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Abstract

We provide a renormalization analysis of correlations in a quasi-periodically forced two-level system in a
time dependent field with periodic kicks whose amplitude is given by a general class of discontinuous modulation
function. For certain intensities of modulation, we give a complete understanding of the autocorrelation function.
Furthermore, once the locations of the discontinuities of the modulation function are known, aperiodic orbits lead
to correlations on renormalization strange sets which are determined by two specified features of the modulation
function of which there are only a finite number of variations.

PACS: 05.45.-a; 64.60.ae

1 Introduction

The motivation of this paper is to further understand correlations in a two-level quantum system which is subject
to kicks with quasiperiodically modulated amplitude. The system has been previously studied in [6], the results of
which were then expanded upon in [12] and [15]. The system was originally examined in [10], where its response to
quasiperiodic perturbations is considered. It is shown that the Fourier transform of the evolution operator is not
quasiperiodic, and represents an intermediate state between quasiperiodic and chaotic motion.

In [6] the system is analysed subject to kicks with quasiperiodically modulated amplitude, where the driving
frequency is the inverse of the golden mean (

√
5 − 1)/2. If the modulation function is chosen to be continuous,

quasiperiodic behaviour of the autocorrelation function (ACF) is observed, whereas if the modulation function is
piece-wise constant then the ACF neither decays to zero or returns to 1. In this case the variable amplitude is taken
to be An = κΦ(φn), where Φ is a piece-wise constant function, κ denotes the intensity or “level” of modulation
and φn is a simple quasiperiodic rotation on a circle. In [6] it is numerically determined that for κ = π/2 and Φ as
given in (4.1) (with α = 1/2), the ACF is self-similar near each main peak as shown in Figure 1. It is numerically
observed that the peaks are of approximate magnitude 0.55279. In [12] the authors provided a complete analysis
of all piece-wise constant periodic orbits of the additive functional recurrence which appears in the renormalization
analysis of the system. For the modulation function (4.1) and κ = π/2, it is analytically shown in [12] that the
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Figure 1: Numerical evaluation of the auto correlation CPy for modulation function (4.1) with modulation level
κ = π/2.

peaks occur at times F3k (where Fn is the Fibonacci sequence) with asymptotic height 1− 1/
√

5 = 0.5527 . . .. The
authors extended the results in [15] to a class of quadratic irrational frequencies.

These properties of the ACF are indicative of a class of systems exhibiting singular continuous spectra. Indeed,
similar phenomenon has been observed in studies of symmetric barrier billiards ([21],[3],[17],[2]), localized eigenstates
of the generalised Harper equation ([8],[16],[14],[13]) and the transition to, and correlations of, strange non-chaotic
attractors (SNAs) ([9],[5],[11],[18],[1]).

In the study of symmetric barrier billiards, the Fourier transform of the observable is shown in [21] to exhibit
singular continuous spectra and, for the golden mean trajectory, the autocorrelation function is shown to have
peaks of magnitude ' 0.55 for the half barrier. In [3] a renormalization analysis for barrier billiards is provided,
giving a thorough treatment to piece-wise constant periodic orbits of the functional recurrence

Q̃n(x) = Q̃n−1(−ωx)Q̃n−2(ω2x+ ω), (1.1)

which leads to self-similar behaviour of the ACF, and it is shown that the peaks occur at every third Fibonacci
number and are of magnitude 1 − 1/

√
5 = 0.5527 . . . with alternating sign in the case of the half barrier for the

golden mean trajectory. As a matter of fact the renormalization operator (1.1) is the multiplicative version of (3.7)
which will be the main focus of this paper. It is thus no surprise that the structure of the ACF in the two systems
is similar.

This work is extended by us in [17] to cases when the modulation function leads to aperiodic behaviour of the
renomalization operator, and it is found that the correlations lie on an invariant renormalization strange set em-
bedded in three dimensional space, and are also chaotic at Fibonacci times. In [2] we extended further to a class
of quadratic irrational trajectories (as was done in [15] for the two-level system under study here), analytically
providing the locations and magnitudes of the peaks in the ACF for the half barrier and numerically producing the
corresponding renormalization strange sets in the aperiodic case.

