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Abstract  28 

The styles and mechanisms of deformation associated with many variably dolomitized 29 

limestone shear systems are strongly controlled by strain partitioning between dolomite and 30 

calcite. Here, we present experimental results from the deformation of four composite materials 31 

designed to address the role of dolomite on the strength of limestone. Composites were 32 

synthesized by hot isostatic pressing mixtures of dolomite (Dm) and calcite powders (% Dm: 33 

25%-Dm, 35%-Dm, 51%-Dm, and 75%-Dm). In all composites, calcite is finer grained than 34 

dolomite. The synthesized materials were deformed in torsion at constant strain rate (3x10-4 and 35 

1x 10-4 s-1), high effective pressure (262 MPa), and high temperature (750°C) to variable finite 36 

shear strains. Mechanical data show an increase in yield strength with increasing dolomite 37 

content. Composites with  <75% dolomite (the remaining being calcite), accommodate 38 

significant shear strain at much lower shear stresses than pure dolomite but have significantly 39 

higher yield strengths than anticipated for 100% calcite. The microstructure of the fine-grained 40 

calcite suggests grain boundary sliding, accommodated by diffusion creep and dislocation glide. 41 

At low dolomite concentrations (i.e. 25%), the presence of coarse-grained dolomite in a micritic 42 

calcite matrix has a profound effect on the strength of composite materials as dolomite grains 43 

inhibit the superplastic flow of calcite aggregates. In high (>50%) dolomite contents samples, the 44 

addition of 25% fine-grained calcite significantly weakens dolomite, such that strain can be 45 

partially localized along narrow ribbons of fine-grained calcite. Deformation of dolomite grains 46 

by Mode I cracks and shear fractures is observed; there is no intracrystalline deformation in 47 

dolomite irrespective of its relative abundance and finite shear strain.  48 

  49 
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1. Introduction 50 

The styles and mechanisms of deformation associated with many variably dolomitized 51 

limestone shear systems are strongly controlled by strain partitioning between dolomite and 52 

calcite. Furthermore, the mechanical behaviour of shear zones that form in calcite-dolomite 53 

composites is likely a function of external parameters (e.g. Pc,Pp, T, and ��), the mineralogy 54 

(calcite/dolomite content; (Delle Piane et al., 2009a)), and texture (e.g. grain size and porosity) 55 

of the rock. Carbonate fault rocks can have heterogeneous distributions and variable contents of 56 

calcite and dolomite. For instance, fluid flow during thrusting can result in partial de-57 

dolomitization (i.e. calcite formation) of carbonates resulting in heterogeneous distribution of 58 

calcite and dolomite in fault rocks (Erikson, 1994). Conversely, shear strain, in tandem with fluid 59 

flow, may result in a more dolomite-rich fault rock than the protolith due to the dissolution of 60 

calcite and subsequent passive enrichment of dolomite along thrust faults (Kennedy and Logan, 61 

1997). Fault rocks derived from carbonate rocks can therefore be composed of variable amounts 62 

of dolomite and calcite and grain sizes distributions within the fault rocks can be heterogeneous. 63 

In many shear zones, dolomite is demonstrably stronger than calcite, but the amount of dolomite 64 

required to significantly change the rheological behaviour of carbonate shear zones is poorly 65 

understood. Field observations suggest that dolomite may lead to the embrittlement of limestone 66 

(Viola et al., 2006). However, despite the common occurrence of limestone-dolomite 67 

composites, the influence of dolomite content on the strength of limestone under both ambient 68 

and high temperature conditions is poorly understood.  69 

The deformation response of pure calcite and, to a lesser extent, pure dolomite under a 70 

variety of crustal conditions is well understood. Field observations suggest that under similar 71 

conditions of deformation, below amphibolite facies metamorphism, dolomitic rocks are stronger 72 

than limestone of similar grain size and porosity. During deformation, dolomite generally 73 

becomes highly fractured whereas calcite undergoes dislocation creep and dynamic 74 

recrystallization (Bestmann et al., 2000; Erikson, 1994; Woodward et al., 1988). Under similar 75 

experimental deformation conditions, dolomite rock is stronger and less ductile than limestone 76 

(Davis et al., 2008; Griggs et al., 1951, 1953; Handin and Fairburn, 1955; Higgs and Handin, 77 

1959; Holyoke et al., 2013). At high temperatures (> 700°C), coarse grained dolomite is still 78 

stronger than calcite; however, fine-grained dolomite rocks (grains less than 15 µm in diameter) 79 

weaken significantly and can be weaker than calcite-rich rocks deformed under the same 80 

conditions (Davis et al., 2008; Delle Piane et al., 2009a; Delle Piane et al., 2008; Holyoke et al., 81 

2013).  82 
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In this study, we address the role of coarse-grained dolomite on the strength and 83 

microstructural evolution of calcite-dolomite composites. Synthetic, hot isostatically pressed 84 

(HIP) calcite-dolomite (Cc-Dm) composites of four unique compositions - 1) 25%Dm:75%Cc, 85 

2) 35%Dm:65%Cc, 3) 51%Dm:49%Cc, 4) 75%Dm:25%Cc (hereafter designated by their 86 

dolomite content (%): Dm25, Dm35, Dm51, and Dm75) - were deformed in a torsion apparatus 87 

at elevated temperature and confining pressure to determine their rheological behaviour and to 88 

evaluate the effect of dolomite content and grain size on rock strength. A total of 13 rock 89 

deformation experiments were conducted at the following conditions: temperature (T) of 750°, 90 

effective pressure (Peff) of 262 MPa, imposed maximum shear strain rates (��) of 1x10-4 s-1 and 91 

3x10-4 s-1, and total shear strains (�) between 0.16 and 5.5. We observe that 1) in carbonate 92 

composites, even low dolomite contents greatly affect rock strength; 2) coarse-grained dolomite 93 

accommodates strain by brittle deformation in high dolomite content samples; and 3) calcite 94 

deforms by dislocation glide and diffusion creep assisted grain boundary sliding. Finally, we 95 

compare the experimental results to other studies and comment on their application to natural 96 

deformation environments.  97 

 98 

2. Starting Material 99 

2.1. Starting Powders and Sample Preparation 100 

Two end member powders (coarse-grained dolomite and fine-grained calcite; described 101 

below) were mixed in varying proportions to produce four distinct compositions: Dm25, Dm35, 102 

Dm51, and Dm75. 103 

Reagent-grade calcite powder (Minema 1™) was supplied by Alberto Luisoni AG, 104 

Mineral- & Kunststuffe and is characterized by equiaxed calcite grains exhibiting rare growth 105 

twins. The powder has a modal grain size of 9 µm (Figure 1A), as measured with a Mastersizer 106 

2000 laser diffraction particle size analyser (Malvern Instruments Ltd.;). Rietveld refinement of 107 

XRD spectra (Raudsepp et al., 1999) of the calcite powder confirms its composition to be 99% 108 

CaCO3; the remaining constituents are Mg, Al, Fe, and Si oxides.  109 

 A 4 kg block of Badshot marble, a natural dolomite marble from the Selkirk Mountains 110 

of British Columbia, was crushed to produce a powder with a broad grain size distribution and 111 

modal grain size of ~120 µm (Figure 1A). Badshot dolomite is characterized by coarse dolomite 112 

grains (mean grain size of 477 µm, Austin and Kennedy (2005)) featuring lobate grain 113 

boundaries and fine, polygonal grains. Cleavage and twinning are prevalent in most grains 114 
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(Austin, 2003; Austin and Kennedy, 2005; Austin et al., 2005). XRD analysis of the powder 115 

indicates a mineralogy that is ~99.8% dolomite. Thin section analysis reveals trace quantities 116 

(<< 1%) of pyrite, apatite, calcite, tremolite, and white mica; these accessory phases are 117 

sufficiently low in abundance to be undetected by XRD analysis.  118 

 The powder mixtures were mechanically shaken to create homogeneous mixtures; 119 

the grain size distributions of the mixed powders are shown in Figure 1B. The starting powders 120 

have a bimodal grain size distribution, reflecting the dolomite proportion. The powder mixtures 121 

were then dried at 120°C for a minimum of 24 hours before being cold pressed into stainless 122 

steel, cylindrical canisters. The canisters were filled and pressed in 20g increments to produce 123 

homogenous packing of the powder along the canister length. This was done to avoid pressure 124 

shadow development during heat treatment. Pressing was done with an Enerpac-H-Frame 50 ton 125 

press up to a load of 40 tons, corresponding to a vertical stress of 200 MPa. A small volume of 126 

alumina powder with a porosity of ~30% was placed at the top and bottom of the canisters to act 127 

as a CO2 sink for decarbonating dolomite. This ensured the migration of the emitted CO2 to the 128 

storage areas, allowing the porosity to remain reduced in the rest of the canister.  129 

All canisters were welded shut and, subsequently, hot isostatic pressed (HIP) to produce 130 

synthetic composite rock samples. The HIP was performed in a large volume, internally heated, 131 

argon gas apparatus at ETH-Zürich under a confining pressure of 170 MPa (Delle Piane et al., 132 

2009a) and a temperature of 700°C for 4 hours. The resulting products form a suite of coherent, 133 

sintered material of known compositions and consistent grain size. Rietveld refinements of XRD 134 

spectra collected on the composite samples did not detect periclase (MgO) nor lime (CaO), 135 

indicating that there was no detectable decarbonation of dolomite or calcite during the HIP 136 

process. Rietveld refinements also confirm the four starting material compositions as containing 137 

25%, 35%, 51%, and 75% dolomite.  138 

2.2. Microstructural and Textural Analyses 139 

Starting materials were thin sectioned normal to the canister long axes (i.e. normal to the 140 

pressing direction) and polished using a rotary polishing wheel and 200 nm silica bead colloidal 141 

solution. Backscatter electron (BSE) and secondary electron (SE) SEM images were collected 142 

using a thermal field emission type Zeiss Sigma SEM (UBC) with 1.3 nm resolution at 20 kV 143 

acceleration voltage. Probe current was 1.37 nA. 144 

Electron Backscatter Diffraction (EBSD) analysis was completed to map the 145 

crystallographic preferred orientation (CPO) of the starting materials and the evolution of the 146 
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CPO of subsequently deformed materials. EBSD measurements were made using an EDAX 147 

DigiView EBSD camera (UBC). Samples were inclined to the electron beam at 70° to produce 148 

clear diffraction patterns for automated identification using Orientation Imaging Microscopy 149 

(OIM™) Data Collection and Data Analysis software. The average crystallographic orientation 150 

for each individual grain was used to generate pole figures using PF_Euler_PC.exe (Pera et al., 151 

2003). CPO strength is characterized by the J-texture index (the density distribution of the 152 

crystallographic orientations (Miyazaki et al., 2013)); we use both the pole figure J-index (pfJ) 153 

and the J-index (J). Indices vary from 1 (random crystallographic orientations; no CPO) to 154 

infinity (one discreet crystallographic orientation). The J-index (calculated using mtex-3.5.0 155 

(Bachmann F., 2010)) incorporates all slip systems, while the pfJ-index (calculated using 156 

PF_Euler_PC.exe) is a measure of the strength of the CPO along a defined slip axis (i.e. c-axis).  157 

 Energy-dispersive X-ray spectroscopy (EDS) was performed on all analyzed samples 158 

using an Apollo XL Silicon Drift Detector (SDD) at a typical working distance of 14 mm. EDS 159 

data were collected in conjunction with EBSD diffraction patterns and used to identify dolomite 160 

based on the apparent relative concentrations of Mg:Ca. EDS spectra suggesting Ca:Mg ratios ~1 161 

were interpreted as indicating the presence of dolomite.  162 

2.3. Starting Material Characterization  163 

The skeletal and isolated pore space volume, Vs+i, of each sample was determined prior to 164 

deformation using a Micrometritics Multivolume Pycnometer 1305 helium pycnometer. 165 

Connected porosity, 	�, was calculated from the geometric bulk volume, ��, and skeletal and 166 

isolated pore volume: 167 

� = �1 − ��
�
��

� × 100%  (1) 168 

The final composition, porosity, and density of the starting materials are given in Table 1. 169 

 Calcite grains are approximately equiaxed, generally have straight grain boundaries, and 170 

are closely packed with triple junction grain boundaries (Figure 2A and 2C). Porosity is isolated 171 

along grain boundaries and at triple junctions and therefore may not be accessed by the helium 172 

gas pycnometer; the porosity data obtained by pycnometry are considered lower limits.  173 

Dolomite grains are generally distributed homogeneously in all synthetic starting 174 

materials (Figures 2B and 2D); rarely, coarser grains of dolomite may cluster together. Dolomite 175 

grains are angular to subangular and contain intragranular fractures; straight fractures appear to 176 

follow cleavage planes but curved fractures also exist. Since these fractures do not continue into 177 
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the calcite matrix, they are attributed to the crushing process used to produce the starting 178 

dolomite powder. Intergranular porosity is greatest at dolomite-calcite interfaces (Figure 2C).  179 

Observations of the Dm25 and Dm35 starting materials made by SEM reveal randomly 180 

distributed circular concentrations of calcite up to ~500 µm in diameter (Figure 3A). These 181 

concentrations are spherical and likely accreted during mechanical shaking of the starting 182 

powders. The margins of these calcite aggregates are accentuated by concentrations of edge-183 

parallel oriented dolomite grains (Figure 3B). Similarly, coarse dolomite grains can also be 184 

encased in a halo of predominantly fine-grained calcite.  185 

Individual calcite grains within the starting materials are undeformed, showing little to no 186 

undulose extinction. Lower hemisphere stereographic projections for calcite obtained from 187 

EBSD analysis indicate a weak CPO of the calcite c-axis (Figure 2B and 2D). The c-axis is 188 

oriented perpendicular to the load direction during cold pressing as observed by Rutter et al. 189 

(1994b), and regardless of calcite content does not vary significantly. Dolomite in the starting 190 

materials shows no CPO along any of the common dolomite glide planes (Figures 2B and 2D). 191 

The CPO peaks on the dolomite stereonets are artefacts caused by the relatively small number of 192 

dolomite grains in the scanned area (a result of their large grain size) and cause erroneously high 193 

pfJ-indices, indicating strong textures focused around single grains. 194 

Grain size distributions based on two-dimensional images for Dm25 and Dm75 were 195 

calculated using Orientation Imaging Microscopy (OIM™) data analysis software by fitting a 196 

model ellipse to each crystallographically identified grain (Figure 4). Both starting compositions 197 

show similar calcite grain size distributions; Dm25 and Dm75 have modal calcite grain sizes of 198 

5.5 µm and 4.5 µm, respectively (Figure 4A). Dolomite grain size distributions are shown in 199 

Figure 4B. These estimates are less precise than for calcite because there are fewer dolomite 200 

grains in the scan areas, but we observe a broad grain size distribution ranging between 0 and 201 

100 µm. 202 

 203 

3.0. Deformation Apparatus and Techniques 204 

The HIP material was cored into 10 mm and 15 mm diameter cylinders. The core ends 205 

were flattened and polished perpendicular to the cylinder sides. Samples were dried in an oven at 206 

100°C then mounted between alumina and partially stabilized zirconia spacers and encased in 207 

iron jacketing. A jacket thickness of 0.25 mm was used for 15 mm diameter samples.  Jackets for 208 
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10 mm diameter samples were swaged to the correct inner diameter resulting in thickening of the 209 

jacket wall to 0.4 mm. 210 

All experiments were performed using an internally heated, argon-confining medium 211 

pressure vessel equipped with torsion actuator, described by Paterson and Olgaard (2000) 212 

(Figure 5A). The experiments were performed in torsion at constant angular displacement rates, 213 

corresponding to constant maximum shear strain rates of 1x10-4 s-1 and 3x10-4 s-1. Confining 214 

pressure and temperature were held constant at 300 MPa and 750°C, respectively. Sample 215 

temperature was monitored using a K-type thermocouple placed 3mm above the sample. The 216 

thermal profile along the sample was calibrated to be consistent within 1°C. All samples were 217 

heated and cooled at 10°C/min.  218 

 The applied torque was measured using an internal load cell equipped with a pair of pre- 219 

calibrated linear variable differential transformers (LVDTs). Measured torque was corrected for 220 

the strength of the iron jacket (Barnhoorn, 2003) and converted to shear stress at the sample 221 

surface: 222 

� = �����
���

���   (2) 223 

where τ is shear stress, M is internal torque, d is the diameter of the sample, and n is the stress 224 

exponent (Paterson and Olgaard, 2000). In this study, the power law creep relationship used is: 225 

�� = ��� 
!"
#$    (3) 226 

where A and Q are constants, n is the stress exponent, T is the temperature, and R is the gas 227 

constant (Paterson and Olgaard, 2000). n is experimentally determined for a given composition 228 

by conducting a strain rate stepping experiment and plotting the total torque response (M) to 229 

changing strain rate (��).	 As M is linearly related to τ, the slope of the log-log plot ��  vs. M yields 230 

n according to: 231 

( = � )*+�
� )*�  (4) 232 

Comparison between torsion and axial experiments is necessary for comparing our data to 233 

studies of other carbonate systems. At the same nominal strain rates (,� = ��), differential stress 234 

(-. − -�) is calculated: 235 

-. − -� = 3
�
�
0� �  (5) 236 

where -. is the calculated maximum compressive stress, -� is the minimum compressive stress, 237 

and � is shear stress (Paterson and Olgaard, 2000).   238 

 239 
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4.0. Mechanical Results  240 

To maintain the stability of dolomite, we performed all experiments under unvented 241 

conditions and within the stability field of calcite and dolomite (Goldsmith, 1959). XRD analysis 242 

revealed no evidence of decarbonation products; we conclude that the low porosity of our 243 

starting materials allowed equilibrium pore pressures to be reached by the dissociation of trace 244 

amounts of dolomite (Davis et al., 2008; Delle Piane et al., 2009a; Holyoke et al., 2013). We 245 

have accounted for the effective pressure caused by the decarbonation of trace amounts of 246 

dolomite, such that Peff=PC-PCO2.   247 

 All experiments performed in this study, including experimental conditions and sample 248 

compositions, are summarized in Table 2. Dm25, Dm35, and Dm75 samples were deformed in 249 

strain rate stepping experiments to empirically determine the stress exponent n (see Table 2, 250 

Figure 6). All mechanical data are fit using Eq. (2) and are shown in Figure 7A (high strain rate 251 

experiments) and Figure 7B (low strain rate experiments). High strain rate (�� = 3 × 101�21.) 252 

experiments were conducted for all four compositions (experiments P1522, P1524, P1525, 253 

P1527, P1528, P1537, and P1538) at T=750°C and Pc=300 MPa. The shear strain for these 254 

experiments exceeded � = 5 (Figure 7A). Experiment P1537’s (Dm51) heating history is not 255 

confidently known beyond	�~2; only the mechanical data up until this point is used and this 256 

sample was not used for microstructural analysis. Low strain rate (�� = 1 × 101�21.) 257 

experiments were conducted for compositions Dm35 (P1543), Dm51 (P1523), and Dm75 258 

(P1533) at T=750°C and Pc=300 MPa (Figure 7B). The maximum shear strain for these 259 

experiments was approximately �~2. 260 

Yield and peak strength of the synthetic composite samples increases with increasing 261 

dolomite content (Table 2; Figure 7C). Yield strength was taken as the departure from the elastic 262 

response of the material. Experiments P1527 (Dm25) and P1524 (Dm35) are mechanically 263 

similar, both reaching a peak strength of ~80 MPa (Figure 7A). Mechanical steady-state (~79 264 

MPa) is established in both samples at γ < 0.1 followed by limited strain hardening in Dm25 at γ 265 

~ 3.75 (Figure 7A). Experiments P1525 and P1528 (Figure 7A) failed due to jacket ruptures 266 

resulting from the inherent strength of the Dm51 and Dm75 materials at 15 mm sample 267 

diameters. To mitigate this behaviour, Dm51 (P1537) and Dm75 (P1538) sample diameters were 268 

reduced to 10 mm so that these compositions could be deformed to high strain. P1537 (Dm51) 269 

reached a tenuous steady-state at τ~140 MPa and γ~0.4 (Figure 7A). The mechanical behaviour 270 

of the Dm75 sample evolves throughout deformation: after attaining a peak strength of ~178 271 
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MPa, dramatic strain weakening at �~1 is recorded (Figure 7A). Strain hardening and 272 

subsequent strain weakening are observed between 3 < � < 4. Experiments P1533 and P1543 273 

were halted manually. 274 

5. Microstructure and Texture of Deformed Materials 275 

5.1 Analytical Methods 276 

After deformation, all samples were cut along the longitudinal tangential section of the 277 

core (Figure 5B) and doubly-polished petrographic thin sections were prepared with 278 

Crystalbond© adhesive. This plane shows the maximum shear strain attained in the sample.  279 

In addition to SEM, EBSD, and EDS analyses (see Section 2.2.), microstructures for 280 

transmission electron microscopy (TEM) were selected. After having been mounted on 3mm 281 

copper discs, the areas were thinned by Ar-ion bombardment in a Gatan PIPS thinning unit.  282 

TEM examination was performed with a JEOL 2011 STEM apparatus operated at 200kcV. 283 

Electron-probe micro-analyses of selected deformed samples were done to confirm exact 284 

grain composition. Data were collected on a CAMECA SX-50 instrument, operating in the 285 

wavelength-dispersion mode using: excitation voltage: 15 kV; beam current: 10 nA; peak count 286 

time: 20 s; background count-time: 10 s; spot diameter: 10 µm. Data reduction was done using 287 

the 'PAP' φ(ρZ) method (Pouchou and Pichoir, 1985). 288 

5.2 Microstructure: low dolomite content samples 289 

The circular calcite aggregates identified in starting materials Dm25 and Dm35 (Figure 290 

3) are deformed non-coaxially into thin bands (ellipsoids) of pure calcite with aspect ratios 291 

ranging from 19 to 23 (Figure 8A). These thin layers of pure calcite, interlaced with the calcite-292 

dolomite mixture, define a compositional layering in the low dolomite content samples (Dm25 293 

and Dm35; Figures 8A and 8B). As these aggregates were originally circular in cross-section and 294 

assuming there was no loss of volume during deformation, the shear strain by simple shear can 295 

be calculated:  296 

� = cot ;< − cot ;  (6) 297 

where α is the initial angle between a line and the direction of shear, and ;< is the same angle 298 

after deformation. For the torsional simple shear assumption, the instantaneous stretching axis is 299 

oriented in the xz-plane at 45° to the direction of shear and is equal to α for the initially circular 300 

aggregates. Accumulation of strain with increasing imposed sample twist produces the maximum 301 
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stretching direction preserved by the long axis of the elliptical calcite aggregates. The angle 302 

between this orientation and the direction of shear is ;< (Figure 8A). These features record shear 303 

strains of 5.14 and 6.11 for Dm25 and Dm35, respectively. 304 

Calcite layers are sheared and rotated nearly parallel to the shear direction, while the 305 

surrounding dolomite-calcite mixture defines a shape foliation oblique to the shear direction 306 

(Figure 8B), defining a global s-c mylonite fabric. Dolomite grains with high aspect ratios (i.e. 307 

aspect ratios > 1) are subject to rigid body rotation and their long axes are aligned subparallel to 308 

the layering, inclined to the shear direction; these are interpreted as shape (s-) fabrics (Figures 309 

8B and 8C). Accessory pyrite is elongated and passively marks the local fabric (Figure 8C) while 310 

thin, discontinuous zones of relative high shear strain are oriented nearly parallel to the shear 311 

direction and are interpreted as c-surfaces (Figure 8D).  312 

 Calcite grains are generally polygonal, equiaxed to tabular, and closely packed with 313 

straight grain boundaries meeting at triple junctions (Figure 8E). The more tabular shaped calcite 314 

grains are aligned parallel to the shape foliation (inclined to the shear direction; Figure 8E). 315 

Calcite grains comprising the pure calcite layers are also mostly equiaxed, with straight grain 316 

boundaries exhibiting triple junctions. Two dimensional grain size distributions for Dm25 show 317 

possible calcite grain growth during deformation from 6 µm to 7.5 µm (Figure 4A). The 318 

dolomite grains show little to no evidence of internal strain nor is there any evidence of grain 319 

size reduction due to fracture (Figures 8A and 8C). Dolomite grains do not appear to have 320 

sustained any additional fracture (e.g. microcracking and shear fracturing), as fracture density is 321 

qualitatively the same as in the starting material. Rounding of dolomite grains less than 322 

approximately 50 µm in diameter is observed in all dolomite-poor deformed samples. While 323 

dolomite grains <100 µm show some rounding (Figure 8B and 8E), there is no significant 324 

rounding of grains above ~100 µm. 325 

Porosity is visibly reduced with respect to the starting material and is typically preserved 326 

at triple junctions of calcite grains (Figure 8E). Locally, there are regions of higher porosity 327 

within the calcite matrix aligned along foliation (Figure 8F). These regions are located in 328 

pressure shadow-like geometries along the peripheries of some dolomite grains that are > 70 µm 329 

in diameter (Figure 8F).  330 

 331 

5.3 Microstructure: High dolomite content samples 332 

In high dolomite content (>50%) samples, a poorly developed compositional layering is 333 

defined by crude variations in grain size and fine-grained, high aspect ratio dolomite (Figure 9A 334 
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and 9B). Locally, a shape fabric inclined to the shear direction is defined by rotated dolomite 335 

grains <20 µm in diameter (Figure 9B). Areas of localized strain in the patchy calcite layers are 336 

common. Thin, interconnected networks of fine-grained calcite form ribbons that define a 337 

discontinuous and irregular foliation that is deflected around more rigid coarse-grained dolomite 338 

(Figure 9A and 9C). Sheared pyrite grains wrap around dolomite grains (Figure 9A and C).  339 

The calcite microstructure is similar to the low dolomite samples; calcite grains are 340 

locally equiaxed to tabular, bounded by straight grain boundaries, and form triple junctions with 341 

neighbouring calcite grains (Figure 9B). In areas of high dolomite content, irrespective of the 342 

overall shape fabric, calcite grain are oriented parallel to the dolomite grain boundaries 343 

(especially in narrow regions between dolomite grains; Figure 9B). Two dimensional grain size 344 

distributions for P1538 (Dm75) show possible calcite grain size reduction during deformation 345 

(from 4.5 to 3.5 µm) in Dm75 (Figure 4A). 346 

Brittle deformation of dolomite is evident in all high dolomite content samples: 347 

intragranular Mode I fractures are common in the larger dolomite grains and are lined with fine 348 

grained calcite (Figure 9A). These fractures do not propagate into the surrounding calcite matrix. 349 

Locally, dolomite is fragmented by domino-style and antithetic shear fractures (Figure 9A and 350 

9D).  351 

5.4 Deformation Textures 352 

EBSD analyses of samples Dm25, Dm35, and Dm75 taken to high strain show a strong 353 

crystallographic preferred orientation of calcite crystals (Figure 10).  The c-axes define double 354 

maxima with the bisecting line normal to the direction of maximum stretching, indicating basal 355 

slip activation. With increasing dolomite content, the c-axis CPOs become more diffuse, though 356 

pfJ- and J-indices are comparable (Figure 10B vs. 10E). In all cases, the c-axis patterns are most 357 

pronounced, followed by the a-axis system. As in the c-axis system, the a-axis girdles are well 358 

defined but are symmetric about the direction of shear. While a dominant CPO is observed, 359 

calcite grains appear internally strain free, showing little to no evidence for significant internal 360 

strain (indicated in the EBSD maps by uniform grain crystal lattices). However, preliminary 361 

TEM observations (Figures 11A and 11B) show that, despite the EBSD observations, 362 

dislocations are common while subgrains are absent. 363 

 The spherical calcite aggregates (observed in the starting material, Figure 3) that 364 

deformed to ellipses during shear (Figure 8A) have the strongest crystallographic preferred 365 

orientations. