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I. I NTRODUCTION

I N database literature, we enumerate several extensions of
semantic and object-oriented database models to support

the fuzziness, uncertainty and impreciseness of real-world
[1], [5], [10], [12], [13]. Most of these extensions introduce
fuzziness only at the attribute level and consider that entities
are fully encapsulated into their classes, which means thatthey
fully verify the properties of these classes.
There are, however, some proposals for extending object-
oriented [7], [8], [11], [15] and semantic [6], [14] database
models to support fuzziness, uncertainty and impreciseness of
real-world at the class definition level. In the same direction
of research, the authors have proposed a new data model,
namely fuzzy semantic model (FSM) [2], [4], that authorizes
an entity to be partially member of its class according to a
given degree of membership that reflects the level to which
the entity verifies the extent properties of this class.
This paper deals with the conceptual design of FSM and
adresses some implementation issues. Section II introduces
briefly FSM. Section III details the conceptual design of
classes and subclasses in FSM. Section IV discuses some
implementation issues. Section V concludes the paper.

II. FUZZY SEMANTIC MODEL

A. Basic idea

Thespace of entitiesE is the set of all entities of the interest
domain. A fuzzy entitye in E is a natural or artificial entity
that one or several of its properties are fuzzy. In other words,
a fuzzy entity verifies only (partially) some extent properties
of its class. A fuzzy classK in E is a collection of fuzzy

entities:K = {(e, µK(e)) : e ∈ E ∧ µK(e) > 0}. µK is a
characteristic ormembership functionand µK(e) represents
the degree of membership(d.o.m) of the fuzzy entitye in the
fuzzy classK. Membership functionµK maps the elements
of E to the range[0, 1] where 0 implies no-membership and
1 implies full membership. A value between 0 and 1 indicates
the extent to which entitye can be considered as an element
of fuzzy classK.

B. Entity/Class membership functions in FSM

A fuzzy class is a collection of fuzzy entities having some
similar properties. Fuzziness is thus induced whenever an
entity verifies only (partially) some of these properties. We
denote byXK = {p1, p2, ..., pn} (with n ≥ 1) the set of these
properties for a given fuzzy classK. XK is called theextent
of fuzzy classK. The extent properties may be derived from
the attributes of the class and/or from common semantics. The
degree to which each of the extent properties determines fuzzy
classK is not the same. Indeed, there are some properties
that are more discriminative than others. To ensure this, we
associate to each extent propertypi a non-negative weightwi

reflecting its importance in deciding whether or not an entity
e is a member of a given fuzzy classK. We also impose that
∑n

i=1 wi > 0.
On the other hand, an entity may verify fully or partially the
extent properties of a given fuzzy class. LetDi be the basic
domain of extent propertypi values andP i is a subset of
Di, which represents the set of possible values of property
pi. The partial membership functionof an extent property
value isρP i

K
which maps elements ofDi into [0, 1]. For any

attribute valuevi ∈ Di, ρP i
K

(vi) = 0 means that fuzzy entity
e violates propertypi andρP i

K
(vi) = 1 means that this entity

verifies fully the property. The numbervi is the value of the
attribute of entitye on which the propertypi is defined. For
extent properties based on common semantics,vi is a semantic
phrase and the partial d.o.mρP i

K
(vi) is supposed to be equal

to 1 but the user may explicitly provide a value less than 1.
More generally, the value ofρP i

K
(vi) represents the extent to

which entitye verifies propertypi of fuzzy classK. Thus, the
global d.o.m of the fuzzy entitye in the fuzzy classK is:
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µK(e) =

∑n

i=1 ρP i
K

(vi) · wi
∑n

i=1 wi

C. Constructs of FSM

In FSM each fuzzy class is uniquely identified with a name.
Each class has a list of characteristics or properties, called
attributes. Some of these attributes are used to construct the
extent setXK defined above. To be a member of a fuzzy class
K, a fuzzy entitye must verify (fully or partially) at least one
of the extent properties, i.e.,µK(e) > 0.
The classes in FSM are categorized as exact or fuzzy:

• An exact classK is a class that all its members have a
d.o.m equal to 1; i.e.,µK(e) = 1∀e ∈ K.

• A fuzzy classK is a class that at least one of its members
has a d.o.m strictly inferior to 1; i.e.,∃e ∈ K such that
µK(e) < 1.

Classes may also be categorized as strong or weak:
• A strong fuzzy classis a fuzzy class whose members can

exist on their own, i.e., they are not depending on other
classes.

• A weak fuzzy classis a fuzzy class whose members
depend on the existence of other (strong or weak) classes
for their existence.

These two classifications are orthogonal and all combinations
are possible.

The elements of a fuzzy class are calledmembers. In FSM,
α-MEMBERS denotes for a given fuzzy classK the set
{e : e ∈ K ∧ µK(e) ≥ α}; whereα ∈ [0, 1]. It is easy to
see thatα-MEMBERS ⊆ β-MEMBERS for all α and β in
[0,1] and verifyingα ≥ β. Note that 1-MEMBERS may also
be refereed totrue or exact members. In turn, α-MEMBERS
with 0 < α < 1 are calledfuzzy members.
The concept ofα-MEMBERS may be mapped to the concept
of α-cut associated with fuzzy sets and which is defined for
a fuzzy subsetF as the setFα = {x : µF (x) ≥ α} with
0 ≤ α ≤ 1.
FSM supports four different relationships: property, decision-
rule, membering and interaction. Property relationships relate
fuzzy classes to domain classes. Each property relationship
creates an attribute and each attribute has a unique datatype
and may be single-valued, unknown, undefined, null or multi-
valued. Decision rule relationships are implementation ofthe
extents of fuzzy classes, i.e., the set of properties-basedrules
used to assign fuzzy entities to fuzzy classes. Membering
relationships relate fuzzy entities to fuzzy classes through the
definition of d.o.m. Interaction relationships relate members
of one fuzzy class to other members of one or several fuzzy
classes.
In FSM there are several complex fuzzy classes (see Table I),
that permit to implement the semantics of real-world among
objects in terms of generalization, specialization, aggregation,
grouping and composition relationships, which are commonly
used in purely semantic modelling.

To make the paper short, the ways to define membership
functions at the interaction, subclass/superclass relationships,
composition, aggregation and grouping, and the more general
class/class relationships are not addressed here. They are
detailed in [2], [3].

