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Abstract: The paper presents a parameterized and highly customizable semantic matchmaking framework. The match-
making approach on which this framework is based distinguishes three types of matching: functional attribute-
level matching, functional service-level matching, and non-functional matching. The functional matching per-
mits to eliminate web services that fail to meet the user functional requirements. The non-functional matching
permits to categorize web services instances into different ordered QoS classes. A series of algorithms are ad-
vertised for the different types of matching. These algorithms are designed to support a customizable matching
process that permits the user to control the matched attributes, the order in which attributes are compared, as
well as the way the sufficiency is computed for all matching types.

1 INTRODUCTION

Individual web services are conceptually limited to
relatively simple functionalities modeled through a
collection of simple operations. However, for certain
types of applications, it is necessary to combine a set
of individual web services to obtain composite web
services (Chakhar et al., 2011). A crucial issue within
web service composition is related to the selection of
the most appropriate one among the different candi-
date web services.

In this paper we propose a semantic match-
making framework for web service composition.
We distinguish three types of matching: func-
tional attribute-level matching, functional service-
level matching, and non-functional matching. The
functional attribute-level matching implies capability
and property attributes and associates with each at-
tribute a similarity measure that should be satisfied
by the corresponding attribute in the advertised ser-
vice. The functional service-level matching supports
attribute-level matching and adds a service similarity
measure that should be satisfied by the advertised ser-
vice as a whole. The non-functional matching implies
Quality of service (QoS) attributes.

The work presented in this paper is included in a
layered system for web service composition that we
proposed in (Chakhar, 2012). The matching opera-
tion intervenes in different levels of this system, as
explained in Section 2.4.

The paper is structured as follows. Section 2 sets
the background. Sections 3, 4 and 5 detail the frame-
work. Section 6 provides illustrative examples. Sec-
tion 7 presents experimental results. Section 8 dis-
cusses related work. Section 9 concludes the paper.

2 BACKGROUND

2.1 Example Scenario

This example scenario is freely inspired from a case
use scenario described in the WSC Web Services Ar-
chitecture Usage Scenarios (Hao et al., 2004). A
company (travel agent) offers to people the ability
to book complete vacation packages: plane/train/bus
tickets, hotels, car rental, excursions, etc. Service
providers (airlines, bus companies, hotel chains, etc.)
propose web services to query their offerings and per-
form reservations. The user provides a destination
and some dates to the travel agent service. The travel
agent service inquires service providers about deals
and presents them to the user.

2.2 Basic Definitions

We introduce some basic definitions of a service and
other service-specific concepts. Several definitions
are due to (Doshi et al., 2004).
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Definition 1 (Service). A service S is defined as a
collection of attributes that describe the service. Let
S.A denotes the set of attributes of service S and S.Ai
denotes each member of this set. Let S.N denotes the
cardinality of this set.

Example 1. The travel agent company provides a
web service, bookVacation, that is defined by the fol-
lowing attributes: service category, input, output, pre-
conditions, postconditions, response time, availability,
cost, security, and geographical location.

Definition 2 (Service Capability). The capability of
a service S.C is a subset of service attributes (S.C ⊆
S.A), and includes only functional ones that directly
relate to its working.

Example 2. The capability of bookVacation is:
S.C = {input, output, preconditions, postconditions}.
Definition 3 (Service Quality). The quality of a ser-
vice S.Q, is a subset of service attributes (S.Q⊆ S.A),
and includes all attributes that relate to its QoS.

Example 3. The Quality of bookVacation is: S.Q =
{response time, availability, cost, security}.
Definition 4 (Service Property). The property of a
service, S.P, is a subset of service attributes (S.P ⊆
S.A), and includes all attributes other than those in-
cluded in service capability or service quality.

Example 4. The property of bookVacation is: S.P =
{service category, geographical location}.

2.3 Composition Approach

The key elements of the composition approach that
we proposed in (Chakhar, 2012) are: the composition
graph, potential executable plans and executable plan.
The composition graph is an abstract representation
of functional requirements provided by the user. It
models the invocation relationships between the indi-
vidual web services contained in the composite web
service. The set of potential executable plans is the
composite service instances which are obtained by re-
placing each service type in the composition graph
by its instances using a set of transformation rules.
The objective of the transformation operation is to in-
clude the different semantics of BPEL constructors.
Among the different potential executable plans only
one—called executable plan—should be selected and
transformed to a workflow for effective execution.

The composition operation starts by user specifi-
cation of functional and non-functional requirements
and leads to an executable plan that can be handed off
to runtime environment for execution. The proposed
approach to support the composition operation con-
tains three phases:

1. Logical composition: First, the functional require-
ments provided by the user are used to generate
the composition graph.

2. Physical composition: Second, the composition
graph is transformed to obtain the set of potential
executable plans.

3. Evaluation and selection: Third, the different po-
tential executable plans are evaluated and com-
pared in order to select one executable plan. The
latter is then transformed into a workflow and then
deployed, discovered and invoked.

The service composition approach is implemented
by a layered system called QoSeBroker (for QoS-
enhanced Broker). The architecture of QoSeBroker is
given in Figure 1. A detailed description of QoSeBro-
ker is given in (Chakhar, 2012). At this level, we just
mention that the matching operation intervenes in the
logical and physical composition phases, as briefly
explained in the next subsection.

Figure 1: QoSeBroker architecture.

