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Abstract Cumulative Prospect Theory is the modern version of Prospect Theory
and it is nowadays considered a valid alternative to the classical Expected Utility
Theory. Cumulative Prospect theory implies Gain-Loss Separability, i.e., the separate
evaluation of losses and gains within a mixed gamble. Recently, some authors have
questioned this assumption of the theory, proposing new paradoxes where the Gain-
Loss Separability is violated. We present a generalization of Cumulative Prospect
Theory which does not imply Gain-Loss Separability and is able to explain the cited
paradoxes. On the other hand, the new model, which we call the bipolar Cumulative
Prospect Theory, genuinely generalizes the original Prospect Theory of Kahneman and
Tversky, preserving the main features of the theory. We present also a characterization
of the bipolar Choquet Integral with respect to a bi-capacity in a discrete setting.
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1 Introduction

Cumulative Prospect Theory (CPT) (Tversky and Kahneman 1992) is the modern
version of Prospect Theory (PT) (Kahneman and Tversky 1979) and it is nowadays
considered a valid alternative to the classical Expected Utility Theory (EUT) of Von
Neumann and Morgenstern (1944). CPT has generalized EUT, preserving the descrip-
tive power of the original PT and capturing the fundamental idea of Rank Dependent
Utility (RDU) (Quiggin 1982) and of Choquet Expected Utility (CEU) (Schmeidler
1986, 1989; Gilboa 1987). In recent years CPT has obtained increasing space in appli-
cations in several fields: in business, finance, law, medicine, and political science (e.g.,
Benartzi and Thaler 1995; Barberis et al. 2001; Camerer 2000; Jolls et al. 1998; McNeil
et al. 1982; Quattrone and Tversky 1988). Despite the increasing interest in CPT—in
the theory and in the practice—some critiques have been recently proposed: Levy and
Levy (2002), Blavatskyy (2005), Birnbaum (2005), Baltussen et al. (2006), Birnbaum
and Bahra (2007), Wu and Markle (2008), Schade et al. (2010). In our opinion, the
most relevant of these critique concerns the Gain-Loss Separability (GLS), i.e., the
separate evaluation of losses and gains. More precisely, let P = (x1, p1; . . . ; xn, pn)

be a prospect giving the outcome xi ∈ IR with probability pi , i = 1, . . . , n and let
P+(P−) be the prospect obtained from P by substituting all the losses (gains) with
zero. GLS means that the evaluation of P is obtained as sum of the value of P+ and
P−, i.e., V (P) = V (P+) + V (P−). Wu and Markle (2008) refer to the following
experiment: 81 participants gave their preferences as it is shown below (read H � L
“the prospect H is preferred to the prospect L”.)

H =

⎛
⎜⎜⎝

0.50 chance
at $4, 200
0.50 chance
at $ − 3, 000

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

0.75 chance
at $3, 000
0.25 chance
at $ − 4, 500

⎞
⎟⎟⎠ = L

[52%] [48%]

H+ =

⎛
⎜⎜⎝

0.50 chance
at $4, 200
0.50 chance
at $0

⎞
⎟⎟⎠ ≺

⎛
⎜⎜⎝

0.75 chance
at $3, 000
0.25 chance
at $0

⎞
⎟⎟⎠ = L+

[15%] [85%]

H− =

⎛
⎜⎜⎝

0.50 chance
at $0
0.50 chance
at $ − 3, 000

⎞
⎟⎟⎠ ≺

⎛
⎜⎜⎝

0.75 chance
at $0
0.25 chance
at $ − 4, 500

⎞
⎟⎟⎠ = L−

[37%] [63%]

123

Author's personal copy



The bipolar Choquet integral representation

As can be seen, the majority of participants preferred H to L , but, when the two
prospects were split in their respective positive and negative parts, a relevant majority
prefers L+ to H+ and L− to H−. Thus, GLS is violated and CPT cannot explain such
a pattern of choice. In the sequel, we will refer to this experiment as the “Wu-Markle
paradox.”

In the CPT model the GLS implies the separation of the domain of the gains from that
of the losses, with respect to a subjective reference point. This separation, technically,
depends on a characteristic S-shaped utility function, steeper for losses than for gains,
and on two different weighting functions, which distort, in different way, probabilities
relative to gains and losses. We aim to generalize CPT, maintaining the S-shaped utility
function, but replacing the two weighting functions with a bi-weighting function. This
is a function with two arguments, the first corresponding to the probability of a gain
and the second corresponding to the probability of a loss of the same magnitude. We
call this model the bipolar Cumulative Prospect Theory (bCPT). The bCPT will allow
gains and losses within a mixed prospect to be evaluated conjointly. Let us explain
our motivation. The basic one, stems from the data in Wu and Markle (2008) and in
Birnbaum and Bahra (2007). Both papers, following a rigorous statistical procedure,
reported systematic violations of GLS. Moreover, if we look through the Wu-Markle
paradox shown above, we understand that the involved probabilities are very clear,
since they are the three quartiles 25, 50, and 75%. Similarly, the involved outcomes
have the “right” size: neither so small to give rise to indifference nor so great to
generate unrealism. Now suppose to look at the experiment in the other sense, from
non mixed prospects to mixed ones. The two preferences L+ � H+ and L− � H−,
under the hypothesis of GLS, should suggest that L should be strongly preferred to H .
Surprisingly enough, H � L . What happened? Clearly, the two preferences L+ � H+
and L− � H− did not interact positively and, on the contrary, the trade-off between
H+, H− and L+, L− was in favor of H . These data, systematically replicated, seem
to suggest that a sort of Gain Loss Hedging (GLH) appears in the passage from
prospects involving only gains or losses to mixed ones. When the GLH phenomenon
is intense enough to reverse the preferences, i.e. (L+ � H+ and L− � H−) and
also H � L , then GLS is violated. Thus, the first motivation of the paper is to show
how bCPT is able to capture, at least partially, these erroneous predictions of CPT. A
second motivation for proposing bCPT, stems from the consideration that, in evaluating
mixed prospects, it seems very natural to consider a trade-off between possible gains
and losses. This, corresponds to assume that people are more willing to accept the
risk of a loss having the hope of a win and, on the converse, are more careful with
respect to a possible gain having the risk of a loss. Psychologically, the evaluation of
a possible loss could be mitigated if this risk comes together with a possible gain. For
example, the evaluation of the loss of $3,000 with a probability 0.5 in the prospect
H = (0 , 0.5; $ − 3, 000, 0.5) could be different from the evaluation of the same
loss within the prospect L = ($4, 200 , 0.5; $ − 3, 000 , 0.5), where the presence of
the possible gain of $4, 200 could have a mitigation role. Why should be the overall
evaluation of a prospects only be the sum of its positive and negative part? The last
motivation has historical roots and involves the revolution given to the development
of PT. Since when the theory has been developed (Kahneman and Tversky 1979), a
basic problem has been to distinguish gains from losses. However, in the evolution
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Fig. 1 CPT utility function

of decisions under risk and uncertainty, the majority of data, regarded non-mixed
prospects (see, e.g., Allais 1953; Ellsberg 1961; Kahneman and Tversky 1979). Many
authors pointed out that the mixed case is still a little understood domain (Luce 1999,
2000; Birnbaum and Bahra 2007; Wu and Markle 2008).