A renormalization analysis of the localized eigenstates of Harper equation was provided in [8] and gave rise once
more to the recurrence (1.1) in the case of inverse golden mean flux. The authors discovered the existence of
a strong coupling fixed point of this functional recurrence, which was later constructed fully in [16] and then
extended to a class of quadratic irrational in [4]. The authors also studied the generalised Harper equation, showing
that the fluctuations of the localized eigenstates are characterized by orbits of the renormalization operator on a
renormalization strange set dubbed the “Ketoja-Satija orchid”. In [14] the orchid was rigorously constructed via a
conjugacy with a Bernoulli shift of finite type, and these results were once again extended to a class of quadratic
irrational flux [13].
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Finally, the multiplicative recurrence (1.1) is once again seen in the study of both the correlations and bifurcations
of SNAs. In [9] the so-called “blow-out birth of an SNA” is studied for the inverse golden mean frequency, and
it is shown that at and near the critical boundary the attractor is self-similar following scaling laws determined
by the renormalization equations. We have extended this study in [1] to the more general non-smooth pitchfork
bifurcation. In [11] the renormalization of correlations of the original SNA first discovered in [7] are studied. It
is shown that periodic behaviour of the multiplicative recurrence once again drives the self-similar behaviour of
the ACF, which has the same properties as the ACF derived for barrier billiards. In [1] a direct link between the
correlations of these two systems is made.

We begin by describing the two-level system under study and deriving the relevant renormalization equations in
Section 2. In Section 3 we look at the renormalization of the ACF and give the result which makes most of
the work in this paper possible. In Section 4 we examine modulation functions leading to periodic behaviour of
the ACF, and eliminate the issue of unbounded orbits of the renormalization operator. In Section 5 we examine
modulation functions leading to aperiodic behaviour of the renormalization operator and chaotic correlations lying
on renormalization strange sets. Section 6 focuses on varying the level of modulation to examine its effect on the
resulting renormalization strange sets.

2 Derivation of the renormalization equations

Following [5] and [12], for a two-level system in a time-dependent magnetic field M(t), the Hamiltonian takes the
form H(t) = M(t) · σ where σ = (σx, σy, σz), the components of this vector being given by the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.1)

In the case when M(t) = (S(t)/2, 0, k/2) we have H(t) = (S(t)/2)σx + (k/2)σz. Setting Planck’s constant ~ = 1
we can write the Schrödinger equation for a spinor ψ = (ψ1, ψ2) in terms of the observable Bloch variables. These
are the components of the polarization vector Px,y,z = ψ∗σx,y,zψ, from which we obtain the following differential
equations

Ṗx = −kPy, (2.2)

Ṗy = kPx − S(t)Pz, (2.3)

Ṗz = S(t)Py, (2.4)

which are normalized so that P 2
x +P 2

y +P 2
z = 1. We restrict our attention to the case when S(t) consists of period-T

δ-function kicks i.e

S(t) =

∞∑
n=−∞

Anδ(t− nT ), (2.5)

where the amplitude An is variable. In between the kicks we therefore have a rotation in the (Px, Py) plane, and at
the kicks a rotation in the (Py, Pz) plane resulting in the following “kick-to-kick” linear mappingPx,n+1

Py,n+1

Pz,n+1

 =

cos kT − sin kT cosAn sin kT sinAn
sin kT cos kT cosAn − cos kT sinAn

0 sinAn cosAn

Px,nPy,n
Pz,n

 . (2.6)

The notation (Px,n, Py,n, Pz,n) denotes the polarization vector at each such time step n. As in [5] we now take
An = κΦ(φn), where Φ is the modulation function, φn is a quasiperiodic rotation i.e. φn+1 = φn + ω with ω /∈ Q,
and κ is a constant determining the amplitude of the modulation. Throughout this paper we will focus on piecewise
constant modulation functions, where singular-continuous spectra is observed as shown in [10].

We now set the time T between kicks to be commensurate with the fundamental frequency k so that kT = 2πm,
m ∈ Z. This effectively decouples Px,n so that the remaining dynamics is just a rotation in the (Py, Pz) plane.
Note that it is numerically seen in [6] that this simplification may not be necessary to observe singular continuous
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spectra. As a result of the normalization constraint we may without loss of generality take Px,n = 0. Writing
Py,n = cos θn and Pz,n = sin θn results in the following skew-product system

φn+1 = φn + ω (mod 1), (2.7)

θn+1 = θn + κΦ(φn). (2.8)

This system is of the form also seen in the study of strange non-chaotic attractors (SNAs) [5] and symmetric barrier
billiards [21]. We can “solve” the system (2.7)-(2.8) in straightforward fashion giving

φn = φ0 + nω (mod 1), (2.9)

θn = θ0 + κ

n−1∑
l=0

Φ(φ0 + lω). (2.10)

This solution does not however give any insight as to the behaviour of θ and so we analyse the autocorrelation
function.