TABLE I

FSM COMPLEX FUZZY CLASSES

Class Description
Interaction fuzzy
class

A fuzzy class that describe the interaction
of two or more fuzzy classes

Fuzzy superclass A generalization of one or many, simple or
complex, fuzzy classes

Fuzzy subclass A specialization of one or many, simple or
complex, fuzzy classes

Composite fuzzy
class

A fuzzy class that has other fuzzy classes
as members

Aggregate fuzzy
class

A fuzzy class that its members are het-
erogeneous and exhaustive collection from
several fuzzy classes

Grouping fuzzy
class

A fuzzy class that its members are homoge-
nous collection of members from the same
fuzzy class

III. SCHEMA DEFINITION IN FSM

This section provides a proposal for specifying schema of
FSM-based databases. All examples of this section rely on
the database example of Figure 1. In the example database,
GALAXY is an aggregate fuzzy class whose members are
unique collections of members from COMETS, STARS and
PLANETS fuzzy grouping classes. These last ones are ho-
mogenous collections of members from strong fuzzy classes
COMET, STAR and PLANET, respectively. NOVA and SU-
PERNOVA are two attribute-defined fuzzy subclasses of
STAR basing ontype-of-starattribute. PLANET-TYPES is
an attribute-defined fuzzy composite class. This composition
is from PLANET fuzzy class basing on theage attribute.
PERSON is an exact class. It has three enumerated subclasses:
SCIENTIST, TECHNICIAN and OFFICER. Each person is af-
filiated with at least one LABORATORY. SCIENTIST is a col-
lection of scientists and DISCOVERY is an interaction fuzzy
class between SUPERNOVA and SCIENTIST. SCIENTIST-
TYPES is a fuzzy composite class from SCIENTIST basing
on field-of-researchattribute.
In the generic definitions below we have adopted the following
conventions:

• [ ] : optional parameter(s).
• { } : list of parameters or values.
• | : the equivalent of the binary operator “xor”.
• < > : obligatory parameter(s).
• ( ) : series of parameters connected with the “xor”

operator, i.e. only one of the parameters delimited with
“(” and “)” is chosen.

The generic definition of a fuzzy class in FSM is as follows:
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CLASS <class-name> WITH DOM OF <dom>

{

SUPERCLASS:

OF <sclass-name-1> WITH DOM OF <dom-1>

· · ·

OF <sclass-name-k> WITH DOM OF <dom-k>

INTERACTION CLASS OF<class-list-1>

EXTENT:

<ext-pr-1> WITH WEIGHT OF <w1> DECISION RULE IS ((<attr-name-

1><op> (<s-attr-name-1>| <value>))|<op> <sphrase-1>)

· · ·

<ext-pr-n> WITH WEIGHT OF <wn> DECISION RULE IS ((<attr-name-

n><op> (<s-attr-name-n>| <value>)) | <op><sphrase-n>)

ATTRIBUTES:

<attr-name-1>: [FUZZY] DOMAIN <domaine-1>: TYPE OF <type-1> WITH

DOM OF <dom-1>: [REQUIRED][UNIQUE] [MULTI-VALUED]

· · ·

<attr-name-r>: [FUZZY] DOMAIN <domaine-r>: TYPE OF <type-r> WITH

DOM OF <dom-r>: [REQUIRED][UNIQUE] [MULTI-VALUED]

CONTENTS:

[ENUMERATED COMPOSITION FROM(<class-name-1:members-list-1>)]

[SELECTED COMPOSITION ON ATTRIBUTES<attr-list-1> FROM <class-list-

2>]

[AGGREGATION OF(<class-name-2:members-list-2>)]

[GROUPING FROM<class-name-3:members-list-3>]

INTERACTION:

<inter-name-1> WITH (<class-name-1> INVERSE IS <inv-inter-name-1> |

<inter-class-list-1>) [CLASS IS <inter-class-name-1>]

· · ·

<inter-name-z> WITH (<class-name-z> INVERSE IS <inv-inter-name-z> |

<inter-class-list-z>) [CLASS IS <inter-class-name-z>]

}

The SUPERCLASS component of the fuzzy class definition
enumerates all the subclasses of the class along with their
d.o.m relatively to this class. This component is omitted ifthe
fuzzy class has no fuzzy subclass(es). The INTERACTION
CLASS OF component is for fuzzy interaction classes only.
It permits to specify the list of the participant classes for
which the interaction class is defined. One, two and at least
three class names are required for recursive, binary, and n-ary
(n ≥ 3) fuzzy interaction classes, respectively. Next in the
EXTENT part, we list all the extent properties of the class
(We remak that fuzzy interaction classes have no EXTENT
component since they have no extent properties.) For each
extent property we indicate the name, the weight and the
decision rule on which this extent property is based. As it
is quoted earlier, decision rules may be attribute-based or
semantic phrase-based. The left-side of the attribute-based rule
indicates the attribute name on which the rule is based. The
op operator may be a scalar comparator (e.g.=,6=,<,>,≤,≥)
or a set-operator (e.g.∈, ⊂, ⊆). The extension of all these
operators to operate on imperfect information is provided

in section IV.D. The right-side of the attribute-based may
be a crisp (e.g.age=21) or fuzzy (e.g.age=young) value.
For semantic phrase-based decision rules, theop is an “is-a”
operator and the right-side is a semantic phrase (e.g. the
decision rule “is-a person” may be associated with the
class PERSON in Figure 1). The semantic phrase-based
rules are optional—but recommended to make the database
schema more comprehensible. For instance, we may have the
following extent properties definitions:

p1 WITH WEIGHT OF 0.8 DECISION RULE ISluminosity= very high

p2 WITH WEIGHT OF 0.3 DECISION RULE ISweight in [0.01Ws − 1Ws]

p3 WITH WEIGHT OF 0.5 DECISION RULE ISage= young

p′
3 WITH WEIGHT OF 0.5 DECISION RULE ISage in [17-21]

p4 WITH WEIGHT OF 1.0 DECISION RULE IS is-a galaxy

p5 WITH WEIGHT OF 1.0 DECISION RULE IS is-a person

The symbol “Ws” above is the weight of the sun; it is
often used as a measurement unit. The four first decision
rules are attribute-based ones while the last two decision
rules are semantic phrase-based ones. Decision rulesp4 and
p5 may be associated with classes GALAXY and PERSON,
respectively.
In the ATTRIBUTES component we specify the list of the
attributes of the fuzzy class. We note that attributes definition
is partially inspired from [11]. This definition of attributes
apply for both exact and fuzzy ones. An exact attribute
requires the definition of a datatype (e.g. integer, string)and
a domain as a range of possible values for the attribute.
A fuzzy attribute requires the definition of a fuzzy type
and a fuzzy domain. The fuzzy types are based on simple
(e.g. integer) or complex types (e.g. set-valued types, entity-
valued attributes) that allow the representation of imprecise
information. Fuzzy domains may be represented simply as a
list of fuzzy linguistic terms (e.g. young, near). Other ways
may also apply as for example possibility theory (e.g. the age
of a young person may be represented through a possibility
distribution asage = 0.1/17 + 1.0/18 + 0.2/19) or evidence
theory (e.g. through evidence theory, the age of young person
is age = 0.1/{18} + 0.1/{18, 19} + 0.8/{17, 18, 19}). In
addition, attributes may be specified as required, unique
or multi-valued (Note: if the MULTI-VALUED keyword is
not specified, the attribute is a single-valued one.) Required
attributes are those that must have non-null values and
unique attributes are those for which no two members
of the same class may have the same value. All required
and unique attributes may serve asidentifiers (or keys)
that mean to identify all the members of a fuzzy class. For
example, we may have the following declarations of attributes:

location: FUZZY DOMAIN {in, near, very near, distant, very distant}: TYPE

OF real WITH DOM OF 1.0

age: FUZZY DOMAIN {very old, old, young, very young}: TYPE OF integer WITH

DOM OF 1.0

star-name: TYPE OFstring WITH DOM OF 1.0: REQUIRED UNIQUE

phone-numbers: TYPE OFstring WITH DOM OF 1.0: MULTI-VALUED

According to these declarations,location and age attributes
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may have either exact values (e.g.location= 12LY; age=55)
or fuzzy values (e.g.location=very distant; age=old). The
“LY” symbol is the abbreviation of light year. Thestar-name
attribute may have only exact values (e.g.star-name= Vega).
In addition, star-nameattribute may be used as an identifier
since it is required and unique. Thephone-numbersattribute
is an exact and multi-valued one.
The next component of fuzzy class definition is specific
for fuzzy composite and grouping classes. For enumerated
composition, we indicate the list of classes and for each
one we specify the entities that are member of the fuzzy
composite class. For attribute-based composition we fix the
list of the selection attributes and the list of the classes
from which selection is accomplished. For fuzzy aggregated
classes we indicate the list of the classes that are part of the
aggregation and for each one we specify the entities that are
member of the fuzzy aggregate class. And finally for fuzzy
grouping classes, we indicate the name of the class from
which grouping is realized along with the list of members.
The last part of fuzzy class definition indicates the eventual
interaction relationship(s) of the fuzzy class. As mentioned
earlier, interaction relationships may be binary or n-ary.In
both cases a name should be provided. Binary interaction
relationships require also the name of the other participating
fuzzy class and the name of the inverse attribute. For n-ary
interaction relationships we need to mention the list of the
classes that participate in this interaction. In both casesand
when it is necessary, the name of the fuzzy interaction class
can be specified with the CLASS IS component.
Since subclasses may have their own subclasses, they have
the same components as for fuzzy classes. In particular, they
may have SUPERCLASS components that indicate the list
of their own subclasses. In turn, subclasses have a specific
component, called SPECIALIZATION, that is designed to
map to their fuzzy superclasses. The generic definition of
a fuzzy subclass in FSM is as follows (in this definition,
only the SPECIALIZATION component is provided; the
definitions of the other components is similar to the ones of
the fuzzy class and they are not reproduced):

SUBCLASS <sclass-name> WITH DOM OF <dom>

{

SPECIALIZATION :

OF <class-name-1> WITH DOM OF <dom-1>:

[BY ENUMERATION <members-list-1>]

[ON ATTRIBUTES <attr-list-1>]

[BY INTERSECTION WITH <class-list-1>]

[BY DIFFERENCE WITH<d-class-name-1>]

OF <class-name-q> WITH DOM OF <dom-q>:

· · ·

}

For each superclass of the subclass, we indicate the name of
the superclass and the d.o.m of the subclass in this superclass.
A subclass may be defined in four ways. Enumerated fuzzy
subclasses require the enumeration of the fuzzy classes that
participate in the generalization relationship along withthe

list of members. For attribute-defined subclasses, we should
indicate the list of the attributes on which the ISA relationship
is defined. For set-intersection-defined subclasses we indicate
simply the list of the other superclasses that participate in
the intersection. Finally for difference-defined subclasses we
mention the name of the other fuzzy class that participate in
the difference operation.
To better illustrate these definitions, we provide in the
following several examples based on Figure 1.

CLASS galaxyWITH DOM OF gdom

{

EXTENT:

gp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of galaxies

ATTRIBUTES:

galaxy-name: TYPE OFstring WITH DOM OF 1.0: REQUIRED UNIQUE

age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer WITH

DOM OF 1.0: REQUIRED

location: FUZZY DOMAIN {in, near, very near, distant, very distant}: TYPE OF real

WITH DOM OF 1.0: REQUIRED

CONTENTS:

AGGREGATION OFcomets:c1, c2, c3, stars: s1, s2, planets:p1, p2, p3, p4, p5

}

CLASS star WITH DOM OF sdom

{

SUPERCLASS:

OF supernovaWITH DOM OF scdom-sn

OF novaeWITH DOM scdom-n

EXTENT:

sp1 WITH WEIGHT OF 0.8 DECISION RULE ISluminosity ≥ 0.005Ls

sp2 WITH WEIGHT OF 0.3 DECISION RULE ISweight ≥ 0.05Ws

ATTRIBUTES:

star-name: TYPE OFstring WITH DOM OF 1.0: REQUIRED UNIQUE

type-of-star: TYPE OFsymbolic(nova, supernova) WITH DOM OF 1.0: REQUIRED

age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer WITH

DOM OF 1.0: REQUIRED

location: FUZZY DOMAIN {in, near, very near, distant, very distant}: TYPE OF real

WITH DOM OF 1.0: REQUIRED

luminosity: FUZZY DOMAIN {very low, low, medium, high, very high}: TYPE OF

real WITH DOM OF 1.0: REQUIRED

weight: FUZZY DOMAIN [0.01Ws− 100Ws]: TYPE OF real WITH DOM OF 1.0:

REQUIRED

}

SUBCLASS supernovaWITH DOM OF sndom

{

SPECIALIZATION :

OF star WITH DOM OF scdom:

ON ATTRIBUTES type-of-star

EXTENT:

snp1 WITH WEIGHT OF 0.6 DECISION RULE ISluminosity≥ high

snp2 WITH WEIGHT OF 0.5 DECISION RULE ISweight≥ 1Ws
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ATTRIBUTES:

snova-name: TYPE OFstring WITH DOM OF 1.0: REQUIRED UNIQUE

type-of-snova: TYPE OFsymbolic(Ia, Ib, Ic, Ib/c, Ic/b, II-P, II-L) WITH DOM OF 1.0:

REQUIRED

luminosity: FUZZY DOMAIN {high, very high}: TYPE OF real WITH DOM OF 1.0:

REQUIRED

weight: FUZZY DOMAIN [1Ws − 100Ws]: TYPE OF real WITH DOM OF 1.0:

REQUIRED

INTERACTION:

discovererWITH scientistINVERSE ISdiscoversCLASS ISdiscovery

}

CLASS personWITH DOM OF 1.0

{

SUPERCLASS:

OF scientistWITH DOM OF 1.0

OF technicianWITH DOM OF 1.0

OF officer WITH DOM OF 1.0

EXTENT:

pp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of persons

ATTRIBUTES:

name-of-person: TYPE OFstring WITH DOM OF 1.0: REQUIRED

age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer WITH

DOM OF 1.0: REQUIRED

address: TYPE OFstring WITH DOM OF 1.0: REQUIRED

phone-numbers: TYPE OFstring WITH DOM OF 1.0: MULTI-VALUED

INTERACTION:

works-atWITH laboratory INVERSE ISworking-place-of

}

CLASS discoveryWITH DOM OF sndom

{

INTERACTION CLASS OFsupernova, scientist

ATTRIBUTES:

date-of-discovery: TYPE OFdatetimeWITH DOM OF 1.0

place-of-discovery: TYPE OFstring WITH DOM OF 1.0

}

SUBCLASS scientistWITH DOM OF 1.0

{

SPECIALIZATION:

OF personWITH DOM OF 1.0:

BY ENUMERATION name-of-person-1,name-of-person-2,name-of-person-3,name-of-

person-4

EXTENT:

scp1 WITH WEIGHT OF 1.0 DECISION RULE IS set of scientists

ATTRIBUTES:

field-of-research: TYPE OFstring WITH DOM OF 1.0: REQUIRED

INTERACTION:

discoversWITH supernovaINVERSE ISdiscovererCLASS ISdiscovery

}

IV. I MPLEMENTATION ISSUES

This section first shows how different kinds of imperfect
information are represented and internally implemented. It
then provides a formal approach to map FSM-based model
to a fuzzy relational object (FRO) database model. Finally,
it shows how scalar and set-operators should be extended to
operate on imperfect information.