This paper is organized as follows. In Sect. 2 we describe the bCPT, starting from
the CPT. In Sect. 3 we present several bi-weighting functions, generalizing well know
weighting functions of CPT. Section 4 is devoted to the relationship between CPT and
bCPT. In Sect. 5 we extend bCPT to uncertainty. Our main result, the characterization
of the bipolar Choquet integral, is developed in Sect. 6. We conclude in Sect. 7.
Some proofs, depending on the importance, are presented in the main text, while the
remaining proofs are presented in Appendix. The Appendix also contains tests of
bCPT on the previous data reported in the literature about the GLS violation.

2 From CPT to bCPT

2.1 Two different approaches

The most important idea in CPT is the concept of gain-loss asymmetry: people perceive
possible outcomes as either gains or losses with respect to a reference point, rather
than as absolute wealth levels. The characteristic S-shaped utility function1 is null at
the reference point, concave for gains and convex for losses, steeper for losses than
for gains (see Fig. 1).

1 Which the authors called value function
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Fig. 2 CPT weighting function

The other important idea in CPT is the notion of probability distortion: people
overweight very small probabilities and underweight average and large ones. This
probability transformation is mathematically described by means of a weighting func-
tion, that is a strictly increasing function π : [0; 1] → [0; 1] satisfying the conditions
π(0) = 0, π(1) = 1. The typical inverse S-shape weighting function graph is shown
in Fig. 2.

If in CPT two different weighting functions have the role to transform the probabil-
ities attached to gains and losses, in our model, we have a two variables bi-weighting
function. This has, in the first argument, the probability of a gain with a utility greater
or equal than a given level l and in the second argument the probability of a symmetric
loss, which utility is not smaller than −l. The final result is a number within the closed
interval [−1; 1]. Formally, let us set

A = {(p, q) ∈ [0; 1]X [0; 1] such that p + q ≤ 1} ,

that is, in the p − q plane, the triangle which vertices are O ≡ (0, 0), P ≡ (1, 0) and
Q ≡ (0, 1).

Definition 1 We define a bi-weighting function as any function

ω(p, q) : A → [−1; 1]

satisfying the following conditions:

– ω(p, q) is increasing in p and decreasing in q (bi-monotonicity)
– ω(1, 0) = 1, ω(0, 1) = −1 and ω(0, 0) = 0.
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Let us note that if π− and π+ are two weighting functions, then a separable bi-
weighting function is defined by means of ω(p, q) = π+(p)−π−(q), for all (p, q) ∈
A. Let P = (x1, p1; ...; xn, pn) be a lottery assigning the outcome x j ∈ IR with
probability p j , a utility function u(·) : IR → IR, two weighting functions π− , π+
and a bi-weighting function ω. Using an integral representation we can represent CPT
and bCPT, respectively, as

VC PT (P) =
+∞∫

0

π+

⎛
⎝ ∑

i :u(xi )≥t

pi

⎞
⎠ dt −

+∞∫

0

π−

⎛
⎝ ∑

i :u(xi )≤−t

pi

⎞
⎠ dt. (1)

VbC PT (P) =
+∞∫

0

ω

⎛
⎝ ∑

i :u(xi )≥t

pi ,
∑

i :u(xi )≤−t

pi

⎞
⎠ dt. (2)

In our opinion, both formulations (1), (2) genuinely generalize the original PT of
Kahneman and Tversky, preserving the main features of the theory. The only difference
is that, in (1) we get a separate evaluation of gains and losses, whereas in (2) we get
a conjoint evaluation. As we will soon see, the two formulas coincide in a non-mixed
context, i.e., when the outcomes involved in the choice process are only gains or only
loss. However, in the mixed case the two formulas can differ.

3 The bi-weighting function

In this section we propose some generalizations of well known weighting functions.
They coincide with the original gain weighting function, π+, if q = 0, and with the
opposite loss weighting function, −π−, if p = 0.

3.1 The Kahneman–Tversky bi-weighting function

The first and most famous weighting function was proposed in Tversky and Kahneman
(1992):

π(p) = pγ

[pγ + (1 − p)γ ]
1
γ

.

The parameter γ can be chosen differently for gains and losses and the authors esti-
mated γ = 0.61 for gains and γ = 0.69 for losses. For this weighting function we
propose the following bipolar form

ω(p, q) = pγ − qδ

[pγ + (1 − p)γ ]
1
γ + [

qδ + (1 − q)δ
] 1

δ − 1
. (3)
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As the original KT weighting function is non-monotonic for γ sufficiently close to
zero—see Rieger and Wang (2006), Ingersoll (2008)—so it is the case of (3) when γ

and δ are sufficiently close to zero. The Next proposition 1 establishes the parameter
limitations preserving the bi-monotonicity of (3).

Proposition 1 The Kahneman, Tversky bi-weighting function with parameters
1/2 < γ, δ < 1, is increasing in p and decreasing in q.

3.2 The Latimore, Baker and Witte bi-weighting function

In Lattimore et al. (1992), Goldstein and Einhorn (1987) was introduced the following
weighting function (with γ, α > 0):

π(p) = αpγ

αpγ + (1 − p)γ
, (4)

which is known as linear in log odd form (Gonzalez and Wu 1999). We propose the
following bipolar form of the (4):

ω(p, q) = α(pγ − qδ)

αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1
. (5)

The next Proposition 2 establishes the parameter limitations allowing for the bi-
monotonicity of (5). These limitations include many of previous parameter estimations
given for the (4) (see Table 1, from Bleichrodt and Pinto (2000)).

Proposition 2 The Latimore, Baker and Witte bi-weighting function with α > 1/2
and 0 < γ, δ ≤ 1, is increasing in p and decreasing in q.

3.3 The Prelec bi-weighting function

One of the most famous alternatives to the classical weighting function of Kahneman
and Tversky is the Prelec weighting function (Prelec 1998):

π(p) = e−β(− ln p)α , (6)

Table 1 Recent estimations of
parameters for the (4)

Authors α γ

Tversky and Fox (1995) 0.77 0.79

Wu and Gonzalez (1996) 0.84 0.68

Gonzalez and Wu (1999) 0.77 0.44

Abdellaoui (2000) (gains) 0.65 0.60

Abdellaoui (2000) (losses) 0.84 0.65

Bleichrodt and Pinto (2000) 0.816 0.550
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where β ≈ 1 is variable for gains and for losses and 0 < α < 1. The Prelec weighting
function is undefined for p = 0 but it is extended by continuity to the value of zero.
We propose the following bi-weighting form of the (6):

ω(p, q) =
{

pγ −qδ

|pγ −qδ |e
−β(− ln |pγ −qδ |)α ∀(p, q) ∈ A | pγ − qδ �= 0

0 ∀(p, q) ∈ A | pγ − qδ = 0
. (7)

The (7) is extended by continuity when pγ − qδ = 0. Note that |pγ − qδ| ∈ [0, 1]
and, consequently, the logarithm is non-positive. The next Proposition 3 establishes
the parameters limitations allowing for the bi-monotonicity of (7). Without loss of
generality, we choose β = 1.

Proposition 3 The Prelec bi-weighting function with β = 1, γ, δ > 0 and 0 < α < 1
is increasing in p and decreasing in q.

3.4 The inverse S-shape of the bi-weighting function

A typical feature of the weighting function described in Tversky and Kahneman (1992)
is the inverse S-shape in the plane. Let us consider and plot the bi-polarized form of
the KT weighting function, preserving the original parameters estimation γ = .61
and δ = .69

ω(p, q) = p0.61 − q0.69

[
p0.61 + (1 − p)0.61

] 1
0.61 + [

q0.69 + (1 − q)0.69
] 1

0.69 − 1
(8)

The typical inverse S-Shape is generalized from the plane to the space (see Fig. 3).
Clearly, we are interested to the part of this plot such that p + q ≤ 1.

3.5 Stochastic dominance and bCPT

The bi-monotonicity of the bi-weighting function, ensures the bCPT model satisfies the
Stochastic Dominance Principle. This means that, if prospect P stochastically domi-
nates prospect Q, then VbC PT (P) ≥ VbC PT (Q). The following theorem establishes
this result.

Theorem 1 Let us suppose that prospects are evaluated with the bipolar CPT, then
Stochastic Dominance Principle is satisfied.

Proof Let us consider P = (x1, p1; . . . ; xn, pn) and Q = (y1, q1; . . . ; ym, qm) such
that P stochastically dominates Q. This means that for all t ∈ IR

∑
i :xi ≥t

pi ≥
∑

i :yi ≥t

qi or equivalently
∑

i :xi ≤t

pi ≤
∑

i :yi ≤t

qi . (9)
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Fig. 3 bi-CPT weighting function

By the stochastic dominance of P over Q, we have that for all t ∈ IR+

∑
i :u(xi )≥t

pi ≥
∑

i :u(yi )≥t

qi and
∑

i :u(xi )≤−t

pi ≤
∑

i :u(yi )≤−t

qi . (10)

From (10), considering the bi-monotonicity of ω(·, ·), we have that for all t ∈ IR+

ω

⎛
⎝ ∑

i :u(xi )≥t

pi ,
∑

i :u(xi )≤−t

pi

⎞
⎠ ≥ ω

⎛
⎝ ∑

i :u(yi )≥t

qi ,
∑

i :u(yi )≤−t

qi .

⎞
⎠ (11)

We conclude that VbC PT (P) ≤ VbC PT (Q) by monotonicity of the integral.

On the other hand, in the absence of the bi-monotonicity of the bi-weighting func-
tion, we are able to build preferences violating the Stochastic Dominance Principle.
Indeed, let us suppose the bi-weighting function ω(·, ·) is not [increasing in p and
decreasing in q], i.e., that there exist (p, q), ( p̃, q̃) ∈ [0, 1]2 such that

⎧⎪⎪⎨
⎪⎪⎩

p ≥ p̃
q ≤ q̃
(p − p̃)2 + (q − q̃)2 > 0
ω(p, q) < ω( p̃, q̃)

Let us consider x > 0 and y < 0 such that u(x) = −u(y) and the two lotteries
R = (x, p; y, q) and S = (x, p̃; y, q̃). Even if R stochastically dominates S, it would
results
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VbC PT (R) = ω(p, q) · u(x) < ω( p̃, q̃) · u(x) = VbC PT (S).

4 The relationship between CPT and bCPT

The relation between CPT and bCPT can be formalized in two basic propositions. The
proofs are quite simple; however, the importance in the paper of these propositions is
great.

Proposition 4 For non-mixed prospects (containing only gains or losses), the bCPT
model coincides with the CPT model.

Proof From a bi-weighting function, ω, we can define the two weighting function
π+(p) = ω(p, 0) and π−(q) = −ω(0, q) for all p, q ∈ [0, 1]. Vice versa, starting
from two weighting functions, π+ and π− we can define the separable bi-weighting
function ω(p, q) = π+(p) − π−(q) for all (p, q) ∈ A. Thus, for the same utility
function u and a prospect P = (x1, p1; . . . ; xn, pn) assigning non-negative (non-
positive) outcome x j ∈ IR+ with probability p j , j = 1, . . . , n, it is easily checked
that the value VbCPT (P) computed with respect to ω coincides with the value VCPT (P)

computed with respect to π+ (π−).

Proposition 4 states that CPT and bCPT are the same model for non-mixed
prospects. This fact is, for us, of great importance, since CPT has been widely tested in
situations involving only gains or only losses, as remembered for instance in Wu and
Markle (2008): “In the last 50 years, a large body of empirical research has investi-
gated how decision makers choose among risky gambles. Most of these findings can be
accommodated by prospect theory... However, the majority of the existing empirical
evidence has involved single-domain gambles.”

Proposition 5 If the prospects are evaluated with the bCPT model with a separable
bi-weighting function, then the representation coincides with that obtained with the
CPT model. On the converse, if the prospects are evaluated with the CPT model, than
the representation coincides with that obtained with the bCPT model with a separable
bi-weighting function.

Although the proof of Proposition 5 is trivial, the content is crucial. Indeed Propo-
sition 5 establishes that CPT can be considered a special case of bCPT, provided that
we use a separable bi-weighting function. In other words there exists a (separable)
bi-weighting function ω(p, q) = π+(p) − π−(q) such that VbC PT (P) = VC PT (P)

for all prospects P . This fact is relevant in order to provide a preference foundation
for the model, since bCPT will need a less restrictive set of axioms with respect to
CPT.