2.4 Service Matching Types and Process

The input for a web service composition is a set of
specifications describing the capabilities of the de-
sired service. These specifications can be decom-
posed into two groups (Chakhar et al., 2011): (i)
functional requirements that deal with the desired
functionality of the composite service, and (ii) non-
functional requirements that relate to the issues like
cost, performance and availability. These specifica-
tions need to be expressed in an appropriate language.
In this paper, we adopt an extended version of Ontol-
ogy Web Language (OWL) (Agarwal et al., 2005) for
expressing functional requirements and the QoS for
non-functional requirements.



Furthermore, we may distinguish three types of
service matching (Chakhar, 2013):

• Functional attribute-level matching: This type
of matching implies capability and property at-
tributes and consider each matching attribute in-
dependently of the others.

• Functional service-level matching: This type
of matching implies capability and property at-
tributes but the matching operation implies at-
tributes both independently and jointly.

• Non-functional matching: This type of matching
implies QoS attributes.

These different matching types intervene in differ-
ent composition phases. The functional matching in-
tervenes in the logical composition phase. Indeed,
the construction of the composition graph needs first
the identification of candidate service types. This
operation requires matching the preconditions of a
web service with the effects of another up front dur-
ing filtering by using only functional requirements.
The functional matching takes as input all candidate
web services and outputs a set of web services that
meet the user functional matching criteria. During
logical composition phase, service types that fail to
meet the user functional requirements are automat-
ically eliminated. At this level, it is important to
mention that functional service-level matching sup-
ports jointly attribute-level and service-level match-
ing. Hence, the user should select either functional
attribute-level matching only or functional service-
level matching only.

The non-functional matching intervenes during
the physical composition phase. In fact, the first step
in this phase is to identify, for each service type in
the composition graph, the set of the corresponding
instances. For this purpose, the matching operation
uses the composition graph and queries the service
instances registry to associate to each service type
a set of potential instances (at last one instance per
type is needed). The second step is then to use non-
functional attributes in order to classify web service
instances into different QoS ordered classes. It is easy
to see that there is no elimination of web service in-
stances at this level.

In (Chakhar, 2013) we discussed functional
attribute-level and functional service-level match-
ing. However, the functional attribute-level match-
ing presented in (Chakhar, 2013) assumes only con-
junctive or disjunctive logical relationships between
matching attributes. This paper enhances our pro-
posal in (Chakhar, 2013) by adding generic func-
tional attribute-level matching and non-functional
QoS-oriented matching.

3 FUNCTIONAL ATTRIBUTE-
LEVEL MATCHING

Functional matching may be defined as the process
of discovering a service advertisement that sufficiently
satisfies a service request (Doshi et al., 2004). Func-
tional matching is based on the concept of sufficiency,
which itself is based on the similarity measure.

3.1 Similarity Measure

A semantic match between two entities frequently in-
volves a similarity measure. The similarity measure
quantifies the semantic distance between the two en-
tities participating in the match. As in (Doshi et al.,
2004), a similarity measure is defined as follows.

Definition 5 (Similarity Measure). The similarity
measure, µ, of two service attributes is a mapping
that measures the semantic distance between the con-
ceptual annotations associated with the service at-
tributes. Mathematically,

µ : A×A→ {Exact, Plug-in, Subsumption,
Container, Part-of, Disjoint}

where A is the set of all possible attributes.

The mapping between two conceptual annotations
is called:

• Exact map: if the two conceptual annotations are
syntactically identical,

• Plug-in map: if the first conceptual annotation is
specialized by the second,

• Subsumption map: if the first conceptual annota-
tion specializes the second,

• Container map: if the first conceptual annotation
contains the second,

• Part-of map: if the first conceptual annotation is
a part of the second, and

• Disjoint map: if none of the previous cases ap-
plies.

A preferential total order is established on the above
mentioned similarity maps.

Definition 6 (Similarity Measure Preference).
Preference amongst similarity measures is governed
by the following strict total order:

Exact ≻ Plug-in ≻ Subsumption ≻ Container ≻
Part-of ≻ Disjoint

where a ≻ b means that a is preferred over b.



3.2 Computing the Similarity Measure

The computing of the similarity measure is based
on the conceptual annotations associated with the re-
quested and advertised web services. The matching
process uses ontological representation of web ser-
vices to infer the submission hierarchy which leads
to the recognition of semantic matches despite their
syntactic differences and difference in modeling ab-
stractions between requests and advertisements.

The similarity measure, which represents the de-
gree of match, is defined along a discrete scale in
which the ’Exact’ match is the highest level and is
the preferable while ’Fail’ is the lowest level and it
represents an undesirable result. Note that the labels
used to define the different similarity measures can be
mapped to numerical values. However, only compar-
ison operations are authorized (since we assumed that
these values are ordinal).

Let now explain how the similarity measure µ is
computed. For this purpose we consider the travel
agent scenario example given in Section 2.1. Figure 2
shows a fragment of the Travel Agent Ontology. We
consider an Advertisement for the travel agent web
service who permits the client to book Accommoda-
tion in the specified Destination. Assume that the Ad-
vertisement has the following Inputs and Outputs:

Inputs: Destination
Outputs: Accommodation, Sport, Cost

We consider a Query from a client who planning
a vacation. The client wants to make reservations for
a Hotel and an Excursion at the specified Destination.
As shown in Figure 2, the Hotel is a subclass of the
concept Accommodation and Excursion is a subclass
of the concept Entertainment. The Query has the fol-
lowing Inputs and Outputs:

Inputs: Destination
Outputs: Hotel, Excursion

Figure 2: Travel Ontology extract.

Let now focalize on the process of matching
Query outputs. The same reasoning applies to the

process of matching the inputs. The matching pro-
cess iterates over the list of output concepts of the
Query and looks to find a match to an output con-
cept in the Advertisement. Intuitively, any concept
in the output represents a candidate for the match.
In this particular example, the initial candidate list is
{Accommodation, Sport, Cost}. The matching pro-
cess first looks to see if there is a match for Ho-
tel. Based on Figure 2, the match between Hotel
and Accommodation will be flagged Exact. Then, the
matching process looks a match for Excursion. Based
on Figure 2, the match for Excursion with respect
to Accommodation, Sport and Cost will fail (since
there is no relationship between these concepts and
Excursion concept). Hence, we can conclude that
µ(outputR,outputA)=’Fail’ where outputR and out-
putA are the output attributes of requested and adver-
tised services, respectively. Using the same reason-
ing, we obtain an Exact match for the input concept
Destination, i.e., µ(inputR,inputA)=’Exact’ where in-
putR and inputA are the input attributes of requested
and advertised services, respectively.

3.3 Conjunctive/Disjunctive Matching

Let SR be the service that is requested, and SA be the
service that is advertised. A first customization of
functional matching is to allow the user to specify a
desired similarity measure for each attribute. A suf-
ficient match exists between SR and SA in respect to
a given attribute if there exists an identical attribute
of SA and the values of the attributes satisfy the de-
sired similarity measure. A second customization of
the matching process is to allow the user specifying
which attributes should be utilized during the match-
ing process, and the order in which the attributes must
be considered for comparison. In order to support
both customizations, we use the concept of Criteria
Table, introduced by (Doshi et al., 2004), that serves
as a parameter to the matching process.

Definition 7 (Criteria Table). A Criteria Table, C, is
a relation consisting of two attributes, C.A and C.M.
C.A describes the service attribute to be compared,
and C.M gives the least preferred similarity measure
for that attribute. Let C.Ai and C.Mi denote the ser-
vice attribute value and the desired measure in the ith
tuple of the relation. C.N denotes the total number of
tuples in C.

Example 5. Table 1 shows a Criteria Table example.

A sufficient functional attribute-level conjunctive
match between services is defined as follows.

Definition 8 (Sufficient Functional Conjunctive
Match). Let SR be the service that is requested, and



SA be the service that is advertised. Let C be a criteria
table. A sufficient conjunctive match exists between
SR and SA if for every attribute in C.A there exists
an identical attribute of SR and SA and the values of
the attributes satisfy the desired similarity measure as
specified in C.M. Formally,

∀i∃ j,k(C.Ai = SR.A j = SA.Ak)∧µ(SR.A j,SA.Ak)≽C.Mi
⇒ SuffFuncConjMatch(SR,SA) 1≤ i≤C.N. (1)

Table 1: An example Criteria Table.
C.A C.M
input Exact
output Exact

precondition Subsumes
postcondition Subsumes

The functional attribute-level conjunctive match is
formalized in Algorithm 1 in (Chakhar, 2013). A less
restrictive definition of sufficiency consists in using a
disjunctive rule on the individual matching measures.

Definition 9 (Sufficient Functional Disjunctive
Match). Let SR be the service that is requested, and
SA be the service that is advertised. Let C be a crite-
ria table. A sufficient disjunctive match exists between
SR and SA if for at least one attribute in C.A it exists
an identical attribute of SR and SA and the values of
the attributes satisfy the desired similarity measure as
specified in C.M. Formally,

∃i, j,k(C.Ai = SR.A j = SA.Ak)∧µ(SR.A j,SA.Ak)≽C.Mi
⇒ SuffFuncDisjMatch(SR,SA). (2)

The functional attribute-level disjunctive match is
formalized in Algorithm 2 in (Chakhar, 2013).

3.4 Generic Matching

In this section we extend the algorithms proposed in
(Chakhar, 2013) to generic binary connectors by al-
lowing the user to specify the conditional relation-
ships between the capability and property attributes.
First, we need to introduce the concept of sufficient
single attribute match.

Definition 10 (Sufficient Single Attribute Match).
Let SR be the service that is requested, and SA be the
service that is advertised. Let C be a criteria table. A
sufficient match exists between SR and SA in respect to
attribute SR.Ai if there exists an identical attribute of
SA and the values of the attributes satisfy the desired
similarity measure as specified in C.Mi. Formally,

∃ j,k(C.Ai = SR.A j = SA.Ak)∧µ(SR.A j,SA.Ak)≽C.Mi)
⇒ SuffSingleAttrMatch(SR,SA,Ai). (3)

The single attribute matching is formalized in Al-
gorithm 1 that follows directly from Sentence (3).

Algorithm 1: SuffSingleAttrMatching
Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria Table.
i, // Service attribute index.

Output: Boolean// success/fail.
while

(
j ≤ SR.N

)
do

if
(
SR.A j =C.Ai

)
then

Append SR.A j to rAttrSet;
end
Assign j←− j+1;

end
while

(
k ≤ SA.N

)
do

if
(
SA.Ak =C.Ai

)
then

Append SA.Ak to aAttrSet;
end
Assign k←− k+1;

end
if (µ(rAttrSet[i],aAttrSet[i])≽C.Mi) then

return success;
end
return fail;

The sufficient functional generic match is then de-
fined as follows.
Definition 11 (Sufficient Functional Generic
Match). Let SR be the service that is requested, and
SA be the service that is advertised. Let C be the
criteria table. Let T be a complex logical clause
where operands are the attributes related by logical
operators (e.g. or, and, not). A sufficient functional
generic match between SR and SA holds if and only
the logical clause T holds. Formally,

Parse(T )∧Evaluate(T )
⇒ SuffAttrGenericMatch(SR,SA) (4)

where Parse and Evaluate are functions devoted re-
spectively to parse and evaluate the logical expres-
sion T .

The functional generic match is formalized in Al-
gorithm 2, which follows directly from Sentence (4).
Example 6. A example of a logical expression is
“T = A5 or (A2 and A3)”. In this example, the match-
ing holds when either (i) the matching in respect to
attribute A5 holds, or (ii) the matching in respect to
attribute A2 and the matching in respect to attribute
A3 hold jointly.

3.5 Computational Complexity

Let first focalize on the complexity of Algorithm 1.
The complexity of the two while loops in Algorithm
1 is equal to O(SR.N) +O(SA.N). Since we gener-
ally have SA.N ≫ SR.N, hence the complexity of the



two while loops is equal to O(SA.N). Then, the worst
case complexity of Algorithm 1 is O(SA.N)+α where
α is the complexity of computing µ. The value of
α depends on the approach used to infer µ. As un-
derlined in (Doshi et al., 2004), inferring µ by onto-
logical parse of pieces of information into facts and
then utilizing commercial rule-based engines which
use the fast Rete (Forgy, 1982) pattern-matching al-
gorithm leads to α = O(|R||F ||P|) where |R| is the
number of rules, |F | is the number of facts, and |P|
is the average number of patterns in each rule. In
this case, the worst case complexity of Algorithm 1 is
O(SA.N)+O(|R||F ||P|). Furthermore, we observe, as
in (Doshi et al., 2004), that the process of computing µ
is the most “expensive” step of the algorithms. Hence,
we obtain: O(SA.N)+O(|R||F ||P|)≍ O(|R||F ||P|).

The complexity of Algorithm 2 depends on the
complexity of functions Parse and Evaluate. The
complexity of these functions depends on the data
structure used to represent the logical expression T
(graph, truth tables, etc.). Clearly the complexity of
Evaluate function is largely greater than the complex-
ity of Parse function. Hence, the complexity of Al-
gorithm 2 is O(|R||F ||P|) +O(γ) where O(γ) is the
complexity of Evaluate function.

Algorithm 2: SuffAttrGenericMatch
Input : SR, // Requested service.

SA, // Advertised service.
C, // Criteria table.
T , // Logical expression.

Output: Boolean// success/fail.
if (NOT(Parse(T ))) then

return fail;
end
T ′←− T ;
Z←− /0;
for (each Al ∈ T ′) do

if (Al /∈ Z) then
t←− false;
t←− SuffSingleAttrMatch(SR,SA,Al);
replace all Al ∈ T by the value of t;
Z←− Z∪{Al};

end
end
if (Evaluate(T )) then

return success;
end
return fail;

4 SERVICE-LEVEL MATCHING

The service-level matching allows the client to use
two types of desired similarity: (i) desired similar-
ity values associated with each attribute in the criteria
table, and (ii) a global desired similarity that applies
to the service as a whole. The service-level similar-

ity measure quantifies the semantic distance between
the requested service and the advertised service enti-
ties participating in the match by taking into account
both attribute-level and service-level desired similar-
ity measures.

Definition 12 (Sufficient Functional Service-Level
Match). Let SR be the service that is requested, and
SA be the service that is advertised. Let C be a crite-
ria table. Let β be the service-level desired similarity
measure. A sufficient service-level match exists be-
tween SR and SA if (i) for every attribute in C.A there
exists an identical attribute of SR and SA and the val-
ues of the attributes satisfy the desired similarity mea-
sure as specified in C.M, and (ii) the value of overall
similarity measure satisfies the desired overall simi-
larity measure β. Mathematically,

[∀i (SuffSingleAttrMatch(SR,SA,Ai)) 1≤ i≤C.N]∧
[∃ j1, · · · , ji, · · · , jN (ζ(s1, j1 , · · · ,si, ji , · · · ,sN, jN )≽ β)]

⇒ SuffFuncServiceLevelMatch(SR,SA) (5)

where ζ is an aggregation rule; and for i = 1, · · · ,N
and ji ∈ { j1, · · · , jN}:

si, ji = µ(SR.Ai,SA.A ji).

The parameter β may be any of the maps given
in Section 3.1. The functional service-level matching
in formalized Algorithm 4 in (Chakhar, 2013). The
aggregation rule ζ used in the definition above is a
tool to combine the similarity measures into a single
similarly measure. In (Chakhar, 2013), we defined ζ
as follows:

ζ : F1×·· ·×FN → {Exact, Plug-in, Subsumption,
Container, Part-of, Disjoint}

where Fj={Exact, Plug-in, Subsumption,Container,
Part-of, Disjoint} ( j = 1, · · · ,N); and N is the number
of attributes included in the criteria table. The sim-
ilarity maps and the corresponding strict total order
given in Section 3.1 still apply here. Since the simi-
larity measures are defined on an ordinal scale, there
are only a few possible aggregation rules that can be
used to combine similarity measures (Chakhar, 2013):
Minimum, Maximum, Median, Floor and Ceil. The
Floor and Ceil rules apply only when there is an even
number of similarity measures (which leads to two
median values).