A. Imperfect information representation

FRO supportes a rich set of imperfect data types that are
listed below. Note that these data types are extensions of
the ones proposed in [9]. We also added several new ones.
Especially, linguistic labels defined on sinusoidal possibility
distributions and the “more than” and “less than” data types
are not defined in [9].

• Fuzzy range. This data type handles the “more or less”
information between two numeric values. The graphical
representation of possibility distribution of this data type
is shown through Model I.1 in Table II and may be written
as {µ(z)/z : z ∈ D}. D is the domain of the attribute
values andµ(z) is the d.o.m ofz in the fuzzy set on
which the attribute is defined. This set is denotedA in
Table II. As it is shown in Table II, four parameters are
required to define the possibility distribution of this data
type: α, β, γ and λ. The parametersβ and γ represent
the support of the fuzzy set associated with the attribute
values andα andλ represent the limits of the transition
zones;

• Approximate value. This data type handles the “about”
some numeric value information. The graphical represen-
tation of possibility distribution of this data type is shown
through Model I.2 in Table II and may be written as
{µ(z)/z : z ∈ D}. Here, three parameters are required:
the central value of the conceptc, the limit of left
transition zonec− and the limit of right transition zone
c+;

• Interval. Model I.3 in Table II shows the graphical
representation of the possibility distribution of a classical
crisp range. Mathematically, this possibility distribution
may be written as{µ(z)/z : z ∈ D}. The parameters
required here are the limits of the rangeα andβ;

• Less/More than value. These data types focalize only on
one side of a value. The graphical representations of the
possibility distributions of “less than” and “more than”
data types are shown in Models I.4 and I.5 in Table II,
respectively. Mathematically, the possibility distribution
associated with both of them may be written as{µ(z)/z :
z ∈ D}. Two parameters are required to define this data
type: the value of interest (γ or β) and the limit of the
transition range (λ or α);

• Set of possible scalar assignments. This permits to handle
attributes defined on a set of scalars. For example, the
height of a person may be defined asheight={tall,very
tall}, which is represented through possibility distribution
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as {1.0/tall,1.0/very tall}. A proximity relation is often
defined on the domain of this data type. We denote this
data type with Model III.1;

• Set of possible numeric assignments. This data type is
similar to the previous one. It differs only on the fact that
is defined on a set of numeric values. For example, the
heightof a person may be defined as the set{1.85,1.95},
which is represented through possibility distribution as
{1.0/1.85,1.0/1.95}. This data type will be designed as
Model III.2;

• Possibility distribution over discrete domain. This data
type is represented through standard possibility distri-
bution where possibility degrees in [0,1] are associated
with each of the domain values. More formally, we have
{p1/d1, · · · , pn/dn}; where pi and di for i trough 1
to n are the possibility degrees and the domain values,
respectively. Note that the domain values may be numbers
as well as scalars. A proximity relation is often associ-
ated with scalar-based domains. This data type will be
designed as Model III.3;

• Possibility distribution over a numeric ordered domain.
In this data type, the possibility distribution is defined
on an ordered set of numeric values as for exam-
ple age={0.7/25,0.8/26,1.0/27,0.8/28,0.8/30}. More gen-
erally, we have{p1/d1, · · · , pn/dn} with pi ≤ pi+1. This
data type will be designed as Model III.4.

• Simple number. This is a crisp data type which is handled
as in conventional databases. The possibility distribution-
based representation of a simple numbern is {1.0/n}.
Model I.8 in Table II shows the graphical representation
of the possibility distribution of this data type;

• Simple scalar. This is a crisp data which is handled as in
conventional databases. The possibility distribution-based
representation of a simple scalars is {1.0/s}. A proximity
relation is often associated with the domain of this data
type. We denote this data type with Model III.5;

• Matching degree. This is a real number in [0,1] that refers
to the degree to which a concept is achieved (e.g.qual-
ity=0.7). The possibility distribution-based representation
of a matching degreem is {1.0/m}. This data type will
be designed as Model III.6;

• Unknown. This data type means that we cannot decide
which is the value of the attribute among several plausible
values. But the attribute may take any value from its
domain. Accordingly, the possibility distribution-based
representation of the unknown data type is{1.0/z :
z ∈ D}. Model I.6 in Table II shows the graphical
representation of the possibility distribution of this data
type;

• Undefined. This data type means that there is not any
defined value that can be assigned to the attribute. This
means that no one of the domain values is authorized.
Accordingly, the possibility distribution-based represen-
tation of undefined data type is{0/z : z ∈ D}. Model
I.7 in Table II shows the graphical representation of the
possibility distribution of this data type;

• Null. This data type means that we cannot even
know whether the attribute’s value is unknown or

undefined. Accordingly, the possibility distribution-
based representation of undefined data type is
{1.0/Unknown,1.0/Undefined}. This data type will
be designed as Model III.7;

• Symbolic. This is a crisp data type which takes its
values on a set of symbolic values related with the XOR
operator. For instance, the attributetype-of-starassociated
with the class STAR in Figure 3 may be onlynova or
supernova. The possibility representation of this data type
is {0/s1, · · · , 1.0/si, · · · , 0/sr} which means that the
attribute value issi. This data type will be designed as
Model III.8;

• Linguistic label. Models II.1-II.4 in Table II are the
graphical representation of the possibility distribution
of the linguistic label data types. Model I.1 represents
the sinusoidal model. The parameters required here are
the central value of the attributec and the parameter
that governs the shape of the d.o.ma. Model II.2 is
an extension of the previous one that applies when the
central value of the concept may take a range of values
instead of only one value. Four parameters are required
here: the limits of the central rangea1 and a2; and the
left and right transition zonesb1 and b2, respectively.
Note that a1 and a2 are thecrossover(or transition)
points defined such thatµ(a1) = µ(a2) = 0.5. Models
II.3 and II.4 are the asymmetric extensions of Model
II.1 that apply when only the left or right side of the
concept is of interest. The required parameters area1

andb1 for Model II.3; anda2 andb2 for Model II.4. The
mathematical representation of all these data types is
{µ(z)/z : z ∈ D}. Finally, note that proximity relations
need to be associated with the domains of these four
data types.

B. Imperfect information implementation

In order to store the specificity of all the attributes, we define
a meta-relation, called ATTRIBUTES, at the metadata level
with the following attributes:

• attribute-id: it uniquely identifies each attribute defined
at the database level. It constitutes also the primary key
of the ATTRIBUTES meta-relation. Note that the key
attribute(s) in this relation and in the other ones are
underlined.

• attribute-name: it stores the name of an attribute. As for
classical databases, the same fuzzy class can not have
two attributes with the same name but the same attribute
name may appear in different fuzzy classes.

• class-name: denotes the fuzzy class to which the attribute
belongs.

• data-type: which is a multi-valued attribute that stores the
attribute type which may take any one of the list of§IV.A.
For crisp attributes, this attribute works as in conventional
databases (it may take the values of integer, real, float,
etc.). For fuzzy attributes, thedata-typeattribute stores
the fuzzy data type itself and the basic crisp data type on
which the fuzzy data type is based.
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TABLE II

DIFFERENT DATA TYPES SUPPORTED BYFSS

Data typeA1 Model Representation Parameters µA(z)

Fuzzy range label
e.g. age= more or
less between 20 and
30 I.1

6

-
�
�

L
L

α β γ λ z

1

α, β, γ, λ

µA(z) =

8>>>><>>>>: 1, if β ≤ z ≤ γ;
λ−z
λ−γ

, if γ < z < λ;
z−α
β−α

, if α < z < β;

0, Otherwise.

Approximate value
e.g.age=about 35

I.2

6

-
�
�
T
T

cc− c+ z

1

c, c−, c+

µA(z) =

8>>>>>><>>>>>>: 1, if z = c;

c+−z

c+−c
, c < z < c+ ;

z−c−

c−c−
, c− < z < c;

0, Otherwise.

Interval e.g. age ∈
[25, 35]

I.3

6

-
α β z

1

α, β

µA(z) =

�
1, if α ≤ z ≤ β;
0, Otherwise.

Less than value e.g.
age= less than 35

I.4

6

-
L
L

γ λ z

1

γ, λ

µA(z) =

8><>: 1, if z ≤ γ;
0, if z < λ;
λ−z
λ−γ

, if γ ≤ z ≤ λ.

More than value e.g.
age= more than 35

I.5

6

-
�
�

α β z

1

α, β

µA(z) =

8><>: 1, if z ≥ β;
0, if z ≤ α;
z−α
β−α

, if α < z < β.

Unknown

I.6

6

-
z

1

µA(z) = 1 ; z ≥ 0

Undefined

I.7

6

-
z

1

µA(z) = 0 ; z ≥ 0

Real number e.g.
age=30

I.8

6

-
c z

1

c

µA(z) =

�
1, if z = c;
0, Otherwise.

Linguistic label e.g.
age=young

II.1 z

1

c

a a, c

µA(z) = 1
(1+(a(z−c)2

; z ≥ 0

Linguistic label e.g.
age=young

II.2 z

1

.5

b2

a2

b1

a1

a1, a2, b1, b2

µA(z) =

8>>>>><>>>>>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .

Linguistic label
age=very old

II.3 z

1

.5

b1

a1

a1, b1

µA(z) =

8><>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z;

Linguistic label e.g.
age=very young

II.4 z

1

.5

b2

a2

a2, b2

µA(z) =

8><>: 1, if z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .
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The ATTRIBUTES meta-relation associated with the model
in Figure 1 is as follows (only some attributes are shown):

attribute-id attribute-name class-name data-type

attr-15 star-name STAR {string}
attr-16 type-of-star STAR {symbolic}
attr-17 age STAR {linguistic label, real}
attr-18 luminosity STAR {linguistic label, real}
attr-19 location STAR {linguistic label, real}
attr-20 weight STAR {interval, real}
attr-60 name-of-person PERSON {string}
attr-61 address PERSON {string}
attr-62 phone-numbers PERSON {string}
attr-77 field-of-research SCIENTIST {scalar}
attr-80 age PLANET {linguistic label, real}

The parameters associated with different linguistic termsthat
appear in the domain of any linguistic data type are stored at
the metadata level. They will be used to compute the different
d.o.m and for query processing. The number of parameters
needed is different from one linguistic data type to another
and it may vary from zero to four parameters. Thus, several
solutions are possible to store these parameters. We can, for
example, use one common meta-relation with four attributes
devoted to store the different parameters. In that time, we
may have “null” values any time the number of parameters
associated with one linguistic value is less than four. Another
solution is to group data types along the number of required
parameters. After that, four relations are needed for data types
with one, two, three or four parameters, respectively (we do
not have to define a relation for unknown and undefined
attribute data and other data types that need no parameter).
An ameliorated version of this solution is adopted in [9]. The
authors use a common meta-relation similar to ATTRIBUTES
and a specific attribute serves as a pointer to two meta-
relations. One meta-relation is used to store the “margin”
parameter needed for approximately data type (Model I.2 in
Table II). The second meta-relation contains a list of fuzzy
objects defined in the database columns. This meta-relation
contains two specific attributes: one used to store the data
type and the other points out to three new meta-relations
devoted to store the parameters of qualifier labels defined
over the matching of a query, proximity relations associated
with scalar data types (Models II.1-II.4 in Table II and Model
III.5 in the list of §IV.A), and trapezoidal-based possibility
distribution (Models I.1-I3 in Table II) of linguistic labels and
query quantifiers, respectively. In the last meta-relation, four
attributes (Alpha, Beta, Gamma, Delta) are used to store the
trapezoidal-based possibility distributions parameters. In the
special case of interval data type, the attributesAlphaandBeta
store the same value. This is also true for attributesGamma
and Delta. The same meta-relation with the four parameters
is also used to store undefined, unknown and null data types,
which generates an excessive storage space since these data
types require no parameters and the different parameters will
be “null”-valued.
One drawback of the solutions cited above is that any time we
need to add a new linguistic data type or to change the adopted
linguistic data types, we may have to update the meta-relations
structures. Here, we propose a straightforward solution that
does not depend on the parameters number and can be used
with any fuzzy model. In fact, we define a common meta-
relation with a multi-valued attribute (supported by relational
object database models) that stores all needed parameters.This

meta-relation, denoted by PARAMETERS, contains one line
for each linguistic value that appears in the domain of any
linguistic data type attribute (or the list of the authorized values
for symbolic data type). Its attributes are:

• attribute-id: references one attribute that appears in the
meta-relation ATTRIBUTES.

• label: stores a linguistic term belonging to the attribute
domain. For symbolic data types this attribute takes a
“nil” value.

• parameters: is a multi-valued attribute used to store
the parameters required for generating the possibility
distribution of the linguistic term.