3 Renormalization of the autocorrelation function

The normalized autocorrelation function for the observable Py is given by

CPy
(t) =

〈Py,nPy,n+t〉
〈P 2
y,n〉

, (3.1)

where 〈f(n)〉 = lim
N→∞

1
N

∑N
n=1 f(n). Making use of the trigonometric identity 2 cosA cosB = cos(A+B)+cos(A−B)

we see that

〈Py,nPy,n+t〉 = 〈cos θn cos θn+t〉 =
1

2
〈cos(θn+t − θn)〉 =

1

2
〈cosκSt(φn)〉, (3.2)

where we average over the initial phase to remove 〈cos(θn+t + θn)〉 and define

St(φ) =

t−1∑
i=0

Φ(φ+ iω), S0(φ) = 0. (3.3)

Using the ergodicity in φ we can now write

CPy (t) = 〈cosκSt(φn)〉 =

∫ 1

0

cosκSt(φ) dφ. (3.4)

From now on we set ω to be the inverse of the golden mean, ω = (
√

5 − 1)/2 and consider the autocorrelation
function (ACF) at Fibonacci times. It is straightforward to show that

SFn
(φ) = SFn−1

(φ) + SFn−2
(φ+ Fn−1ω), (3.5)

where the Fibonacci numbers Fn satisfy Fn+1 = Fn + Fn−1 (n ≥ 2) with F0 = 0, F1 = 1. Defining the rescaled
functions

Zn(x) = SFn
(x(−ω)n), (3.6)

and making use of the identity Fn−1ω = Fn−2 − (−ω)n−1 gives the functional recurrence

Zn(x) = Zn−1(−ωx) + Zn−2(ω2x+ ω), Z0(x) = 0, Z1(x) = Φ(−ωx). (3.7)

Substituting this change of variables into (3.4) we obtain that the ACF at Fibonacci times is given by

CPy
(Fn) =

1

(−ω)−n

∫ (−ω)−n

0

Qn(x) dx, (3.8)
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where Qn(x) = cosκZn(x).

We note in (3.8) that as n increases the range over which we must integrate is unbounded, and so for numerical work
we need to resort to approximations over a finite interval. Numerically we observe that taking an interval [−X,X]
and integrating cosκZn(x) over it leads to convergence for X sufficiently large and so we may fix our attention to
Zn over such an interval. Typically we find X = 150 to provide a good balance between accuracy and computation
time. In order to calculate this average however, we need a knowledge of the value of Zn at −X (or any other point,
but the value at −X is convenient as we integrate from left to right) in addition to both the locations and the sizes
of the discontinuities. It is straightforward to see that Zn(−X) satisfies

Zn(−X) = Zn−1(−X) + Zn−2(−X) +
∑

x∈[−X,ωX]

Dn−1(x) +
∑

x∈[−X,ω−ω2X]

Dn−2(x), (3.9)

where we define the discontinuity function Dn(x) = Zn(x+) − Zn(x−). When evaluated at a discontinuity, this
formula is the definition of the size of the discontinuity.

4 Modulation functions which give rise to periodic behaviour

Focusing now on periodic behaviour of the functional recurrence, it follows from the work in [12] and [3] that any
modulation function of the form

Φ(φ) =

{
+1, 0 ≤ {φ} < α

−1, α ≤ {φ} < 1,
(4.1)

will give rise to periodic behaviour of (3.7) if, and only if, α ∈ Q(ω) ({φ} denotes the fractional part of φ). As κ is
extrinsic to the behaviour of (3.7) we deduce from (3.8) that any such choice will lead to self-similarity of the ACF.
We note that throughout most of this work we will assume that Φ (and hence the initial condition Z1) has two
discontinuities in order to simplify the analysis and provide some intuition towards the nature of the renormalization
strange sets we discover. This means both discontinuities must be of equal magnitude, because otherwise an extra
discontinuity at zero is introduced. This assumption allows us to link this work to our previous studies on symmetric
barrier billiards.

We now recall the following two propositions from [12], which tell us that for modulation functions leading to
periodic behaviour, an understanding of the initial conditions in a “fundamental interval” is sufficient to build the
structure of the orbit on R.

Proposition 1. Let Zn be a piecewise-constant periodic orbit of (3.7) with period p on R with Zn(1+) = Zn(1).
Then Zn is periodic with period p on the fundamental interval I = [−ω, 1]. Conversely, suppose that Zn is periodic
with period p on I. Then there exists a unique extension Z̃n of Zn such that Z̃n is periodic with period p on R.