5 QOS-ORIENTED MATCHING

The QoS-oriented matching concerns QoS attributes
only and applies to service instances that verify func-
tional requirements. The objective of QoS matching



is to assign to each instance an overall QoS level. In-
stead of sorting services from best to worst, we pro-
pose to categorize them into an ordered set of QoS
classes Cl = {Cl1, · · · ,Clp}, such that the higher the
class, the higher the QoS level.

The computing of overall QoS level for each in-
stance requires the use of a multicriteria aggregation
rule. In this paper, we distinguish two types of ag-
gregation rules: (i) simple majority, and (ii) simple
majority with veto.

5.1 Simple Majority-Based Matching

To formalize the first version of QoS matching, we
need to introduce some new concepts.

Definition 13 (QoS Attribute Table). A QoS At-
tribute Table, Q, is a relation consisting of three at-
tributes, Q.A, Q.T and Q.S. Q.A describes the ser-
vice attribute to be compared, Q.T gives the attribute
type and Q.S specifies the scale type. Two types of at-
tributes are distinguished: gain and cost. The gain
attributes are those to be maximized while cost at-
tributes are those to be minimized. The scale may be
nominal, ordinal, cardinal or ratio. Let Q.Ai, Q.Ti
and Q.Si denote the service attribute value, the at-
tribute type and the scale type of the ith tuple of the
relation. Let Q.N be the total number of tuples in Q.

Example 7. Table 2 shows a QoS Attribute Table ex-
ample. It specifies the parameters of four QoS at-
tributes: response time (A1), availability (A2), secu-
rity (A3) and cost (A4).

Table 2: An example QoS Attribute Table.
Q.A Q.T Q.S
A1: Response time cost Cardinal
A2: Availability gain Cardinal
A3: Security gain Ordinal
A4: Cost cost Cardinal

Definition 14 (Boundary Matrix). A Boundary Ma-
trix, B, consisting of a pairwise matrix composed of
p− 1 columns B1,· · · ,Bp−1 and N rows correspond-
ing to the number of QoS attributes.

Example 8. An example of Boundary Matrix is given
in Table 3. It specifies three boundaries in respect to
the QoS given in Table 2. Table 3 defines four QoS
classes.

The attribute type and scale parameters should be
used to control input data, especially the definition of
boundaries.

Definition 15 (Weight Table). A Weight Table, W, is
a relation consisting of two attributes, W.A and W.V .

W.A describes the service attribute and W.V specifies
the weight of this attribute. Let W.Ai and W.Vi denote
the service attribute and the attribute weight value in
the ith tuple of relation W. The weights values must
sum to 1.

Table 3: An example Boundary Matrix.
Q.Ai B1 B2 B3
Response time 11 9.25 8
Availability 0.2 0.3 0.51
Security 2 3 4
Cost 4 3.5 3

Example 9. An example of Weight Table is given in
Table 4.

Table 4: An example Weight Table.
W.A W.V
Response time 0.325
Availability 0.325
Security 0.175
Cost 0.175

Definition 16 (Concordance Power). Let h ∈
{1, · · · , p}. The concordance power for the outrank-
ing of advertised service SA over boundary Bh is com-
puted as follows:

Φ(SA,Bh) = ∑
i∈L1(SA,h)

W.Vi

where: L1(SA,Bh) = {i : SA.Ai ≽ Bh.Ai ∧ Q.Ti =
’gain’} ∪ {i : SA.Ai ≼ Bh.Ai ∧ Q.Ti = ’cost’} ∪ {i :
SA.Ai = Bh.Ai∧Q.Si = ’nominal’}.
Example 10. Let consider the service instances given
in Table 5. Based on the definition above we ob-
tain L1(s8,B1) = {1,3,2,4}, L1(s8,B2) = {2,3,4}
and L1(s8,B3) = {4}. This leads to: Φ(s8,B1) = 1,
Φ(s8,B2) = 0.675 and Φ(s8,B3) = 0.175.

Table 5: Web service instances.
si A1 A2 A3 A4
s8 12.82 0.34296 3 2.74
s9 10.92 0.15 1 2.08
s10 9.52 0.51 4 2.5

Definition 17 (Sufficient Simple Majority-Based
QoS Matching). Let SR be the service that is re-
quested and SA be the service that is advertised. Let
SR.Q be the list of QoS attributes to be utilized for
matching. Service SA is assigned to QoS class Clh if



for every QoS attribute of SR there is exists an identi-
cal attribute of SA and the value of the Concordance
Power is greater or equal to the credibility threshold
λ and Φ(SA,Bh) ≥ Φ(SA,Bh′) for every h < h′. For-
mally,

Argmaxh[∃ j,k(Q.Ai = SR.A j = SA.Ak)∧Φ(SA,Bh)≽ λ]
⇒ QoSMajorityMatch(SR,SA,Clh). (6)

where λ ∈ [0.5,1].
The parameter λ, called credibility threshold, en-

sures that at least 50% of attributes are in favor of the
assignment of the advertised service to the considered
QoS class. Hence, a service SA is assigned to class
Clh if and only if there is a “sufficient” majority of
attributes in favor of assigning SA to Clh.

This first version of QoS matching is formalized
in Algorithm 3. This algorithm compares SA to each
of the boundaries staring from the highest one and
stops once a sufficient QoS measure holds. The func-
tion ConcordancePower, which computes the concor-
dance power as in Definition (16), is given in Algo-
rithm 4.

Algorithm 3: QoSMajorityMatching
Input : SA, // Advertised service.