Intuitively, attributes with no parameters, will not be included
in PARAMETERS meta-relation.
An example of a PARAMETERS meta-relation associated
with the model in Figure 1 is as follows:

attribute-id label parameters

attr-16 nil {nova, supernova}
attr-17 very young {0.0, 0.0, 0.5, 1}
attr-17 young {0.8, 1.7, 2, 2.5}
attr-17 old {2.3, 5, 10, 15}
attr-17 very old {12, 17, 50, 60}

As it is shown in the ATTRIBUTES meta-relation,attr-16
and attr-17 correspond to thetype-of-starand age attributes
in fuzzy class STAR, respectively; and values on attribute
parameters(for attr-17) are expressed in million of years.
The meta-relation PARAMETERS permits also to generate
the domain of linguistic or symbolic data types. This needs
only to group together all the linguistic labels having the same
attribute-id in the meta-relation PARAMETERS. For example,
the domain of attributeattr-17 above is{very young, young,
old, very old}. The domain of a symbolic data type is the list
of the terms in theparametersattribute.
The metadata level contains also the information required to
define the extent properties of fuzzy classes. These information
are used to compute the partial and global d.o.m. They are
stored in two meta-relations called A-DECISION-RULES and
S-DECISION-RULES. The A-DECISION-RULES is devoted
to store attribute-based extent properties. It has the following
attributes:

• extent-property: stores the name of the extent property.
• class-name: denotes the name of the fuzzy class for which

the extent property is defined.
• based-on: references theattribute-id on which the extent

property is based.
• decision-rule: is a composite attribute defined as follows:

– operator: contains a binary (=,approx-equal, ≤, ≥,
<, >, 6=) or a set (⊂, ⊆, ⊇, ⊃, ∈) operator.

– right-hand-operand: is a crisp or fuzzy value from
the attribute domain.

• weight: stores the weight of the extent property.
An example of a S-DECISION-RULES meta-relation associ-
ated with the model in Figure 1 is as follows:

extent-property class-name based-on decision-rule weight
operator|right-hand-operand

ext-star-1 STAR attr-17 {≥, 0.005Ls} 0.8
ext-star-2 STAR attr-18 {≥, 0.5Ws} 0.3
ext-snova-1 SUPERNOVA attr-50 {=, high} 0.6
ext-snova-2 SUPERNOVA attr-51 {≥, 1Ws} 0.5

Note that the symbolsWs and Ls are the weight and lu-
minosity of the Sun, respectively; they are often used as
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measurement units.
The S-DECISION-RULES is devoted to store extent properties
based on common semantics. It has the following attributes:

• extent-property: stores the name of the extent property.
• class-name: denotes the name of the fuzzy class for which

the extent property is defined.
• decision-rule: is a composite attribute defined as follows:

– operator: is an “is-a” operator.
– right-hand-operand: is a semantic phrase.

• weight: stores the weight of the extent property.

An example of a S-DECISION-RULES meta-relation associ-
ated with the model in Figure 3 is as follows:

extent-property class-name decision-rule weight
operator|right-hand-operand

ext-person PERSON {is-a, person} 1.0
ext-galaxy GALAXY {is-a, galaxy} 1.0
ext-scientist SCIENTIST {is-a, scientist} 1.0

The attribute values are stored at the database level. As men-
tioned above, to facilitate data manipulation and for computing
efficiency, the different types of attributes values are uniformly
represented through possibility distribution. However, these
distributions are not explicitly stored in the database but
generated automatically during data manipulation and query
processing by means of specific functions associated with
different data types.
As they are defined in [2], attributes values may be crisp, fuzzy
or both. This need only to be indicated in the intent definition
of the fuzzy classes the attributes belong to. FSS allows users
to insert values of any data type that is consistent with the
formal definition of the attribute. At the extent definition of
the fuzzy class, each fuzzy attribute is mapped into a new
composite one composed of three component attributes:

• attr-value: stores the value of the attribute as provided by
the user.

• data-type: stores the data type of the value being inserted.
• parameters: is a multi-valued attribute used to store

parameters associated with the attribute value that are
used to generate its possibility distribution.

Thedata-typeattribute is used both at the extent definition and
in the intent definition to allow users insert values of different
data types, which may have different number of parameters.
This will offer more flexibly to the user. Nevertheless, the
different data types defined at the extent level should be
consistent with the formal definition of the attribute at the
intent level. For instance, the formal definition of the attribute
may be a trapezoidal-based possibility distribution with four
paraments but the user may introduce a crisp value (with no
parameter at all), an interval (with two parameters only) oran
approximate value (with three parameters only). Remark that
the attributedata-typeat the extent definition is not a multi-
valued one. Note also that for computing the partial d.o.m, the
parameters defined at the intent level are used to define the
possibility distribution of theleft-hand-operandof the extent
property.
The extent definition of fuzzy class STAR from Figure 1 will
look as follows (only luminosity and weight attributes are

shown):
luminosity weight

attr-value|data-type|parameters attr-value|data-type|parameters

{high, linguistic label model II.1,{25,5}} {10Ws , real,{nil}}
{0.1Ls , real,{nil}} {[12Ws-15Ws ], interval,{12,15}}

{more than 10Ls , more than linguistic label,{7.5Ls ,10}} {about 17Ws , approximate value,{15,17,18}}

Some data types (Models II.1-II.4, III.1, III.3 and III.5) require
also to define the proximity relation between the elements of
their respective domains. Proximity relations are stored at the
metadata level through the meta-relation PROXIMITY which
has the following attributes:

• attribute-id: references the attribute for which the prox-
imity relation is defined.

• label-1andlabel-2: denote two linguistic terms belonging
to the attribute domain.

• degree: stores the similarity degree between the linguistic
terms label-1 and label-2.

The following is the meta-relation PROXIMITY for proximity
relation of the attributeage associated with the fuzzy class
STAR in Figure 1:

attribute-id label-1 label-2 degree

attr-17 very young young 0.7
attr-17 very young old 0.1
attr-17 very young very old 0.0
attr-17 young old 0.1
attr-17 young very old 0.0
attr-17 old very old 0.8

Proximity relations are reflexive and symmetric. Thus, there
is no need to handle the proximity degrees for pairs of the
type (x, x) and only one pair from(x, y) and(y, x) should be
stored for any two linguistic labelsx andy.
In the case of fuzzy subclass/superclass, composition, aggre-
gation and grouping relationships, we need to store the d.o.m
of one fuzzy (sub)class in the corresponding fuzzy superclass,
composite, aggregate or grouping class. To handle these infor-
mation, we add two new meta-relations SUB-SUPER-COMP
and GROUPING.
The meta-relation SUB-SUPER-COMP is devoted to store
information concerning fuzzy subclass/superclass and compo-
sition relationships. It contains the following attributes:

• class-1-name: stores the name of the first fuzzy class.
• class-2-name: stores the name of the second fuzzy class.
• relationship: stores the type of relationship between the

fuzzy classes denoted byclass-1-nameandclass-2-name
(i.e. subclass/superclass or composition).

• definition-type: indicates the way the relationship is de-
fined (attribute-defined, roster-defined, set-intersection or
set-difference for fuzzy subclass/superclass relationships;
and attribute-defined or enumerated for fuzzy composi-
tion relationships).

• parameters: is a multi-valued that stores the parameters
associated withdefinition-typeattribute.

• dom: stores the d.o.m of the fuzzy class denoted byclass-
2-namein the fuzzy class denoted byclass-1-name.

For attribute-based fuzzy subclass/superclass and attribute-
based fuzzy composition relationships, the attributepa-
rameters stores the attributes on which the generaliza-
tion/specialization or the composition is based. For roster-
based fuzzy subclass/superclass and enumerated fuzzy com-
position relationships, the attributeparameterstakes the “nil”
value.
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The meta-relations SUB-SUPER-COMP associated with Fig-
ure 1 is as follows:

class-1-name class-2-name relationship definition-type parameters dom

STAR SUPERNOVA Subclass/Superclass Attribute-defined {attr-17} 0.5
STAR NOVEA Subclass/Superclass Attribute-defined {attr-17} 0.7
PERSON SCIENTIST Subclass/Superclass Roster-defined {nil} 1.0
PERSON OFFICER Subclass/Superclass Roster-defined {nil} 1.0
PERSON TECHNICIAN Subclass/Superclass Roster-defined {nil} 1.0
SCIENTIST-TYPES SCIENTIST Composition Attribute-defined {attr-77} 1.0
PLANET-TYPES PLANET Composition Attribute-defined {attr-80} 0.45

The meta-relation GROUPING is devoted to store information
concerning fuzzy grouping and aggregation relationships.It is
similar to SUB-SUPER-COMP but it contains onlyclass-1-
name, class-2-name, relationshipanddomattributes.
The meta-relation GROUPING associated with Figure 1 is as
follows:

class-1-name class-2-name relationship dom

STARS STAR Grouping 1.0
PLANETS PLANET Grouping 1.0
COMETS COMET Grouping 1.0
GALAXY SATRS Aggregation 0.5
GALAXY PLANETS Aggregation 0.9
GALAXY COMETS Aggregation 0.7

We also add a new meta-relation, called INTERACTION,
devoted to store information concerning fuzzy interaction
relationships. It contains the following attributes:

• class-name: stores the name of a fuzzy class participating
in the interactioninteraction-name.

• interaction-name: stores the name of the fuzzy interaction
class or the name of the fuzzy interaction relationship.

• role: stores the name of the relationship from the point
of view of class-name.

The meta-relation INTERACTION associated with Figure 1 is
as follows:

class-name interaction-name role

SUPERNOVA DISCOVERY discoverer
SCIENTIST DISCOVERY discovres
LABORATORY working working-place-of
PERSON working works-in

C. Mapping FSM-based model to a fuzzy relational object
database model

As mentioned earlier, FSM-based model is mapped into
a fuzzy relational object (FRO) database one. Here we pro-
vide the transformation of only simple classes, Fuzzy sub-
class/superclass relationships and interaction relationships.

1) Fuzzy simple classes transformation:Each fuzzy class
in the FSM model is mapped into a relation in the database
level. The fuzzy attributes are mapped into composite ones
as explained above. The crisp attributes are treated as in
conventional databases. An additional non printable attribute,
dom, used to store the global d.o.m is systematically added
into the new relation. In addition, the information relative
to the extent properties of the fuzzy class are automatically
introduced in the A-DECISION-RULES and/or S-DECISION-
RULES meta-relations.
As example, the mapping of the fuzzy class STAR in Figure
1 is as follows (only a subset of the attributes are included).

star-name type-of-star luminosity dom
attr-value|data-type|parameter

Vega NOVA {low, linguistic label II.1,{2,0.5}} 0.3
3C 58 SUPERNOVA {0.1Ls , real,{nil}} 1.0
Proxima Centauri SUPERNOVA {more than 10Ls , more than linguistic label,{7.5Ls ,10}} 0.75

Remark particularly how the attributeluminosityis mapped
into composite one as explained in§IV.A.

2) Fuzzy subclass/superclass relationships transformation:
A fuzzy subclassB of a fuzzy superclassA is mapped into
a relation which inherits all the relevant attributes of the
relation transformed fromA (the relational object database
model allows inheritance). In addition to the attributedom, the
relationB contains a new attribute, denoted bydom-A, which
is used to store the d.o.m of one entity from fuzzy subclass
B in its fuzzy superclassA. The same reasoning is used for
fuzzy subclasses with more than one fuzzy superclass. Note
particulary that the relation mapped from fuzzy classB will
contain severaldom-A, one for each fuzzy superclass.
The mapping of the fuzzy subclass SUPERNOVA in Figure 1
is as follows (the attributediscovery-listis added to indicate
for each supernova the list of its discoverers as explained in
the following paragraph):

snova-name type- · · · discovery-list dom dom-star
of-snova attr-value|data-type|parameter

SN1987a IIb · · · {Ian Shelton} 0.95 1.0
SN1604 Ic · · · {Johannes Kepler} 0.5 0.5
SN1006 Unknown · · · Unknown 0.7 0.9

3) Interaction relationships transformation: Let B1,
B2,· · · , Bn be n fuzzy classes related by an n-ary interaction
relationship inter-name. When a participant fuzzy classBi

is mapped into a relation in the database level, a composite
attribute inter-name-list is added to it. Theinter-name-list
contains as many component attributes as the number of par-
ticipant fuzzy classes ininter-name. Each component attribute
of fuzzy subclassBj is used to indicate, for each member
from Bi, the list of the members fromBj in interaction with
the one ofBi. See for example the mapping of fuzzy subclass
SUPERNOVA in Appendix B.2 where the attributediscovery-
list is added to it to indicate for each supernova the list of its
discoverers.
Note that a fuzzy class may participate in several relationships
and the same reasoning apply for each interaction relationship.
Especially, the mapping of this fuzzy class requires as many
composite attributesinter-name-listas the number of interac-
tion relationships.
On the other hand, when an interaction relationship requires
the creation of new attributes, a new fuzzy interaction class
is generated. When the fuzzy interaction class is mapped into
a relation in the database level, it contains, in addition toits
own attributes, the following ones:

• interaction-id: this attribute is generated by the system
and used to identify interaction relationships.

• Bi-id: used to store the key attribute value of the member
of participating fuzzy classBi. When the interaction re-
lationship is reflexive, two attributes are used to reference
members of the same fuzzy class.

• dom: denotes the global d.o.m of fuzzy interaction class
members.

The mapping of the fuzzy subclass DISCOVERY in Figure 1
is as follows.

interaction-id date-of-discovery place-of-discovery supernova-id scientist-id dom

inter-1 1987 China SN1987a Ian Shelton 1.0
inter-22 1604 Netherlands SN1604 Johannes Kepler 0.9
inter-55 1006 Unknown SN1006 Unknown 0.75
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Remark especially the attributesdate-of-discoveryand
place-of-discoverywhich are specific to fuzzy subclass DIS-
COVERY.

D. Computation of the degrees of membership

To compute the partial and global d.o.m and for query
processing, we need to extend the binary and the set operators
that may be used in the definition of the extent properties
of fuzzy classes. As it is detailed earlier, each attribute-based
extent property is associated with a condition of the form:
<left-hand-operand> <op> <right-hand-operand>. The op-
eratorop may be a binary operator (i.e.=,≃,≤, <,≥, >) or
a set operator (ie.∈,⊆,⊂,⊇,⊃). All these operators may be
associated with the negation operator “not” denoted “¬” below.
In conventional logic, the response to a binary comparison is a
two-valued one and may be true (or 1) or false (or 0). Within
fuzzy logic, the result of a comparison may take any value in
the range [0,1]. Thus, the two-valued logic is simply a special
case of fuzzy logic that is restricted to the two extreme values
(0 and 1) of the range [0,1].
Basing of the work of [9], in the rest of this section we propose
an extension of all the operators mentioned above.

