database columns. This meta—relat@é}ine the extent properties of fuzzy classes. These infimma
contains two specific attributes: one used to store the dajd \;sed to compute the partial and global d.o.m. They are
type and the other points out to three new meta-relat[ogﬁ)red in two meta-relations called A-DECISION-RULES and
devoted to store the parameters of qualifier labels defing@dyEc|SION-RULES. The A-DECISION-RULES is devoted

over the maiching of a query, proximity relations assodalg,, giore attribute-based extent properties. It has the\tig
with scalar data types (Models 11.1-11.4 in Table Il and Mbde

- ) ] Vi Eattributes:
o (aoou o i based =50 otentroperysores he rame ofhe exent propry
. ' . 9 « class-namedenotes the name of the fuzzy class for which
query quantifiers, respectively. In the last meta-relatioor : !
. the extent property is defined.
attributes Alpha Beta Gamma Delta) are used to store the . . .
i L « based-onreferences thattribute-id on which the extent
trapezoidal-based possibility distributions parameténsthe :
. . ; property is based.
special case of interval data type, the attribitgghaandBeta - . . . ' .
o . « decision-rule is a composite attribute defined as follows:
store the same value. This is also true for attribuEesnma _ bi ~ < >
and Delta The same meta-relation with the four parameters — operator contains a énagy (=approx-equal <, >,
is also used to store undefined, unknown and null data types, <"h>,h7é)dor a set dC =22 e)foperatorl. ;
which generates an excessive storage space since these data ~ r;}g - qg —opderan 11S @ Crisp or fuzzy vajue from
types require no parameters and the different parametdirs wi ) the attribute om.am.
be “null’-valued. « weight stores the weight of the extent property.
One drawback of the solutions cited above is that any time Wé example of a S-DECISION-RULES meta-relation associ-
need to add a new linguistic data type or to change the adop@gd with the model in Figure 1 is as follows:

|IngUIStIC data types, We may have tO update the metamtl ’ extent-property class-name ‘ based-on decision-rule weight ‘
. . operator right-hand-operand
structures. Here, we propose a straightforward soluti@t th — — —— e —
dqes not depend on the parameters nymber and can be used| etsarz | SR | 2 (2, 0pusd 03
with any fuzzy model. In fact, we define a common meta- extsnova? | SUPERNOVA | attr51 (2, 1Ws} 05

relation with a multi-valued attribute (supported by riladl Note that the symboldV, and L, are the weight and lu-
object database models) that stores all needed paranitéss. minosity of the Sun, respectively; they are often used as
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measurement units. shown):
The S-DECISION-RULES is devoted to store extent propertifs oSty ‘ gt ‘
based on common semantics. It has the following attributes: AVl dote ypRpATameters Vel dore R paraneters

{high, linguistic label model 1l.1{25,5} } {10Wg, real, {nil} }
{0.1L, real{nil}} {[12W 5-15W 5], interval, {12,15} }
° eXtent-propertystores the name of the extent pl’OpeI’ty, {more than 1@ s, more than linguistic label{ 7.5L 5,10} } {about 13V 5, approximate value{15,17,18 }

» class-namedenotes the name of the fuzzy class for whickome data types (Models 11.1-11.4, 111.1, 1.3 and I1l.5quire

the extent property is defined. also to define the proximity relation between the elements of
» decision-ruleis a composite attribute defined as followsihejr respective domains. Proximity relations are storethe
— operator. is an “is-a” operator. metadata level through the meta-relation PROXIMITY which
— right-hand-operandis a semantic phrase. has the following attributes:
. weight stores the weight of the extent property. « attribute-id references the attribute for which the prox-

imity relation is defined.
« label-landlabel-2 denote two linguistic terms belonging
to the attribute domain.
« degree stores the similarity degree between the linguistic
termslabel-1 andlabel-2
ext-person PERSON {is-a, person 1.0 ) ) ) L.
edgalmy | GALAXY Lo gaio 10 The followmg is thg meta—relatlon_PROXIMlTY for proximity
relation of the attributeage associated with the fuzzy class

The attribute values are stored at the database level. As menAR in Figure 1:

An example of a S-DECISION-RULES meta-relation associ-
ated with the model in Figure 3 is as follows:

decision-rule
operator right-hand-operand

’ extent-property | class-name

weight ‘

tioned above, to facilitate data manipulation and for cotimgu attibute’d | Tabeld | Tabel2 | degree |
efficiency, the different types of attributes values ardamily Sy | vemyowe | veme o1
represented through possibility distribution. Howevérese i1y | yeooung | weyvold | 00
distributions are not explicitly stored in the database but e vevod | os

generated automatically during data manipulation and3quel|-r’roximity relations are reflexive and symmetric. Thus, ¢her

sirf?greesnst'r:j%tgﬁy?eesans of specific functions associated Wfghno need to handle the proximity degrees for pairs of the

4 ) : . t d onl ir fi d hould b
As they are defined in [2], attributes values may be crisgyfuz ype (z, ) and only one parr rontz, y) and(y, z) should be
i - : ) >~ stored for any two linguistic labels andy.
or both. This need only to be indicated in the intent definitio "
of the fuzzy classes the attributes belong to. FSS allowrssusIn the case of fuzzy subclass/superclass, compositiorreagg
: y g fo. = . ation and grouping relationships, we need to store thend.o.
to insert values of any data type that is consistent with to‘? one fuzzy (sub)class in the corresponding fuzzy supsscla
formal definition of the attribute. At the extent definitiofi o 1zzy . Ip T gh dly hp9$ inf
the fuzzy class, each fuzzy attribute is mapped into a nézv(\)lmposne, aggregate or grouping ¢ass. 0 nan € tnese in
composite one é:om osed of three component attributes: Mation, we add two new meta-relations SUB-SUPER-COMP
P P P " and GROUPING.
« attr-value stores the value of the attribute as provided byhe meta-relation SUB-SUPER-COMP is devoted to store
the user. information concerning fuzzy subclass/superclass andoem
« data-type stores the data type of the value being insertegition relationships. It contains the following attribste
« parameters is a multi-valued attribute used to store , class-1-namestores the name of the first fuzzy class.
parameters associated with the attribute value that are, cjass-2-namestores the name of the second fuzzy class.

used to generate its possibility distribution. « relationship stores the type of relationship between the
The data-typeattribute is used both at the extent definition and ~ fuzzy classes denoted Igjass-1-namendclass-2-name
in the intent definition to allow users insert values of difiet (i.e. subclass/superclass or composition).

data types, which may have different number of parameterses definition-type indicates the way the relationship is de-
This will offer more flexibly to the user. Nevertheless, the fined (attribute-defined, roster-defined, set-interseatio
different data types defined at the extent level should be set-difference for fuzzy subclass/superclass relatipssh
consistent with the formal definition of the attribute at the and attribute-defined or enumerated for fuzzy composi-
intent level. For instance, the formal definition of the iatite tion relationships).

may be a trapezoidal-based possibility distribution withurf o parametersis a multi-valued that stores the parameters
paraments but the user may introduce a crisp value (with no associated witldefinition-typeattribute.

parameter at all), an interval (with two parameters onlyjior  « dom stores the d.o.m of the fuzzy class denotectlags-
approximate value (with three parameters only). Remark tha 2-namein the fuzzy class denoted tpfass-1-name

the attributedata-typeat the extent definition is not a multi- For attribute-based fuzzy subclass/superclass and w#rib
valued one. Note also that for computing the partial d.obm, tbased fuzzy composition relationships, the attribyte-
parameters defined at the intent level are used to define thmeters stores the attributes on which the generaliza-
possibility distribution of thdeft-hand-operandf the extent tion/specialization or the composition is based. For rreste
property. based fuzzy subclass/superclass and enumerated fuzzy com-
The extent definition of fuzzy class STAR from Figure 1 wilposition relationships, the attribupmrametergakes the “nil”
look as follows (onlyluminosity and weight attributes are value.
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The meta-relations SUB-SUPER-COMP associated with Fig-2) Fuzzy subclass/superclass relationships transfoamati