λ, // Credibility threshold.
Q, // QoS Table.
B, // Boundary Matrix.
W , // Weight Table.

Output: Cl = {Cl1, · · · ,Clp}// Global QoS classes.
p←−number of QoS classes;
Cli←− /0, ∀i = 1, · · · , p;
U ′←− instances of SA;
for (all u ∈U ′) do

h←− p−1;
assigned←− False;
while (h≥ 0 ∧ NOT(assigned)) do

if (ConcordancePower(u,h)≥ λ) then
Clh+1←−Clh+1∪{u};
assigned←− true;

end
h←− h−1;

end
end
Cl←− {Cl1, · · · ,Clp};
return Cl;

Example 11. Let λ = 0.65. Based on the previous
example, we conclude that s8 in Table 5 is assigned
by Algorithm 3 to QoS class level 3 since Φ(s2,B3) =
0.175 < λ and Φ(s8,B2) = 0.675 > λ.

5.2 Simple Majority and Veto Based
QoS Matching

A further customization consisting in the support of
the veto effect by taking into account the opposition of

Algorithm 4: ConcordancePower
Input : SA, // Advertised service.

h, // Integer (Boundary index).
Output: Φ(SA,Bh)// Concordance Power.
s←− 0;
for (all Q.Ai ∈ Q.A) do

switch Q.Ti do
case (’gain’)

if
(
SA.Ai ≥ Bh.Ai

)
then

s←− s+W.Vi;
end

end
case (’cost’)

if
(
SA.Ai ≤ Bh.Ai

)
then

s←− s+W.Vi;
end

end
case (’nominal’)

if
(
SA.Ai = Bh.Ai

)
then

s←− s+W.Vi;
end

end
end

end
return s;

minority attributes, i.e., attributes that do not belong
to set L1. The definition of QoS matching with sup-
port of veto effect requires the introduction of some
new concepts.
Definition 18 (Discordance Power). Let
h ∈ {1, · · · , p}. The discordance power for the
outranking of advertised service SA over boundary
Bh is computed as follows:

Ψ(SA,Bh) =
k=N

∏
k=1

Zk(SA.Ak,Bh.Ak)

where:

Zk(SA.Ak ,Bh.Ak) =


1−W.Vk

1−Φ(SA ,Bh)
, if W.Ak > Φ(SA,Bh))

∧ k ∈ L2(SA,Bh)

1, otherwise.

with L2(SA,Bh) = {i : SA.Ai ≺ Bh.Ai ∧ Q.Ti =
’gain’} ∪ {i : SA.Ai ≻ Bh.Ai ∧ Q.Ti = ’cost’} ∪ {i :
SA.Ai ̸= Bh.Ai∧Q.Si = ’nominal’}.
Example 12. Let consider the service instances given
in Table 5. Based on the definition above we obtain
L2(s8,B1) = {1}, L2(s8,B2) = {1} and L2(s8,B3) =
{1,2}. This leads to: Ψ(s8,B1) = 0.818, Ψ(s8,B2) =
0.818 and Ψ(s2,B3) = 0.670.
Definition 19 (Credibility Index). Let
h ∈ {1, · · · , p}. The credibility index for the
outranking of advertised service SA over boundary
Bh is computed as follows:

σ(SA,Bh) = Φ(SA,Bh) ·Ψ(SA,Bh).



Example 13. Based on Examples 10 and 12, we
obtain σ(s8,B1) = 0.818, σ(s8,B2) = 0.552 and
σ(s8,B3) = 0.117.
Definition 20 (Sufficient Majority With Veto Based
QoS Matching). Let SR be the service that is re-
quested and SA be the service that is advertised. Let
SR.Q be the list of QoS attributes to be utilized for
matching. Service SA is assigned to QoS class Clh if
for every QoS attribute of SR there is exists an iden-
tical attribute of SA and the value of the Credibility
index is greater or equal to the credibility threshold λ
and σ(SA,Bh)≥σ(SA,Bh′) for every h< h′. Formally,

Argmaxh[∃ j,k(Q.Ai = SR.A j = SA.Ak)∧σ(SA,Bh)≥ λ]
⇒ QoSMajorityVetoMatching(SR,SA,Clh). (7)

where λ ∈ [0.5,1].
According to this definition, a service SA is as-

signed to class Clh if and only if: (i) there is a “suf-
ficient” majority of attributes in favor of assigning SA

to Clh, and (ii) when the first condition holds, none of
the minority of attributes shows an “important” oppo-
sition to the assignment of SA to Clh.

The algorithm for the second version of QoS
matching is similar to Algorithm 3. We simply need
to replace the test “ConcordancePower(u,h)≥ λ” by
“CredibilityIndex(u,h) ≥ λ”. The function Credibil-
ityIndex, which computes the credibility index as in
Definition (19), is given in Algorithm 5.

Algorithm 5: CredibilityIndex
Input : SA, // Advertised service.

h, // Integer (Boundary index).
Output: σ(SA,Bh)// Credibility Index.
z←− 1;
s←− ConcordancePower(SA,h);
for (all Q.Ai ∈ Q.A) do

switch Q.Ti do
case (’gain’)

if
(
SA.Ai < Bh.Ai∧W.Ai > s

)
then

z←− z · 1−W.Ai
1−s ;

end
end
case (’cost’)

if
(
SA.Ai > Bh.Ai∧W.Ai > s

)
then

z←− z · 1−W.Ai
1−s ;

end
end
case (’nominal’)

if
(
SA.Ai ̸= Bh.Ai∧W.Ai > s

)
then

z←− z · 1−W.Ai
1−s ;

end
end

end
end
return s · z;

Example 14. Let λ = 0.65. Based on the data and
results of the previous example, we conclude that s8
in Table 5 is assigned by majority with veto Algorithm
to QoS class level 2 since σ(s8,B1) = 0.818 > λ, and
σ(s8,B2) = 0.552 < λ and σ(s8,B3) = 0.117 < λ.