• The fuzzy “=” and “¬ =” operators:

This fuzzy “=” operator models the equality concept for
precise as well as imprecise data values. Four different
membership functions can be distinguished:

µ=(X, Y ) crisp y fuzzy ỹ

crisp x

�
1, x = y;
0, otherwise.

sup(x,y)∈XxY min[1, πỹ(y)]

fuzzy x̃ πx̃(y) sup(x,y)∈XxY min[p(x, y), πx̃(x), πỹ(y)]

wherep(x, y) is the proximity relation, andπx̃ and πỹ

are the possibility distribution defined on the domains
X and Y . The fuzzy “¬ =” operator is simply defined
as1− µ=(x̃, ỹ).

• The fuzzy “≃” and “¬ ≃” operators:

The fuzzy “≃” operator gives the degree in which two
fuzzy numbers (approximate values in Table 1) are ap-
proximately equal. It is computed as follows:

µ≃(x̃, ỹ) =

{

0, | x̃− ỹ |> margin;

1− |x̃−ỹ|
margin

, | x̃− ỹ |≤ margin.

Here we suppose that the parametersc+ and c− of
an approximate value (see§6.1 and Table 1) are the
same and equal tomargin. The fuzzy “¬ ≃” operator
is computed as the complement of “≃” operator, i.e.
µ¬≃ = 1− µ≃(x̃, ỹ).

• The fuzzy “≤” and “¬ ≤” operators:

The “≤” operator is defined on ordered domains and
apply for both crisp and imprecise data. Accordingly, four
situations hold:

µ ≤
(X, Y )

crisp y fuzzy ỹ

crisp x

�
1, x ≤ y;
0, otherwise.

miny≤x;y∈Y πỹ(x)

fuzzy x̃ maxx≤y;y∈Y πx̃(y)µ ≤ (X, Y ) sup(x,y)∈XxY min[πX (x), πY (y)]

The “¬ ≤” operator is computed as the complement of
“≤”, i.e. µ¬≤(x̃, ỹ) = 1− µ≤(x̃, ỹ).

• The fuzzy “≥” and “¬ ≥” operators:

The fuzzy “≥” operator is defined on ordered domains
and apply for both crisp and imprecise data. Four
situations can be distinguished:

µ ≥
(X, Y )

crisp y fuzzy ỹ

crisp x

�
1, x ≥ y;
0, otherwise.

maxy≥x;y∈Y πỹ(y)

fuzzy x̃ minx≤y;y∈Y πỹ(y)µ ≥ (X, Y ) sup(x,y)∈XxY min[πX (x), πY (y)]

The fuzzy “¬ ≥” operator is defined as the complement
of “≥”, i.e. µ¬≥ = 1− µ≥(x̃, ỹ).

• The fuzzy “>” and “¬ >” operators:

The fuzzy “greater than” operator “>” is defined
as the complement of the “≤” operator, i.e.
µ> = 1 − µ≤(x̃, ỹ). The fuzzy “¬ > operator is
defined asµ¬> = 1− µ>(x̃, ỹ)

• The fuzzy “<” and “¬ <” operators:

The fuzzy “less than” operator “<” is defined as the
complement of the “≥” operator, i.e.µ< = 1−µ≥(x̃, ỹ).
It complement is defined asµ¬> = 1− µ<(x̃, ỹ).

• The fuzzy “∈” and “∋” operators:

The fuzzy “∈” operator permits to compute the d.o.m to
which a crisp datay is in a fuzzy onex̃. The formula
is µ∈(x̃, y) = πx̃(y). The fuzzy “∋” operator is simply
defined asµ∋ = 1− µ∈(x̃, y).

• The fuzzy “⊆”, “¬ ⊆”, “⊇” and “¬ ⊇” operators:

The fuzzy “⊆” operator permits to compute the d.o.m
to which a fuzzy datãy is included a fuzzy datãx. The
formula is µ⊆(x̃, ỹ) = minz∈X∩Y (πx̃(z), πỹ(z)). The
fuzzy “¬ ⊆” operator is simply defined as1− µ⊆(x̃, ỹ).
The two fuzzy operators “⊇” and “¬ ⊇” are similar to
“⊆” and “¬ ⊆”, respectively.

• The fuzzy “⊂”, “¬ ⊂”, “⊃” and “¬ ⊃” operators:

The fuzzy “⊂” measures the degree to which a fuzzy data
is strictly included in another fuzzy data. It is defined as
the complement of the “⊇”, i.e. µ⊂ = 1 − µ⊇(x̃, ỹ).
The fuzzy “¬ ⊂” is defined asµ¬⊂ = 1 − µ⊂(x̃, ỹ). In
the same way, the fuzzy “⊃” operator is defined as the
complement of “⊆” operator, i.e.µ⊃ = 1 − µ⊆(x̃, ỹ).
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The fuzzy “¬ ⊂” is defined asµ¬⊃ = 1− µ⊆(x̃, ỹ).

To compute the different d.o.m, the prototype contains
several functions that are activated automatically through the
TRIGGERS associate with the relations. As an example, we
cite the GLOBAL-DOM function that permits to compute the
global d.o.m for each entity being introduced in the database.
This function implements Equation presented in§II.B. It is
associated with the INSERT and UPDATE triggers and has
two parameters: the name of the class (class-name) and the
identifier of the entity (entity-id). The class-name is usedto
get the extent properties of the class and their corresponding
weights as well as the attributes domains and, eventually,
the proximity relations associated with the different domains.
The entity-id is used to get the values of the attributes of the
entity being inserted or modified. The general schema of the
GLOBAL-DOM function is as follows provided below.
The function GLOBAL-DOM uses the PARTIAL-DOM which
permits to calculate the partial d.o.m of the different extent
properties of the class. This function takes as parameters
left-hand-operand, op andright-hand-operandand returns the
partial d.o.m. Along with with the type of operatorop, this
function activates one of the extended fuzzy binary or set
operators enumerated above.

Function GLOBAL-DOM (class-name, entity-id)
BEGIN

P← {set of extent properties}
W ← {wi}
size=|P |
wdom←0
wsum←1
For i=1 to size

wdom=wdom+W[i]*PARTIAL-DOM(class-
name.P[i,1],class-name.P[i,2],class-name.P[i,3])

wsum=wsum+W[i]
EndFor
Return wdom/wsum

END

The others functions are defined in similar way but to
make the paper short, their descriptions in not included here.

V. CONCLUSION

This paper deals with the conceptual design of FSM and
adresses some implementation issues. First, we have pro-
vided a proposal for specifying FSM schemas. Then, we
have addressed some issues related to the implementation
of FSM. More specifically, we have showed how different
kinds of imperfect information are represented and internally
implemented. Then we have briefly described a formal ap-
proach to map FSM-based model to a fuzzy relational object
(FRO) database model. Finally, we have given some insights
concerning the extension of scalar and set-operators to operate
on imperfect information.
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