ure 1 is as follows: A fuzzy subclassB of a fuzzy superclassgl is mapped into
class-1-name class-2-name relationship definition-type parameters dom a I’e|a'[|0n WhICh Inhel’ltS a” the relevant att”butes Of the
[ I I I I I ]
o SO | S Auacins |l | o7 | relation transformed fromd (the relational object database
PERSON SCIENTIST Subclass/S | Roster-defined il 1.0 i i it i
PERSON OFFCER | SubelaseiSuperdasd  Rostrdefined | {ni} 1o | model allows inheritance). In addition to the attribdtem the
PER! i ; :
SCIESN?"I\‘ST-TYPES ;(E:?EHN,\“I'IICSI¢N gzl::;ss?ﬁzpemlass ig:ﬁ:g-edfg}ﬁid %;ltln}ﬁﬂ 1.8 relation B contains a new attrlbUte’ denoted dwm_A which
PLANET-TYPES PLANET Composition Attribute-defined {attr-80} 0.45 iS used to store the d.o.m Of one entity from fuzzy SUbClaSS

The meta-relation GROUPING is devoted to store informatioR in its fuzzy superclassi. The same reasoning is used for
Concerning fuzzy grouping and aggregation re|ationshtns_ fuzz_y subclasses with more than one fuzzy superclas_s. Note
similar to SUB-SUPER-COMP but it contains ontyass-1- particulary that the relation mapped from fuzzy cldswill

name class-2-namerelationshipand dom attributes. contain severatiom-A one for each fuzzy superclass.
The meta-relation GROUPING associated with Figure 1 is d$§¢ mapping of the fuzzy subclass SUPERNOVA in Figure 1
follows: is as follows (the attributeliscovery-listis added to indicate
B T for each supernova the list of its discoverers as explained i
STARS STAR Grouping 1.0 .
PLANETS PLANET Grouping 1.0 the fo||0W|ng paragraph):
COMETS COMET Grouping 1.0
GALAXY SATRS Aggregation | 0.5
GALAXY PLANETS Aggregation | 0.9
GALAXY COMETS Aggregation | 0.7
. snova-name‘ type- ‘ ‘ discovery-list ‘ dom ‘ dom-star ‘
We also add a new meta-relation, called INTERACTION, of-snova attr-valueldata-typd
. . . . . SN1987a Ilb cee {lan Sheltor} 0.95 1.0
devoted to store information concerning fuzzy interaction ‘ SN1604 Ic {Johannes Keplgr 05 05
SN1006 Unknown ce Unknown 0.7 0.9

relationships. It contains the following attributes:

« class-namestores the name of a fuzzy class participating 3) Interaction relationships transformation: Let By,
in the interactioninteraction-name Bs, -, B, ben fuzzy classes related by an n-ary interaction
« interaction-namestores the name of the fuzzy interactionmelationshipinter-name When a participant fuzzy class;
class or the name of the fuzzy interaction relationship.is mapped into a relation in the database level, a composite
« role: stores the name of the relationship from the poirgttribute inter-name-listis added to it. Theinter-name-list

of view of class-name contains as many component attributes as the number of par-
The meta-relation INTERACTION associated with Figure 1 ic¢ipant fuzzy classes imter-name Each component attribute
as follows: of fuzzy subclassB; is used to indicate, for each member
T W L | from B;, the list of the members fromB; in interaction with
SUPERNOVA | DISCOVERY | discoverer the one ofB;. See for example the mapping of fuzzy subclass
E/EEI;EN?:AESRY ﬂSrESQVERY wzfg;z;e»sp\ace-of SUPERNOVA in Appendix B.2 where the attributéscovery-
working works-in

list is added to it to indicate for each supernova the list of its

) ) _ discoverers.

C. Mapping FSM-based model to a fuzzy relational objegjote that a fuzzy class may participate in several relakifss

database model and the same reasoning apply for each interaction reldtipns
As mentioned earlier, FSM-based model is mapped inEspecially, the mapping of this fuzzy class requires as many

a fuzzy relational object (FRO) database one. Here we pr@mposite attributemter-name-listas the number of interac-

vide the transformation of only simple classes, Fuzzy sutien relationships.

class/superclass relationships and interaction relstiips. On the other hand, when an interaction relationship require
1) Fuzzy simple classes transformatioBach fuzzy class the creation of new attributes, a new fuzzy interaction <las

in the FSM model is mapped into a relation in the databagegenerated. When the fuzzy interaction class is mapped into

level. The fuzzy attributes are mapped into composite onagelation in the database level, it contains, in additiontso

as explained above. The crisp attributes are treated asoimn attributes, the following ones:

conventional databases. An additional non printablebaitei,

dom used to store the global d.o.m is systematically added

into the new relation. In addition, the information relativ

to the extent properties of the fuzzy class are automayicall

introduced in the A-DECISION-RULES and/or S-DECISION-

RULES meta-relations.