4.1 BCPT and the Wu–Markle paradox

Let us reconsider the Wu–Markle paradox described in the introduction. The paradox
consists in the GLS violation, contrary to the prediction of CPT. Wu and Markle (2008)
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suggested to use the same model, CPT, with a different parametrization for mixed
prospects and those involving only gains or losses: “Our study indicates that mixed
gamble behavior is described well by an S-shaped utility function and an inverse
S-shaped probability weighting function. However, gain-loss separability fails, and
hence different parameter values are needed for mixed gambles than single-domain
gambles...”

Despite these conclusions, we are able to explain their paradox using bCPT, without
changing the parameters in the passage from non-mixed prospects to mixed ones. If
we use the bCPT with the KT bi-weighting function,

ω(p, q) = p0.61 − q0.69

[
p0.61 + (1 − p)0.61

] 1
0.61 + [

q0.69 + (1 − q)0.69
] 1

0.69 − 1

and the classical KT power utility function2

u(x) =
{

x .88 ifx ≥ 0
−2.25 |−x |.88 ifx < 0

,

we obtain

VbC PT (H) = −443.24 > VbC PT (L) = −453.76
VbC PT (H+) = 649.19 < VbC PT (L+) = 652.26
VbC PT (H−) = −1, 172.45 < VbC PT (L−) = −1, 083.04.

These results agree with the preference relation �. The most influential paper showing
systematic violation of GLS is Wu and Markle (2008). Similar results are, for example,
in Birnbaum and Bahra (2007). In the Appendix 2, we show in detail how bCPT seems
to naturally capture the essence of the phenomenon.

5 Extension of bCPT to uncertainty

5.1 Bi-capacity and the bipolar Choquet integral

In order to extend bCPT to the field of uncertainty, we need to generalize the concept
of capacity and Choquet integral with respect to a capacity. Let S be a non-empty set
of states of the world and � an algebra of subsets of S (the events). Let B denote the
set of bounded real-valued �−measurable functions on S and B0 the set of simple (i.e.
finite valued) functions in B. A function ν : � → [0, 1] is a normalized capacity on �

if ν (∅) = 0, ν (S) = 1 and ν (A) ≤ ν (B) whenever A ⊆ B. Choquet (1953) defined
an integration operation with respect to ν. Given a non-negative valued function f ∈ B
and a capacity ν : � → [0, 1], the Choquet integral of f with respect to ν is

2 Both for ω(p, q) and u(x) we use the original parameters, estimated in Tversky and Kahneman (1992)
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∫

S

f (s) dν =:
∞∫

0

ν ({s ∈ S : f (s) ≥ t}) dt .

Successively, Schmeidler (1986) extended this definition by defining the Choquet
integral of a real valued function f ∈ B with respect to ν as

∫

S

f (s) dν =:
0∫

−∞
[ν ({s ∈ S : f (s) ≥ t})−1] dt+

∞∫

0

ν ({s ∈ S : f (s) ≥ t}) dt . (12)

Obviously, for a non-negative function, f , the first summand in (12) is zero, while for
a non-positive function, f , it is zero the second summand. Moreover, let us note that,
following formula (12) we have that

∫

S

f (s) dν =
∫

S

f+(s) dν +
∫

S

f−(s) dν,

where f+ denotes the positive part of f , i.e. f+(s) = f (s) if f (s) ≥ 0 and f+(s) = 0
if f (s) < 0 and f− denotes the negative part of f , i.e. f−(s) = f (s) if f (s) ≤ 0
and f−(s) = 0 if f (s) > 0. It follows that, since the Choquet integral (12) is at the
basis of CEU (Schmeidler 1986, 1989; Gilboa 1987), also CEU implies GLS. Thus,
we need an extended version of the Choquet integral, which does not implies GLS.

Let us consider the set of all the couples of disjoint events

Q =
{
(A, B) ∈ 2S × 2S : A ∩ B = ∅

}
.

Definition 2 (Grabisch and Labreuche 2005a,b; Greco et al 2002) A function μb :
Q → [−1, 1] is a bi-capacity on S if

– μb(∅,∅) = 0, μb(S,∅) = 1 and μb(∅, S) = −1;
– μb(A, B) ≤ μb(C, D) for all (A, B), (C, D) ∈ Q such that A ⊆ C ∧ B ⊇ D.

Definition 3 (Grabisch and Labreuche 2005a,b; Greco et al 2002) The bipolar Cho-
quet integral of a simple function f ∈ B0 with respect to a bi-capacity μb is given
by:

∫

S

f (s) dμb =:
∞∫

0

μb({s ∈ S : f (s) > t}, {s ∈ S : f (s) < −t})dt.
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5.2 Two different approaches

Since we are working with simple acts f ∈ B0, it follows that an uncertain act can
be expressed as a vector f = (x1, s1; · · · ; xn, sn), where xi will be obtained if the
state si will occur. The dual capacity of a capacity ν : � → [0, 1] is defined as
ν̂(A) = 1 − ν(N \ A) for all A ∈ �. Let be given a utility function u(·) : � → IR,
two capacities (one for gains, one for losses) ν+ : � → [0, 1] and ν− : � → [0, 1]
and a bi-capacity μb : Q → [−1, 1]. The evaluation of f = (x1, s1; · · · ; xn, sn) in
CPT and bCPT is

VC PT ( f ) =
∫

S

u
[

f+(s)
]

dν+ +
∫

S

u
[

f−(s)
]

d ν̂−

=
∞∫

0

ν+
({

s j : u(x j ) ≥ t
})

dt −
0∫

−∞
ν− ({si : u((xi ) ≤ t}) dt . (13)

VbC PT (P) =
∫

S

u [ f (s)] dμb =
+∞∫

0

μb ({si : u(xi ) > t} , {si : u(xi ) < −t}) dt.

(14)

In CPT we sum the Choquet integral of u( f+) with respect to ν+ with the Choquet
integral of u( f−) with respect to ν̂−, by getting a separate evaluation of gains and
losses. In bCPT we calculate the bipolar Choquet integral of u( f ) with respect to μb

getting a conjointly evaluation of gains and losses.

5.3 Link between CPT and bCPT

Grabisch and Labreuche (2005a) define a bi-capacity μb of CPT type (or separable)
if there exist two capacities ν+ : � → [0, 1] and ν− : � → [0, 1], such that for all
(A, B) ∈ Q, μb(A, B) = ν+(A) − ν−(B). As in a risk-context, the two situations
where CPT and bCPT coincide will occur for non mixed acts or using a separable
bi-capacity.

Proposition 6 For non-mixed acts, the bCPT model coincides with the CPT model.

Proof Let us suppose that μb : Q → [−1, 1] is a bi-capacity, then we can define two
capacities ν+ and ν− as follows: for all E ∈ �, ν+ (E) = μb (E,∅) and ν− (E) =
−μb (∅, E). If f ∈ B0 is such that f (s) ≥ 0 for all s ∈ S, then it is easily checked
that

∫
S f (s) dμb = ∫

S f (s) dν+ and
∫

S − f (s) dμb = ∫
S − f (s) dν−.

Proposition 7 The bCPT model with a separable bi-capacity coincides with the CPT
model.
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Proof of proposition 7 is trivial (not the consequence), based on the fact (see Grabisch
and Labreuche (2005b)) that for a separable bi-capacity μb(A, B) = ν+(A) − ν−(B)

and for all f ∈ B0 we get
∫

S f (s)dμb = ∫
S f+(s)dν+ + ∫

S f−(s)d ν̂− =∫
S f+(s)dν+ − ∫

S(− f )+(s)dν−.
In the remaining part of this paper we will face the problem of the preference

foundation of bCPT. As we have just seen, the main concept to extend bCPT from
the field of risk to that of uncertainty is the bipolar Choquet integral with respect to
a bi-capacity. We will present a fairly simple characterization of the bipolar Choquet
integral.

6 Axiomatic characterization of the bipolar Choquet integral

Let us identify (A, B) ∈ Q with the double-indicator function (A, B)∗ ∈ B0,

(A, B)∗(s) =
⎧⎨
⎩

1 if s ∈ A
−1 if s ∈ B
0 if s /∈ A ∪ B.

Since
∫

S (A, B)∗μb = ∫ 1
0 μb(A, B)dt = μb(A, B) then, the functional

∫
S μb, i.e.

the bipolar Choquet integral, can be considered as an extension of the bi-capacity μb

from Q to B0.

Definition 4 (Grabisch and Labreuche 2005b) f, g : S → IR are absolutely co-
monotonic and cosigned (a.c.c.) if their absolute values are co-monotonic, i.e.,

( | f (s)| − | f (t)| ) · ( |g(s)| − |g(t)| ) ≥ 0 ∀s, t ∈ S

and, moreover, they are co-signed, i.e., f (s) · g(s) ≥ 0 ∀s ∈ S.

The next proposition 8 lists some basic properties of the bipolar Choquet integral
(for additional properties see also Grabisch et al. (2009)).

Proposition 8 (Grabisch and Labreuche 2005b) The bipolar Choquet integral
∫

S μb

satisfies the following properties

– (P1) Monotonicity.

f (s) ≥ g(s) ∀s ∈ S ⇒
∫

S

f (s)μb ≥
∫

S

g(s)μb;

– (P2) Positive homogeneity. For all a > 0, and f, a · f ∈ B0

∫

S

a · f (s)μb = a ·
∫

S

f (s)μb;
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– (P3) Bipolar idem-potency. For all λ > 0

∫

S

λ(S,∅)∗μb = λ and
∫

S

λ(∅, S)∗μb = −λ;

– (P4) Additivity for acts a.c.c. If f, g ∈ B0 are a.c.c., then

∫

S

f (s) + g(s)μb =
∫

S

f (s)μb +
∫

S

g(s)μb.

The following Theorem 2 characterizes the bipolar Choquet integral
∫

S μb. We
present the proof in the main text, due to the importance of the theorem.

Theorem 2 Let J : B0 → IR satisfy

– J ((S,∅)∗) = 1 and J ((∅, S)∗) = −1;
– (P1) Monotonicity;
– (P4) Additivity for a.c.c. acts;

then, by assuming μb(A, B) = J ((A, B)∗) ∀(A, B) ∈ Q, we have

J ( f ) =
∫

S

f (s)dμb ∀ f ∈ B0.

Proof First of all let us note that (μb(A, B) = J ((A, B)∗) ,∀(A, B) ∈ Q) defines a
bi-capacity. It is easily checked that if (A, B), (C, D) ∈ Q with A ⊆ C and B ⊆ D,
then the functions (A, B)∗ and (C, D)∗ are a.c.c.. Moreover, let us suppose that the
three functions f, g, h ∈ B are pairwise a.c.c. then also the function f + g is a.c.c.
with f, g, and h. Indeed, f + g is obviously cosigned with f, g, and h, while the fact
that | f + g| = | f |+ |g| is co-monotonic with | f |, |g|, and |h| is a direct consequence
of the definition of co-monotonicity. Indeed, suppose that f, g, h are pairwise co-
monotonic and let us prove that f + g is co-monotonic with h. For this it is sufficient
to note that for all r, s ∈ S we have [( f + g)(s) − ( f + g)(r)](h(s) − h(r)) =
( f (s)− f (r))(h(s)−h(r))+(g(s)−g(r))(h(s)−h(r)) ≥ 0. As consequence if J is a
functional defined on B and additive for a.c.c. acts and if f, g, and h are pairwise a.c.c.,
then J ( f + g +h) = J ( f )+ J (g)+ J (h). Now we are able to prove the theorem. Let
f ∈ B0 be a simple function with image f (S) = {x1, x2, . . . , xn}. Let (·) : N → N be
a permutation of indices in N = {1, 2, . . . , n} such that |x(1)| ≤ |x(2)| ≤ · · · ≤ |x(n)|.
f can be written as sum of double-indicator functions, i.e.,

f =
n∑

i=1

(∣∣x(i)
∣∣− ∣∣x(i−1)

∣∣) (A( f )(i), B( f )(i)
)∗

where A( f )(i) = {
s ∈ S : f (s) ≥ ∣∣x(i)

∣∣} , B( f )(i) = {
s ∈ S : f (s) ≤ − ∣∣x(i)

∣∣}
and

∣∣x(0)

∣∣ = 0. Observe that the simple functions
(

A( f )(i), B( f )(i)
)∗ for
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i = 1, 2, . . . , n are pairwise a.c.c., and, consequently, also the simple functions(∣∣x(i)
∣∣− ∣∣x(i−1)

∣∣) (A( f )(i), B( f )(i)
)∗ for i = 1, 2, . . . , n are pairwise a.c.c.. On the

basis of this observation, applying (P4), homogeneity and the definition of μb(A, B)

we get the thesis as follows:

J ( f ) = J

[
n∑

i=1

(∣∣x(i)
∣∣− ∣∣x(i−1)

∣∣) (A( f )(i), B( f )(i)
)∗
]

=
n∑

i=1

J
[(∣∣x(i)

∣∣− ∣∣x(i−1)

∣∣) (A( f )(i), B( f )(i)
)∗]

=
n∑

i=1

(∣∣x(i)
∣∣− ∣∣x(i−1)

∣∣) J
[(

A( f )(i), B( f )(i)
)∗]

=
n∑

i=1

(∣∣x(i)
∣∣− ∣∣x(i−1)

∣∣)μb
(

A( f )(i), B( f )(i)
) =

∫

S

f dμb

Remark 1 The properties (P2), i.e., the positive homogeneity, (P3) the bipolar idem-
potency, are not among the hypothesis of Theorem 2 since they are implied by additivity
for absolutely co-monotonic and cosigned acts (P4) and monotonicity (P1).

Remark 2 The fact that the functional,
∫

S dμb, is additive for a.c.c. functions, means
that in the bCPT model the weakened version of independence axiom will be true for
a.c.c. acts.

7 Concluding remarks

In bCPT, gains and losses within a mixed prospect are evaluated conjointly and not
separately, as in CPT. This permits to account for situations in which CPT fails, due
to gain-loss separability, such as the “Wu–Markle paradox” In this paper we propose
a natural generalization of CPT, which, fundamentally: a) totally preserve CPT in
non-mixed cases; b) allows for GLS violation in mixed case. The main concept to
get an axiomatic foundation of bCPT, in decision under uncertainty, is the bipolar
Choquet integral, about which, we have presented a fairly simple characterization. A
full axiomatization of the model, in terms of preferences foundation, will be the aim
for future researches.

Appendix 1

Proof of proposition 1 It results that f (x) = [
xδ + (1 − x)δ

] 1
δ ≥ 1 for all x ∈ [0, 1]

and δ ∈ [0, 1]. Indeed the function f is continuous in the closed interval [0, 1], with
f (0) = f (1) = 1, while f ′(x) is positive in ]0, 1/2[ and negative in ]1/2, 1[. In fact:

f ′(x) = [
xδ + (1 − x)δ

] 1
δ
−1
[
xδ−1 − (1 − x)δ−1

]
≥ 0
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ω(p,q)>0

B

C(0,1)
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A(1,0)

ω(p,q)=0

Fig. 4 the KT bi-weighting function domain; in the case γ > δ, the curve q = pγ /δ is convex

⇔
[
xδ−1 − (1 − x)δ−1

]
≥ 0 ⇔ 1 ≥

(
x

1 − x

)1−δ

⇔ x ≤ 1

2

It follows that in (3) the denominator is positive and the sign depends on pγ − qδ . Let
us consider a point (p, q) belonging to the zero curve ω(p, q) = 0 ⇔ pγ − qδ = 0,
that is the ̂O B curve in Fig. 4. If the first coordinate p increases the point (p, q)

will belong to the domain in which the function (3) is positive (OAB “triangle”),
while if the second coordinate q increases the point (p, q) will belong to the domain
in which the function (3) is negative (OBC “triangle”). Thus, starting from the zero
curve pγ − qδ = 0 the function (3) is increasing in p and decreasing in q. Now it is
sufficient to prove that ω(p, q) is increasing in p and decreasing in q within the two
triangles, i.e. where ω(p, q) > 0 (< 0) and p, q > 0. If ω(p, q) > 0, and then if
pγ − qδ > 0 and since the function ln(x) is strictly increasing, it is sufficient to prove
that ln [ω(p, q)] is increasing in p and decreasing in q. By differentiating w. r. t. the
first variable:

∂ ln [ω(p, q)]

∂p
= γ pγ−1

pγ − qδ
−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

×
[

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1
(15)

If 1/2 ≤ p < 1 →
[(

1
p

)1−γ −
(

1
1−p

)1−γ
]

≤ 0 and (15) is positive. Suppose

0 < p < 1/2, then the first summand in (15) is positive and the second is negative.
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We have the following decreasing sequence:

∂ ln [ω(p, q)]

∂p
= γ pγ−1

pγ − qδ
−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

×
[

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1

Since

γ pγ−1

pγ − qδ
>

γ pγ−1

pγ

≥ γ pγ−1

pγ
−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

·
[

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1

Since from⎧⎨
⎩
[
qδ + (1 − q)δ

] 1
δ − 1 ≥ 0 →

[
pγ + (1 − p)γ

] 1
γ

−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1
≤
[

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ

→

−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
] [

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1

−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
] [

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ

⎫⎬
⎭

≥ γ pγ−1

pγ
−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

·
[

pγ + (1 − p)γ
] 1

γ
−1

[
pγ + (1 − p)γ

] 1
γ

= γ pγ−1

pγ
−
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

· 1

pγ + (1 − p)γ

Since

−
(

1

p

)1−γ

≤ −
[(

1

p

)1−γ

−
(

1

1 − p

)1−γ
]

≤ 0

≥
γ
(

1
p

)1−γ

pγ
−

(
1
p

)1−γ

pγ + (1 − p)γ
=
(

1

p

)1−γ

·
[

γ

pγ
− 1

pγ + (1 − p)γ

]
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Now, in order to prove that the partial derivative (15) is non negative, it is sufficient
to show that the quantity in the last square bracket is non negative, i.e.

γ

pγ
− 1

pγ + (1 − p)γ
= γ

[
pγ + (1 − p)γ

]− pγ

pγ [pγ + (1 − p)γ ]
≥ 0 ⇔ γ

[
pγ + (1 − p)γ

]− pγ ≥ 0

⇔ γ (1 − p)γ ≥ (γ )pγ ⇔
(

1 − p

p

)γ

≥ 1 − γ

γ
⇔ 1 − p

p
≥
(

1 − γ

γ

) 1
γ

Since we are under the limitation 0 < p < 1/2 the first term is greater than 1 and the
last inequality is true if

(
1 − γ

γ

) 1
γ ≤ 1 ⇔ γ ≥ 1

2

and this is ensured by the hypothesis of proposition 1.
Thus we have proved that if ω(p, q) > 0 then the function ω(p, q) is increasing in
p. An analogous proof gives that, if ω(p, q) < 0, then the function is decreasing in
q, i.e., the function −ω(p, q) is increasing in q. For this it is sufficient to exchange p
with q and γ with δ and to repeat the previous passages. Now, in the case ω(p, q) > 0
we turn out our attention to the first derivative of ln [ω(p, q)] with respect to q

∂ ln [ω(p, q)]

∂q
= −δqδ−1

pγ − qδ
−
[(

1

q

)1−δ

−
(

1

1 − q

)1−δ
]

·

·
[
qδ + (1 − q)δ

] 1
δ
−1

[
pγ + (1 − p)γ

] 1
γ + [

qδ + (1 − q)δ
] 1

δ − 1
(16)

If

[(
1
q

)1−δ −
(

1
1−q

)1−δ
]

≥ 0 ⇔ q ≤ 1/2 then the (16) is negative. Supposing

q > 1/2, the first summand in (16) is negative and the second is positive. Note that
if γ ≥ δ, the curve which equation is pγ − qδ = 0 coincides with the graph of the
function q = p

γ
δ that is convex, like in Fig. 4, and within the domain

A+ = {
(p, q) ∈ [0; 1] × [0; 1] such that p + q ≥ 1 and pγ − qδ

}

it is impossible that q > 1/2 and so we have finished the proof. On the other hand, if
γ < δ the graph of the function q = p

γ
δ is concave and within the domain A+ there

are points such that q > 1/2. For these reasons, from here we will suppose q > 1/2
and γ < δ and we will refer to Fig. 5.

From a sequence of increases it results:

∂ ln [ω(p, q)]

∂q
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B

Fig. 5 if γ < δ, the curve ̂O B : q = pγ /δ is concave and its most accentuate curvature is that of
̂O D : q = √

p. The point A(.5, .5) is the intersection between the lines p = q and p + q = 1; the point B
is the intersection between pγ −qδ = 0 and p+q = 1; the point C is the intersection between pγ −qδ = 0
and q = .5; the point D(.38, .62) is the intersection between q = √

p and p + q = 1; the point E(.25, .5)

is the intersection between q = √
p and q = .5

Since from
{

1/2 < γ, δ ≤ 1 → [
pγ + (1 − p)γ

] 1
γ − 1 ≥ 0 and

[
qδ + (1 − q)δ

] 1
δ ≥ 1 →

[
qδ+(1−q)δ

] 1
δ
−1

[
pγ +(1− p)γ

] 1
γ +[qδ+(1 − q)δ

] 1
δ −1

≤
[
qδ+(1−q)δ

] 1
δ
−1

[
qδ+(1−q)δ

] 1
δ

= 1

qδ+(1−q)δ
≤1

⎫⎬
⎭

≤ −δqδ−1

pγ − qδ
−
[(

1

q

)1−δ

−
(

1

1 − q

)1−δ
]

= qδ−1

[
−δ

pγ − qδ
+
(

q

1 − q

)1−δ

− 1

]

Then it is sufficient to prove that

−δ

pγ − qδ
+
(

q

1 − q

)1−δ

− 1 ≤ 0 ⇔
(

q

1 − q

)1−δ

≤ 1 + −δ

pγ − qδ

and this will follow from:

q

1 − q
≤ 1 + −δ

pγ − qδ
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since

q >
1

2
⇒ q

1 − q
> 1 ⇒

(
q

1 − q

)1−δ

⇒ q

1 − q

now we need to prove that

q

1 − q
≤ 1 + −δ

pγ − qδ
(17)

Under the restrictions we are working with, it is possible to elicit some limitations of
the variables p, q, γ and δ. We have supposed pγ − qδ > 0 , q > 1/2 and δ > γ ,
that in Fig. 5 delimit the area ABC. Since the curvature of pγ − qδ = 0 is more
accentuated when larger is the difference between γ and δ, a limit is, for us, the curve
p0.5 − q1 = 0, i.e. q = √

p, which delimits the area ADE containing the area ABC.
This consideration allows us to elicit some sure limitations for p and q: the “highest”
point is the intersection between q = √

p and p + q = 1, that is D(0.38; 0.62); the
most “left-placed” point is the intersection between q = √

p and q = 0.5, that is
E(0.25; 0.5); we elicit 0.25 < p < 0.5 and 0.5 < q < 0.62. Consider the function
pγ −qδ , by differentiating, we can prove that it is increasing in p and δ and decreasing
in q and γ , and then, using the elicited parameter limitations we have

pγ − qδ ≤
(

1

2

)0.5

−
(

1

2

)1

which in turn implies

1 + −δ

pγ − qδ
≥ 1 + δ

( 1
2

)0.5 − ( 1
2

)1 (18)

Finally, the quantity q/(1 − q) is increasing in q and then by using the sup limitation
of q it follows that

q

1 − q
≤ 0.62

1 − 0.62
(19)

Using (18) and (19) the (17) is true if it is true that:

0.62

1 − 0.62
≤ 1 + δ

( 1
2

)0.5 − ( 1
2

)1

which gives δ > 0.131 that is within our limitations. Similarly, by exchanging p with
q and γ with δ it follows that ω(p, q) is increasing in p when ω(p, q) < 0. ��
Proof of proposition 2 For x ∈ [0, 1], α > 1/2 and γ ∈]0, 1] it results f (x) =
αxγ + (1 − x)γ ≥ min {1, α} > 1/2. Since this function is continuous in the closed
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interval [0, 1], with f (0) = 1, f (1) = α and the second derivative is non-positive
from zero to one:

f ′′(x) = γ (γ − 1)αxδ−2 + γ (γ − 1)(1 − x)δ−2 ≤ 0

It follows that, in (5), the denominator is positive under the limitation α > 1/2. Within
its domain the first derivative of the (5) with respect to p is :

∂ω(p, q)

∂p
= αγ

(1 − p)γ−1
(

pγ−1 − qδ
)+ pγ−1

[
2αqδ + (1 − q)δ − 1

]
[
αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1

]2 (20)

Having chosen γ ≤ 1 the term pγ−1 ≥ 1 for all p ∈]0, 1] and since qδ ≤ 1 then
pγ−1 − qδ ≥ 0. On the other hand (2αqδ + 1 − q)δ − 1 ≥ 0 since for x ∈ [0, 1],
α > 1/2 and 0 < δ ≤ 1 the function f (x) = 2αxδ + (1 − x)δ ≥ min {1, 2α} ≥ 1
since it is continuous in the closed interval [0, 1], with f (0) = 1, f (1) = 2α and the
second derivative is non-positive from zero to one:

f ′′(x) = γ (γ − 1)2αxδ−2 + γ (γ − 1)(1 − x)δ−2 ≤ 0

Then (20) is non-negative and the (5) is increasing in p.

In the same manner it can be checked that the first derivative with respect to q

∂ω(p, q)

∂q
= αδ

(1 − q)δ−1
(

pγ − qδ−1
)− qδ−1

[
2αpγ + (1 − p)γ − 1

]
[
αpγ + (1 − p)γ + αqδ + (1 − q)δ − 1

]2 (21)

is non-positive and then the (5) is decreasing in q. ��
Proof of Proposition 3 Let us consider a point (p, q) belonging to the zero curve
ω(p, q) = 0 ⇔ pγ − qδ = 0 that is the ̂O B curve in Fig. 4. If p increases
the point (p, q) will belong to the domain in which the function is positive (O AB
“triangle”), while if q increases the point (p, q) will belong to the domain in which
the function is negative (O BC “triangle”). Now it is sufficient to prove that ω(p, q) is
increasing in p and decreasing in q within the two triangle, i.e. where ω(p, q) > 0 or
ω(p, q) < 0 and p, q > 0. If w(p, q) > 0 and then if pγ − qδ > 0 the (7) becomes:
ω(p, q) = e−[− ln

(
pγ −qδ

)]α
and by differentiating w. r. t. the two variables:

∂ω(p, q)