Proposition 2. Let Z0, Z1 be piecewise-constant initial conditions for (3.7) on R with Z0(1+) = Z0(1), Z1(1+) =
Z1(1). Suppose Zn is periodic with period p on the fundamental interval I. Then the sequence Zn converges to
the unique periodic extension Z̃n given by Proposition 1, i.e., for all integers r ≥ 0 we have Zr+np(x) → Z̃r(x) as
n→∞.

Hence an initial condition on the fundamental interval which results in periodic behaviour uniquely determines an
asymptotic (right continuous at 1) global periodic orbit on R.

4.1 Application to previous studies

In [6] the authors analysed this system for the modulation function given by (4.1) when α = 1/2, where iteration of
(3.7) gives rise to a periodic six orbit as shown in Figure 2. Note that Z1(−X) = +1 as we only require a knowledge
of Z1(x) = Φ(−ωx) on the fundamental interval. Indeed, the discontinuities of Z1 on the fundamental interval are
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at 0 and −ω−1(α− 1), and we discard the rest of the discontinuities giving Z1(−X) = +1. This argument will be
used throughout this paper and from now on the value of Z1(−X) will be stated and left to the reader to verify.
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Figure 2: Period 6 orbit of the recurrence (3.7) for choice of modulation function (4.1). First row gives Z0, Z1, Z2

and second row gives Z3, Z4, Z5

We note that this orbit is clearly bounded, and more generally in [12] sufficient criteria for Zn to be globally
bounded were derived. For the choice of κ = π/2 it was numerically observed that the peaks in the resulting
autocorrelation function are of approximate magnitude 0.55279 [6]. In [12] the value is shown to be 1 − 1/

√
5 =

0.5527864 . . . through careful study of the locations and interlacing of the discontinuities. In particular it is shown
that CPy

(F3k) = 1− 1/
√

5 and that CPy
(Fn) is zero for n ≡ 1, 2 (mod 3), as can clearly be seen in Figure 1 where

the theoretical peaks are indicated by the arrows.

This last fact can be verified easily using (3.9). Note that as the modulation function has only two discontinuities
of magnitude two, all future iterates of (3.7) will have discontinuities of magnitude two only. Therefore the function
Zn(x) will be only odd or only even for all x, and we can deduce this parity through calculation of Zn(−X). As Zn
has discontinuities of magnitude two only, the sums on the right hand side of (3.9) will be even, and so the parity
of Zn(−X) is determined solely by the first two terms on the right hand side which is the aforementioned Fibonacci
recurrence. Noting that Z0(−X) is even and Z1(−X) is odd we thus have that Z2(−X) is odd, and Z3(−X) is
even. Continuing in this way we deduce that Zn(−X) (and hence Zn(x)) is even only when n ≡ 0 (mod 3).

We now examine the function cos(π2Zn(x)) (recalling that κ = π/2). As Zn(x) is odd for all x when n ≡ 1, 2
(mod 3), this function is identically zero and hence from (3.8) the ACF CPy

(Fn) is also zero.

For the case when n ≡ 0 (mod 3) we have to be more subtle. Our initial condition is a function containing two
discontinuities, and upon iteration of (3.7) the number of discontinuities grows filling intervals of increasing length.
The sum of the sizes of the discontinuities on Z1 is zero and so for all future iterates the sum of the sizes of
discontinuities is also zero. However, for any n we can always find an X big enough so that all discontinuities of
Zn−1 and Zn−2 are contained in [−X,ωX]. For an X satisfying this condition we can thus write

Zn(−X) = Zn−1(−X) + Zn−2(−X). (4.2)

We note that cos(κy) is periodic with period 2π/κ, or for the case under study the function is periodic with period
4. Thus given a knowledge of the value of Zn(−X) (which is actually equal to Zn(X) due to the prior assumptions
on X) modulo 4 we can get a full understanding of the dynamics. This also eliminates the problem of the functions
becoming unbounded in other cases we will encounter. For the case under study we can see that the value of
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n Zn(−X) (mod 4) Qn(−X)
1 1 0
2 1 0
3 2 −1
4 3 0
5 1 0
6 0 +1
7 1 0
8 1 0

Table 1: Table giving the values of Zn(−X) modulo 4 and Qn(−X) for modulation function (4.1) with α = 1/2.

n Zn(−X) (mod 4) Qn(−X) Q̃n(−X)
1 0 +1 −1
2 0 +1 −1
3 0 +1 +1
4 0 +1 −1
5 0 +1 −1
6 0 +1 +1

Table 2: Table giving the values of Zn(−X) modulo 4 and Qn(−X) for modulation function (4.3).

Zn(−X) modulo 4 manifests repetition with period 6 in Table 1, which we would of course expect. We also list the
values of Qn(−X).

Focusing on the cases when n ≡ 0 (mod 3) we have that Zn(−X) ≡ 2 (mod 4) when n ≡ 3 (mod 6) and Zn(−X) ≡
0 (mod 4) when n ≡ 0 (mod 6). At first sight this may not seem overly useful as calculation of the integrals is still
required using the methods in [12], but, as we will see in the next subsection, we can use this fact to provide a link
between this system and another similar system recently studied.

4.2 Varying the location of the discontinuities

It should be clear by now that we have a thorough qualitative understanding of modulation functions leading to
periodic behaviour. In short, if we have a modulation function with two discontinuities, both of which lie in Q(ω),
the resulting behaviour of Zn will be periodic, which leads to self-similarity of the ACF. For reasons which are
explained below, we now work with the modulation function given by

Φ(φ) =

{
+2, {φ} ∈ [0, α/2] ∪ [1− α/2, 1],

0, Otherwise.
(4.3)

As before, {φ} denotes the fractional part of φ. The motivation for this choice is that it makes Z1(−X) even, and
so from (4.2) it makes Zn(−X) even for all n, which means the ACF will never be trivially zero as in the previous
case. This modulation function is related to the one studied in [17] where the focus is symmetric barrier billiards.
Indeed, the locations of the discontinuities are identical and the function in that study is merely Φ̃(φ) = Φ(φ)− 1.
In [17] the modulation function corresponded to a barrier of height α placed centrally in a rectangular chamber. It
was shown that an arbitrary barrier can be decomposed into barriers of this type. Furthermore, the renormalization
analysis for that system simply gave rise to the multiplicative version of (3.7). Hence upon iteration of (3.7) the
locations of the discontinuities will be identical to those generated in [17]. Keeping κ = π/2 and α = 1/2, we now
produce the analogue of Table 1 for the modulation function (4.3) in Table 2.

In this case the value of Zn(−X) is fixed (note that Z1(−X) = 0 as we are only interested in discontinuities of
Z1(x) = Φ(−ωx) in the fundamental interval) and hence so is Qn(−X). Now Q̃n(x) is the result of iteration of the
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multiplicative version of (3.7) i.e.
Q̃n(x) = Q̃n−1(−ωx)Q̃n−2(ω2x+ ω), (4.4)

with initial conditions Q̃0 = 1 and Q̃1 = Φ̃(−ωx) which is the required renormalization for barrier billiards in [17],
and the values of Q̃n(−X) are obtained under iteration of the multiplicative version of (3.9) with initial conditions
Q̃0(−X) = +1 and Q̃1(−X) = −1. In [17], because the recurrence is multiplicative and the initial condition takes
the values ±1, all future iterates are piecewise constant functions taking the values ±1. The calculation of the
autocorrelation function simply relies on changing the integrand to Q̃n in (3.8).

However, Qn(x) is very similar to Q̃n, in fact they are identical except for a choice of sign. This is because, starting
at Zn(−X), every time we hit a discontinuity of Zn(x) we either add or subtract two from the value beforehand.
In Qn(x), because cos(x ± π) = − cos(x), this simply has the effect of multiplying by −1 every time we hit a
discontinuity (recall that κ = π/2). Hence Qn(x) is a piecewise constant function taking the values ±1, with its
discontinuities in exactly the same locations as Q̃n. Hence the autocorrelation up to a choice of sign will be identical.
We see from Table 2 that the signs of Qn and Q̃n are different when n 6= 0 (mod 3). From the results of [3] we
see immediately that in these cases CPy (Fn) = 0 and so the difference in sign is irrelevant. However when n ≡ 0

(mod 3) the signs agree and so from [3] CPy
(F3k)→ (−1)k(1− 1/

√
5).

5 Modulation functions leading to aperiodic behaviour of the autocor-
relation function

If in the initial modulation function, we have a discontinuity which lies outside the field Q(ω) we will witness
aperiodic behaviour as the discontinuity locations on the fundamental interval will no longer be periodic [11]. Going
back to the example studied in Subsection 4.2, we take α /∈ Q(ω) and iterate forward using (3.7). There are two
different cases for the initial conditions: if α/2 < ω2 then Table 2 is still valid, as is the argument as to the similarity
of Qn and Q̃n. Thus the only difference in the autocorrelation will be the sign for n 6= 0 (mod 3). If α/2 > ω2

then Z1(−X) = +2 and the same conclusion is reached noting that in this case Q̃1(−X) = +1, and so the signs in
Table 2 for Qn and Q̃n are simply switched. In [17] for the barrier billiard system we showed that reconstruction of
the dynamics in three dimensions by plotting the resulting time series (CPy

(Fn)) using the work of [20] leads to a
renormalization strange set. The two dimensional projections are shown in Figure 3. This set embedded in three-
dimensional space is the same for the two level system and is shown in Figure 4. Using the method of Rosenstein
[19] (chosen for its robustness), we numerically calculated a positive largest Lyapunov exponent (LLE) of 0.4136
(±0.005), confirming that the correlations are chaotic at Fibonacci times in [17]. This value and (cautious) error
estimate was achieved by finding the mean of the LLEs generated from 25 independent time series each of length
10000. Note that the separation of nearby points may not occur at an exponential rate in real time. The positive
Lyapunov exponent is a by-product of the chaotic nature of the renormalization operator (3.7) being reflected in
the asymptotic averages of the functions Qn(x) = cosκZn(x). The correlations densely explore the renormalization
strange set which appears to be a smooth surface with cusps. (They do not fill the space inside.) The fact the
surface is connected to only four corners of the unit cube follows from the fact that the autocorrelation function
can only be ±1 if Z0,1(x) = 0 or 2 or, equivalently, Q̃0,1(x) = ±1 where Q̃ follow recurrence (4.4). This leads to
four possible sign triples, three of which lie on the periodic orbit (+1,−1,−1)→ (−1,−1,+1)→ (−1,+1,−1) and
the other at (+1,+1,+1) is fixed.
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Figure 3: Chaotic correlations at Fibonacci times.

Figure 4: Plot of CPy
(Fn+2) vs. CPy

(Fn+1) vs. CPy
(Fn), revealing presence of invariant set embedded in three

dimensional space.

The realization that the consideration of the functions Zn modulo 2π/κ is sufficient to get a full understanding
of the dynamics leads us to the following conclusions. First of all, to eliminate any rounding errors it is best to
consider values of κ which are a fraction of π, i.e. κ = π/γ for some γ ∈ N. From now onwards we will restrict
ourselves to such choices. Secondly, for the class of modulation function under consideration, once the locations of
the two discontinuities are known there are only a finite number of adaptations which can be made which could give
different results. The first is the value of Z1(−X), and the second is the magnitude of the sizes of the discontinuities
and both of these variables can take the values 0, 1, 2, . . . , 2γ − 1. When the two discontinuities have size zero this
obviously leads to trivial behaviour of the ACF.

Let us put this idea into practice for κ = π/2. Firstly, the value of Z1(−X) can only have three values leading to
qualitatively different behaviour, as a choice of +1 or +3 both lead to the same value for Q1(−X) which is zero.
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Assume the magnitudes of the discontinuities are +1 or + 3 and Z1(−X) = +1 or + 3. We have cos(x ± π/2) =
∓ sin(x) and cos(x±3π/2) = ± sin(x), from which it follows that a region in which the function Qn(x) is positive or
negative between two discontinuities is followed by a region where the function is zero. This can be seen as follows:
If Zn(y) = +1 or + 3, then Qn(y) = 0. Now we follow both functions until the next discontinuity, yd say, and so
Zn(yd + ε) = Zn(y)± (1 or 3) which is even. Hence Qn(yd + ε) = cos(π2 (Zn(y)± (1 or 3))) = +1 or − 1 (depending
on Zn(y)). At the next discontinuity, Zn becomes odd again and the argument is repeated, sending Qn back to
zero.

Using the modulation function

Φ(φ) =

{
0, x ∈ [0, α] ∪ [1− α, 1],

+1, otherwise,
(5.1)

we demonstrate what is described above. Figure 5 is a plot of Q6 obtained when α = (
√

2 − 1)/2, showing the
structure predicted. Iterating forward we numerically calculate the time series (CPy

(Fn)), and reconstruct the

−10 −5 0 5 10
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−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Plot of Q6.

dynamics firstly in two dimensions and then in three dimensions. This is shown in Figures 6 and 7.

An interesting point to make is that if we assume the modulation has discontinuities of magnitude 1 or 3, then
regardless of Z1(−X) the correlations still appear to lie on the strange set depicted in Figure 7. The only other
choice for the magnitude of the discontinuity is 2. Let us examine the modulation function given by Φ̂ = Φ − 1
where Φ is as given by (4.3), with α /∈ Q(ω) and κ = π/2. Due to Table 1 we deduce that only every third
Fibonacci number will give a value of the ACF other than zero for α/2 > ω2 (for α/2 < ω2 we have Z1(−X) = +3
(mod 4), but the same argument applies). The two- and three-dimensional projections are (as we would expect)
simply crosses filling out the x, y, and in the latter case z, axes. It is intriguing instead to focus on the time series
(CPy

(F3n)). The two- and three-dimensional projections are shown in Figure 8, showing again the presence of an
invariant set embedded in three-dimensional space.
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(a) CPy (Fn+1) vs. CPy (Fn)
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(b) CPy (Fn+2) vs. CPy (Fn)

Figure 6: Two dimensional projections of the correlations at characteristic times plotted against one another.