As example, the mapping of the fuzzy class STAR in Figure

1 is as follows (only a subset of the attributes are included)

« interaction-id this attribute is generated by the system
and used to identify interaction relationships.

« B;-id: used to store the key attribute value of the member

of participating fuzzy clas®3;. When the interaction re-

lationship is reflexive, two attributes are used to refeeenc

members of the same fuzzy class.

dom denotes the global d.o.m of fuzzy interaction class

members.

The mapping of the fuzzy subclass DISCOVERY in Figure 1

star-name type-of-star luminosity dom .
attr-value data-typd parameter IS as fO||OWS.
Vega NOVA {low, linguistic label 11.1{2,0.5} } 0.3
3C 58 SUPERNOVA {0.1L g, real{nil} } 1.0
Proxima Centauri [ SUPERNOVA {more than 1@ s, more than linguistic labe{,7.5L 5,10} } 0.75
. . . L. interaction-id | date-of-discovery | place-of-discovery | supernova-id [ _scientist-id [ dom |
Remark particularly how the attributeminositys mapped T e ——— T =S =

into composite one as explained /A A R sl B I B
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Remark especially the attributedate-of-discoveryand

place-of-discoveryhich are specific to fuzzy subclass DIS

COVERY.

D. Computation of the degrees of membership

m
(X, Y)

IA

crispy fuzzy g
z < y;

crisp ©

T, < N N
{ 0. otherwise.] ™My<a;yey 7g()

fuzzy &

max, <y cy T (W< (X,Y) SUR(z, ) EXaY min[7 x (), 7y (y)]

To compute the partial and global d.o.m and for query
processing, we need to extend the binary and the set operator®
that may be used in the definition of the extent properties

of fuzzy classes. As it is detailed earlier, each attrithased

extent property is associated with a condition of the form:

<left-hand-operang <op> <right-hand-operang-. The op-
eratorop may be a binary operator (i.es,~, <, <,>,>) or

a set operator (iec, C, C, 2, D). All these operators may be

associated with the negation operator “not” denotetitfelow.

In conventional logic, the response to a binary comparisan i
two-valued one and may be true (or 1) or false (or 0). Within

The “-~ <” operator is computed as the complement of
<hie pe< () =1 - p<(Z,9).

The fuzzy >" and “— >" operators:

The fuzzy “>" operator is defined on ordered domains
and apply for both crisp and imprecise data. Four
situations can be distinguished:

w >
(x,Y)

fuzzy g

crisp

crispy
T 2> y;

1,
{ 0. otherwise.| M@Xy>ziyeY "5 (V)

fuzzy &

ming <y ey T = (X, V) S0, yye xoy Minlnx (@), 7y (0)]

fuzzy logic, the result of a comparison may take any value in

the range [0,1]. Thus, the two-valued logic is simply a spleci
case of fuzzy logic that is restricted to the two extreme ealu

(0 and 1) of the range [0,1].

Basing of the work of [9], in the rest of this section we propos

an extension of all the operators mentioned above.

o The fuzzy =" and “— =" operators:

This fuzzy “=" operator models the equality concept for

The fuzzy “-~ >" operator is defined as the complement
of “>" i.e. > = 1-—- [Lz(.f, g)

o The fuzzy “>" and “— >" operators:

precise as well as imprecise data values. Four different

membership functions can be distinguished:

pn=(X,Y) crisp y

cris| 1 T =Y;
P 0, otherwise.
fuzzy & 7z (y)

fuzzy g

SUP(g,y)e Xy Min[l, 75 ()]
SUP(z ) e Xay Pnp(E ¥), w5 (2), 7y (9)]

where p(z,y) is the proximity relation, andr; and my

are the possibility distribution defined on the domains

X andY. The fuzzy = =" operator is simply defined
asl-— M:(jvg)
o The fuzzy ~" and “— ~" operators:

The fuzzy "

operator gives the degree in which two

o The fuzzy “€” and

w

The fuzzy “greater than” operator>" is defined
as the complement of the <" operator, i.e.
ps = 1 — p<(Z,9). The fuzzy = > operator is
defined asu—~ =1 — u~(Z,9)

The fuzzy “<” and “~ <" operators:

The fuzzy “less than” operator<” is defined as the
complement of the2" operator, i.ep« =1—p>(Z,7).
It complement is defined g8~ =1 — pu<(Z,9).