The previous example shows that the QoS of in-
stance s8 has decreased (from 3 to 2) in comparison to
Example (11). This because the weights of attributes
which are against the assignment of instance s8 to
QoS class 3 have been taken into account.

5.3 Computational Complexity

Algorithm 3 runs in O(mp× |U |), where m is the
number of QoS attributes and p is the number of QoS
classes. The second version of Algorithm 3 based on
simple majority with veto and which is not provided
in this paper, runs in O(2mp×|U |). Note that Algo-
rithm 4 runs in O(m) and Algorithm 5 runs in O(2m).

6 ILLUSTRATION

Consider again the example given in Section 3.2. As-
sume that the Criteria Table is as in Table 6. Based
on the discussion given in Section 3.2, the desired
similarity specified by this table holds only for Desti-
nation and Hotel. Hence, the attribute-level conjunc-
tive matching algorithm will fail but the attribute-level
disjunctive matching algorithm will success.

Table 6: Criteria Table.
C.A C.M
input Exact
output Exact

Let now assume that the user has specified the fol-
lowing logical expression:

expression: Destination and (Hotel or Excursion)

The desired similarity specified by the Criteria
Table holds only for Destination and Hotel. But
since the expression “Destination and (Hotel or Ex-
cursion)” will be flagged true, the functional generic
matching algorithm will success.

Let now focalize on service-level functional
matching. Suppose that the Advertisement has the fol-
lowing Inputs, Outputs and Categories:

Inputs: Destination
Outputs: Accommodation, Entertainment, Cost
Categories: AirplaneModel



Suppose also that Query has the following Inputs,
Outputs and Categories:

Inputs: Destination
Outputs: HotelType, Excursion
Categories: AirplaneModel

Based on the same reasoning as earlier, the match
for Destination, Excursion and AirplaneModel con-
cepts will be flagged Exact; and the match for con-
cept HotelType will be flagged Plug-in. Assume that
the Criteria Table is as in Table 7.

Table 7: Criteria Table.
C.A C.M
input Exact
output Exact

service category Subsumption

The instantiation of the aggregation rule ζ (see
Section 4) will then look like ζ(Exact, min{Plug-in,
Exact}, Exact) which leads to ζ(Exact, Plug-in, Ex-
act). Then, the result of aggregation according to dif-
ferent aggregation rules (except Median which does
not apply here) is given in Table 8.

Table 8: Result of aggregation.
Aggregation rule(ζ) Minimum Maximum Floor Ceil
Result Plugin Exact Plugin Exact

Let now focalize on non-functional matching and
consider the list of potential compositions given in Ta-
ble 9. We assume that these compositions have meet
the functional requirements of the user. Table 9 shows
the evaluation of the compositions in respect to four
QoS attributes (i.e. response time (A1), availability
(A2), security (A3), and cost (A4) attributes) given in
Table 2. The objective is to classify the compositions
into different ordered categories. For the purpose of
this example, we assume that the four categories de-
fined by Table 3 and the weights given in Table 4 have
been used.

The final classifications obtained by the simple
majority and simple majority with veto algorithms
where the credibility threshold is λ = 0.65 are given
in Table 9. In this table, we can see that both simple
majority and majority with veto algorithms (denoted
Algo 3 and Algo 3’ in Table 9, respectively) assign
instances s3 and s10 to the best QoS class. We remark
also that both algorithms assign instances s5 and s9 to
the worst QoS class. Which is interesting to see in Ta-
ble 9 is the role of veto effect in the assignment of in-
stances s8 and s13. Indeed, the QoS of both instances
have been decreased (from 3 to 2 for instance s8 and
from 2 to 1 for instance s13) by the majority with

veto algorithm. This happens because the weights
of attributes which are against the assignment—of in-
stance s8 to QoS class 3 and instance s13 to QoS class
2—have been taken into account.

Table 9: Potential compositions and final classification for
λ=0.65.

si A1(si) A2(si) A3(si) A4(si) Algo 3 Algo 3’
s1 9.2 0.45946 1 2.48 3 3
s2 8.12 0.41817 1 2.68 3 3
s3 8 0.53 4 2.78 4 4
s4 8.19 0.46967 2 3.24 3 3
s5 11.15 0.19 1 2.74 1 1
s6 7.42 0.40317 2 3.38 3 3
s7 7.72 0.36676 2 3.18 3 3
s8 12.82 0.34296 3 2.74 3 2
s9 10.92 0.15 1 2.08 1 1
s10 9.52 0.51 4 2.5 4 4
s11 10.12 0.53294 3 2.68 3 3
s12 10.42 0.48356 1 2.32 2 2
s13 12.52 0.2 1 3.14 2 1
s14 8.42 0.48 1 2.82 3 3
s15 10.32 0.48 4 2.16 3 3

7 EXPERIMENTAL RESULTS

For the purpose of experimental tests, we adopted
the same architecture proposed by (Bellur and
Kulkarni, 2007). We used the Protege editor
Protege (http://protege.stanford.edu/) to browse and
edit OWL ontologies. The Mindswap OWL-S
API has been used to load the OWL ontologies
into the Knowledge Base and parse the OWL-S
Queries and Advertisements. We used the Pel-
let reasoner Pellet (http://pellet.owldl.com/) to clas-
sify the loaded ontologies and Jena API JENA
(http://jena.sourceforge.net) to query the reasoner for
concept relationships. To test the algorithms, we used
14 ontologies from the OWTLS-TC (service retrieval
test collection from SemWebCentral) in our Knowl-
edge Base. About 700 advertisements from OWLS-
TC were loaded into the advertisement repository. All
measurement points shown are average results taken
from 30 runs. The data sets for clients and providers
were randomly generated.

The result of experimental tests is given in Fig-
ures 3 and 4. Figure 3 shows the execution time of
Algorithms 1, 2 and 3. Two versions (denoted Algo 3
and Algo 3’ in this figure) of Algorithm 3 have been
tested: the first version (Algo 3) uses the simple ma-
jority and the second version (Algo 3’) uses simple
majority with veto. Figure 4 shows the evolution of
execution time in respect to the number of instances
for the two versions of Algorithm 3. As shown in this
figure, it is easy to see that the execution time varies



asymptotically for both versions of Algorithm 3. We
note, however, that the second version (Algo 3’) is
more expensive in execution time. This because the
second version of Algorithm 3 needs to execute Al-
gorithms 4 and 5 (for computing the concordance and
discordance powers) while the first version (Algo 3)
of Algorithm 3 needs to execute only Algorithm 4.

Figure 3: Execution time of algorithms.

Figure 4: Execution time vs number of instances.

8 RELATED WORK

In this section we discuss some matchmaking frame-
works in respect to several characteristics. The first
characteristic is related to the support of customiza-
tion which is an important issue in practice, as rec-
ognized by (Doshi et al., 2004). Most of proposed
matching systems ignore this point and only a few
ones take into account this aspect. (Doshi et al.,
2004), for instance, present a parameterized seman-
tic matchmaking framework that enables the user to
specify the matched attributes and the order in which
attributes are compared. In (Doshi et al., 2004), the
sufficiency condition defined by the authors is very
strict. This problem has been addressed in (Chakhar,
2013) and in this paper by relaxing matchmaking con-
ditions and supporting three types of matching.

The second characteristic concerns the type of at-
tributes used in the matching operation. Most of ex-
isting matchmaking frameworks (Ben Mokhtar et al.,

2006; Guo et al., 2005; Li and Horrocks, 2003) use
only service capability as the criteria for the match.
The authors in (Doshi et al., 2004) distinguish two
types of matching attributes: capability and prop-
erty. (Ludwig, 2011) proposes two approaches to
service selection based on QoS attributes. (Sathya
et al., 2011) discuss various techniques of QoS based
service selection. (Krithiga, 2012) proposes a QoS-
based web service selection based on a stochastic op-
timization. (Xia et al., 2011) propose a QoS-aware
web service selection algorithm based on clustering.
The framework presented in this paper identify three
types of matching attributes (capability, property, and
QoS) by subdividing property attributes set into two
sets of attributes: those directly related to the QoS
and those which are not. We think that the proposed
framework enhances the above cited proposals, espe-
cially the work of (Doshi et al., 2004).

The third characteristic is related to the method
used to compare the requested and advertised ser-
vices. Most of existing proposals use simple syntac-
tic and strict capability-based search. (Doshi et al.,
2004) present a semantic matchmaking framework
that avoids the limitations of strict capability-based
matchmaking. (Fu et al., 2009) transform the prob-
lem of matching web services to the computation of
semantic similarity between concepts in domain on-
tology using a semantic distance measure. (Bellur
and Kulkarni, 2007) improve (Paolucci et al., 2002)’s
matchmaking algorithm and propose a greedy-based
algorithm that relies on the concept of matching bi-
partite graphs. In this paper we adopted and extended
the semantic matchmaking framework proposed by
(Doshi et al., 2004).

The fourth characteristic concerns the support of
the multicriteria evaluation. There are a few pro-
posals that explicitly support multicriteria evaluation,
e.g. (Cui et al., 2011; Jeong et al., 2007; Menascé,
2004; Menascé and Dubey, 2007; Zeng et al., 2003).
Most of them use weighted-sum like aggregation
techniques. (Zeng et al., 2003) use linear program-
ming techniques to compute the optimal execution
plans for web service. (Menascé, 2004) considers two
evaluation criteria (time and cost) and assigns to each
one a weigh. The best composition of Web services
is then decided on the basis of the optimum combined
score. (Menascé and Dubey, 2007) propose a service
selection QoS broker by maximizing a utility func-
tion. We note, however, that this type of methods have
two main shortcomings: (i) they accept only numeri-
cal data and (ii) may lead to the compensation prob-
lem since low values may be counterbalanced by high
values. The approach used in this paper accepts any
type of data and resolves the compensation problem.



9 CONCLUSION

We presented a QoS-aware semantic matching frame-
work. The framework supports three types of match-
ing: functional attribute-level matching, functional
service-level matching, and QoS-based matching. A
series of highly customizable algorithms are adver-
tised for each type of matching.

Several issues need to be further investigated.
First, the reduction of the number of parameters re-
quired from the user by automatically generating the
boundaries of QoS classes. Second, the use of the
rough sets theory-based classification (Greco et al.,
2001) for assigning instances to QoS classes. Third,
the use of multicriteria ranking/choice approaches in-
stead of the classification approach used in this paper.
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