∂p
= e−[− ln

(
pγ −qδ

)]α
α
[− ln

(
pγ − qδ

)]α−1 γ pγ−1

pγ − qδ
> 0

∂ω(p, q)

∂p
= e−[− ln

(
pγ −qδ

)]α
α
[− ln

(
pγ − qδ

)]α−1 −δqδ−1

pγ − qδ
< 0

This proves the property within the triangle O B A, where ω(p, q) > 0. Similarly if

pγ − qδ < 0 the (7) becomes: ω(p, q) = −e−[− ln
(−pγ +qδ

)]α
and by differentiating

w. r. t. the two variables:
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∂ω(p, q)

∂p
= −e−[− ln

(−pγ +qδ
)]α

α
[− ln

(
pγ − qδ

)]α−1 −γ pγ−1

−pγ + qδ
> 0

∂ω(p, q)

∂p
= −e−[− ln

(−pγ +qδ
)]α

α
[− ln

(
pγ − qδ

)]α−1 δqδ−1

−pγ + qδ
< 0

We conclude that the Prelec bi-weighting function is increasing in its first argument
and decreasing in the second, for all the parameter values. ��

Appendix 2

Recent literature denouncing GLS

As discussed in the paper, this study aims to generalize CPT, allowing gains and
losses within a mixed prospect to be evaluated conjointly, rather than separately. In
the following we shall focus our attention on two recent papers: Wu and Markle
(2008) and Birnbaum and Bahra (2007). Both of them report systematic violations of
GLS. CPT and all the models it generalizes, such as EUT, cannot account for such a
pattern of choice. We show how bCPT is able to capture, at least partially, these errata
predictions.

Wu and Markle (2008)

In Table 2 we reproduce Table 1 of page 1326 in Wu and Markle (2008). As in the
Wu–Markle paradox, two binary prospects, H and G, containing a gain and a loss were
confronted trough the preferences of participants. Then, also the positive and negative
part of these prospects were confronted. The second and third column describe the two
prospects H and G in terms of outcomes and relative percentages. The fourth column
gives the percentage of participants whose choice was respectively H, H+, H− over
G, G+, G−. The fifth column, titled “preferences”, gives the preferred prospect in
percentage. In this column we report both prospects (like G H ) when the percentage
of choice was close to 50%. Finally, in the sixth column we report the choice predicted
by bCPT, used with the specification of parameters given below. In many cases (tests
6,7, 10-18) the respondents preferred (in percentage) H to G while, splitting the
prospects into their respective positive and negative part, the preferences were reversed.
These are the phenomenons of GLS and GLH. To test bCPT we have used the KT bi-
weighing function (3) with parameters γ = 0.9 and δ = 0.89 and the KT power utility
function

u(x) =
{

xα+ if x ≥ 0
−λ(−x)α− if x < 0

(22)

with parameters λ = 1.77 , α+ = 0.68, and α− = 0.79.

As can be seen in Table 2 on the last two columns, the predictions of bCPT are in
the same directions of the preferences in all the pure positive choices except that in
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tests 13, 23, and 25, in all the pure negative choices except in tests 9, 12-15, 17, and
19 and in all the mixed choices except in tests 3, 5, and 20. But, what we think is very
interesting, is that bCPT is able to explain the reversed preferences, totally in tests 6,
7, 10, 11, 16, and 18 and partially in test 12, 14, 15, and 17. The model seems able to
naturally capture, totally or partially, the GLH.

Birnbaum-Bahra

Birnbaum and Bahra (2007) reported systematic violations of two behavioral prop-
erties implied by CPT. One, is the just discussed GLS and the other, is the property
known as coalescing: “coalescing is the assumption that if there are two probability-
consequences branches in a gamble leading to the same consequence, they can
be combined by adding their probabilities.” For example, the three-branch gamble
A = ($100, 25%; $100, 25%; $0, 50%) should be equivalent to the two-branch gam-
ble A′ = ($100, 50%; $0, 50%). Our model is not able to accommodate for vio-
lation of coalescing; however, we briefly discuss this point. Birnbaum and Bahra
tested violation of coalescing presenting to the participants the gambles in terms
of a container holding exactly 100 marbles of different colors. So, according to
coalescing, B ′ = (25 red $100; 75 white $0) should be considered equivalent to
B = (25 red $100; 25 white $0; 50 white $0). We doubt that the prospects pre-
sented in these form are equivalent to the form B ′ = (25% $100; 75% $0) should
be considered equivalent to B = (25% $100; 25% $0; 50% $0). In fact, a person
facing B could ask himself what is the reason that the first 25 white marbles were
not summed to the second 50 white marbles. It is admissible that she could think
if they differ in some way, e.g., in size. In any case, she will have an additional
information, or doubt to process and this could generate errors. As focused from the
authors in Wu and Markle (2008), the examples in Birnbaum and Bahra (2007) to
underline the GLS violation, are less simple than theirs, but our model is able to
accommodate for these violations too. The only we need is to modify the parameter
γ from the value of 0.9, used to accommodate the majority of data in Wu and Markle
(2008), to the value of 0.74. Next, we report the part of the Table 5 at page 1022 in
Birnbaum and Bahra (2007) that, in the words of the same authors, form a test for
the GLS. Each gamble “is described in terms of a container holding exactly 100 mar-
bles of different colors, from which one marble would be drawn at random, and the
color of that marble would determine the prize”. In brackets the percentages of each
choose.

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black
to win $100

25 white
to win $0

50 pink
to lose $50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 blue
to win $50

25 white
to lose $0

25 red
to lose $100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G

[76%] [24%]
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F+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 black
to win $100

25 white
to win $0

50 white
to win $0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 blue
to win $50

25 blue
to win $50

50 white
to win $0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G+

[29%] [71%]

F− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 white
to lose $0

25 pink
to lose $50

25 pink
to lose $50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

50 white
to lose $0

25 white
to lose $0

25 red
to lose $100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= G−

[35%] [65%]

As can be seen, F is preferred to G, but splitting the prospects in their posi-
tive/negative parts a relevant majority prefers G+ to F+ and G− to F−. In order
to evaluate these prospects, we substitute the respective probabilities to the colors, as
the authors did, by dividing for 100 any number of color. Using the bipolar CPT with
the bi-polarized KT weighting functions with parameters γ = 0.74, δ = 0.89 and the
KT power utility function (22) with parameters λ = 1.77, α+ = 0.68 and α− = 0.79,
the numerical evaluation of prospects agree with the preference relation �

VbC PT (F) = −11.07 ≥ VbC PT (G) = −11.11
VbC PT (F+) = 6.67 ≤ VbC PT (G+) = 6.71
VbC PT (F−) = −19.28 ≤ VbC PT (G−) = −18.25
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