" operators:

The fuzzy “€” operator permits to compute the d.o.m to
which a crisp datay is in a fuzzy onez. The formula
is pe(Z,y) = mz(y). The fuzzy ‘5" operator is simply
defined asus =1 — pe(,y).

e The fuzzy C”, “— C”, “ D" and “~ 2" operators:

fuzzy numbers (approximate values in Table 1) are ap-

proximately equal. It is computed as follows:
0, | £ — g |> margin;
Az;gyi‘n, | # — 7 |< margin.

Here we suppose that the parameters and ¢~ of

,ug(f,?]) =

an approximate value (se$6.1 and Table 1) are the

same and equal towargin. The fuzzy “= ~" operator
is computed as the complement of™ operator, i.e.

fome =1 = (T, 7).

e The fuzzy “<” and “~ <” operators:

The “<" operator is defined on ordered domains and
apply for both crisp and imprecise data. Accordingly, four

situations hold:

The fuzzy “C” operator permits to compute the d.o.m
to which a fuzzy datg is included a fuzzy data. The
formula is pc(z,9) = minzexny (7z(2), m3(2)). The
fuzzy “= C” operator is simply defined ab— pc (Z, 7).
The two fuzzy operators3” and “— D" are similar to
“C" and “~ C”, respectively.

The fuzzy “C”,

- C” “D"and “— D" operators:

The fuzzy “C” measures the degree to which a fuzzy data
is strictly included in another fuzzy data. It is defined as
the complement of the3”, i.e. uc = 1 — us(Z, 7).
The fuzzy -~ C” is defined asu—c =1 — uc(Z,9). In

the same way, the fuzzy3” operator is defined as the
complement of €" operator, i.e.u5 = 1 — pc(Z,7).
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The fuzzy - C” is defined asu-5 =1 — puc(Z, 9).

To compute the different d.o.m, the prototype containgll
several functions that are activated automatically thhotrge
TRIGGERS associate with the relations. As an example, we]
cite the GLOBAL-DOM function that permits to compute the
global d.o.m for each entity being introduced in the databas 3]
This function implements Equation presented§lhB. It is
associated with the INSERT and UPDATE triggers and has
two parameters: the name of the class (class-name) and t['le?
identifier of the entity (entity-id). The class-name is uged
get the extent properties of the class and their correspgndi
weights as well as the attributes domains and, eventuall
the proximity relations associated with the different doma
The entity-id is used to get the values of the attributes ef th
entity being inserted or modified. The general schema of thlg
GLOBAL-DOM function is as follows provided below.

The function GLOBAL-DOM uses the PARTIAL-DOM which
permits to calculate the partial d.o.m of the different akte
properties of the class. This function takes as parametels
left-hand-operandop andright-hand-operandand returns the
partial d.o.m. Along with with the type of operatop, this [9]
function activates one of the extended fuzzy binary or set
operators enumerated above.

(7]

(20]

Function GLOBAL-DOM (class-name, entity-id)
BEGIN
P — {set of extent propertiés

(11]

[12]
W o {w;}
size4P|
wdom «+0 [13]
wsum«1

For i=1 to size (4]
wdom=wdom-+W([i]*PARTIAL-DOM(class-
name.Pl[i,1],class-name.PJi,2],class-name.P]i,3])
wsum=wsum-+WT[i]
EndFor
Return wdom/wsum
END

(18]

The others functions are defined in similar way but to
make the paper short, their descriptions in not includee.her

V. CONCLUSION

This paper deals with the conceptual design of FSM and
adresses some implementation issues. First, we have pro-
vided a proposal for specifying FSM schemas. Then, we
have addressed some issues related to the implementation
of FSM. More specifically, we have showed how different
kinds of imperfect information are represented and intérna
implemented. Then we have briefly described a formal ap-
proach to map FSM-based model to a fuzzy relational object
(FRO) database model. Finally, we have given some insights
concerning the extension of scalar and set-operators t@tgpe
on imperfect information.

] G.Q. Chen and E.E. Kerre.
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