Figure 7: Plot of the invariant set in three dimensions with modulation function (5.1).
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(a) CPy (F3(n+1)) vs. CPy (F3n) (b) CPy (F3(n+3)) vs. CPy (F3(n+2)) vs. CPy (F3n)

Figure 8: Numerical projections of the time series (CPy
(F3k)).

These projections can also be obtained in the barrier billiard system, but in this case the object is rotated due the
signs of Qn(−X) and Q̃n(−X) not matching when n ≡ 3 (mod 6). Note that the same behaviour is seen if we
select Z1(−X) = +3.

5.1 Varying the number of discontinuities

To end this section we are going to give an example of some renormalization strange sets occurring when the
modulation function has a greater number of discontinuities. We assume the discontinuities all have the same
magnitude but with alternating sign, and as such the number of discontinuities must clearly be even. We take as
an illustrative example κ = π/4 and the modulation function given by

Φ(φ) =


0, 0 ≤ φ < α/4

+2, α/4 ≤ φ < α/2,

0, α/2 ≤ φ < 1− α/2,
+2, 1− α/2 ≤ 1.

(5.2)

The resulting plots are shown in Figure 9 and we see once more the presence of renormalization strange sets.
Other such sets can be found for other choices of κ and for modulation functions with an even greater number of
discontinuities, but this work is purely numerical and so in the next section we return to our assumption of two
discontinuities.

6 Varying the modulation amplitude/intensity κ

We now focus on other values of κ. Let us begin with κ = π/3, in which case we must work with Zn modulo 6.
Firstly, if we take Zn(−X) = 0 or 3 (mod 6) and the modulus of the size of the discontinuities to be 3 (in the same
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(a) Z1(−X) = 0 (b) Z1(−X) = 2

Figure 9: Renormalization strange set for modulation function with four discontinuities.

locations as (4.3), at α/2 and 1 − α/2), then by the arguments of the previous section the correlations lie on the
invariant set depicted in Figure 4. It should be clear how this generalises for κ = π/γ, in that we just simply pick
Z1(−X) = γ or 0, and the size of the discontinuities to be γ and we are guaranteed to get the set in Figure 4. Due
to the fact that the function κΦ(φ) is what governs the dynamics (recall (2.8)), phenomena observed for certain
choices of κ can be observed for other values κ but with the modulation function suitably scaled, and vice versa.
For example, if we take κ = π and Φ̂(φ) = Φ(φ)/2 where Φ is as in (4.3) then once again we get the renormalization
strange set from Figure 4.

We now take Z1(−X) = 1 and note that cos(nπ/3) = ±1/2 or ± 1 depending on the value of n modulo 6. We
pick once more the locations of the discontinuities to be the same as that in the study of the α-barrier (at α/2 and
1−α/2) to get a clearer understanding of the resulting phenomena. We assume the discontinuities have magnitude
3. Clearly, every time we hit a discontinuity of Zn(x) it has the effect of multiplying Qn(x) by −1. So we have
piecewise constant functions taking the values ±1 only or ±1/2 only, depending solely on Zn(−X) (mod 6). As
the discontinuities are in the same positions as for the barrier billiard system, this means that for each value of
the ACF is either the same or half of the value obtained for barrier billiards (up until a sign choice). If we iterate
(4.2) modulo six with Z1(−X) = 1 we find that a period 24 orbit results of Zn(−X), and which gives Qn(−X) the
pattern ±1,±1/2,±1/2,±1/2,±1, . . .. As we get a sequence where there are no consecutive ±1, we can conclude
that the projections of Figure 3 will not be present, but there will instead be three scaled and stretched copies.

The first copy will be the original but scaled by factor 1/2 as we have the presence of two consecutive ±1/2’s. If
we have a ±1/2 followed by a ±1 then we have one point lying on the first copy and the second on the original
creating a vertical stretch by a factor of 2 of the first copy, giving the second copy. Finally, for ±1 followed by
±1/2 we clearly have a horizontal stretching of the first copy giving the third copy. A similar argument of the set of
possible sign triples of Qn(−X) tells us that (allowing for symmetry) the three dimensional projection will just be
(at least) four scaled versions of the original in Figure 4. These two and three dimensional projections are shown
in Figures 10 and 11.
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(b) CPy (Fn+2) vs. CPy (Fn)

Figure 10: Two dimensional projections of the correlations at characteristic times plotted against one another.

Figure 11: Plot of the invariant set in three dimensions with modulation function (5.1).

This same picture is observed for Z1(−X) = 2, 4, 5 and this thus exhausts the options when the discontinuity size
is 3.

If Z1(−X) = +1 and the discontinuities have magnitude 2, we get the projections shown in Figure 12. We see
concentrated lines of points caused by the autocorrelation function repeatedly returning to ±1/2, forming a square.
The reason for this is the presence upon iteration of (3.7) of functions Zn (modulo 6) taking the successive values
1, 5, 1, 5, . . . and 2, 4, 2, 4, . . ., which makes Qn(x) a constant function taking the value ±1/2. Two examples of such
functions are shown in Figure 13.
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(a) CPy (Fn+1) vs. CPy (Fn) (b) CPy (Fn+2) vs. CPy (Fn+1) vs. CPy (Fn)

Figure 12: Two and three dimensional projections of the correlations at characteristic times plotted against one
another.
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(a) Plot of Z17 (mod 6)
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(b) Plot of Z30 (mod 6)

Figure 13: Behaviour of Zn which causes the ACF to take the value ±1/2, using initial modulation function
Φ̃(φ) = Φ(φ)− 1 where Φ(φ) is defined in equation (4.3).

If we take κ = π/4 and leave everything else the same, then we can expect a similar phenomena. In this case we
take Zn (mod 8) and find that obtain functions similar to those shown in Figure 13 (not the same iterate numbers
generally) but which take the values 1 and 7 only or functions taking the values 3 and 5 only, which make the
autocorrelation function equal to

√
2/2, and so we get the two dimensional projection shown in Figure 14 again

with a square of points where the ACF takes this value.

6.1 Small relative magnitude discontinuity sizes

In this subsection we are going to explore what happens if the size of the discontinuities is small in comparison
with γ for the class of modulation function under study. With these assumptions we observe convergence to the
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Figure 14: Two dimensional projection obtained for κ = π/4 with Z1(−X) = 1 and discontinuity magnitude 2
.

renormalization strange set shown in Figure 15.

Of course as γ → ∞ we can pick the discontinuity sizes to be a large as we desire, as long as they are small with
respect to γ. So in some ways this can be looked at as the set occurring in the limit κ → 0, although it can be
observed for any value of κ with small enough discontinuity sizes. Note that this only occurs in the limit κ → 0,
because at κ = 0 the ACF is trivially +1, so the limit is singular.

7 Conclusion

We have extended the results of previous work on this system to a general class of modulation function, in particular
the class of modulation function Φ with only two discontinuities. It is demonstrated that for a modulation function
whose discontinuities lie in Q(ω) we can expect periodic behaviour of the ACF, or if this condition is not satisfied,
chaotic behaviour of correlations on an invariant set embedded in three dimensional space.

The key to this numerical work has been the elimination of the issue of unbounded orbits of the renormalization
operator through the consideration of such orbits modulo an integer which is related to the intensity of modulation
κ when κ is selected to be a rational multiple of π. This enables numerical approximation of the ACF and thus
the construction of the renormalization strange sets. It is shown that once the locations of the discontinuities
of the modulation function have been established, only a finite number of adaptations can be made which yield
topologically different strange sets. These alterations are the value of the modulation function at an endpoint and
the size of the two discontinuities, which themselves have only a finite number of variants. It is also demonstrated
that the correlations continue to lie on such strange sets for modulation functions with more than two discontinuities.

The work also provides a link between the two-level system and other quasi-periodically forced systems. We have
shown that the renormalization strange set occurring for symmetric barrier billiards can be reproduced in the two
level system, and in [1] we found the same set occurring in the study of correlations of strange non-chaotic attractors,
thus making it a somewhat universal set in the study of correlations for this class of system. This work can be
trivially generalised to a class of quadratic irrational frequency as has been done in the past [15], although the
problem of generalising to general irrational frequencies remains challenging.

In future works we hope to be able to produce an analytic proof of the chaoticity of the correlations for symmetric
barrier billiards (which lie on the set shown in Figure 4) by conjugating the renormalization operator to a sub-shift
of finite type. If successful, this will naturally carry over to the work presented here for the two-level system and
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Figure 15: Renormalization strange set which appears in the limit κ→ 0.

the work presented in [1] for the correlations of SNAs.
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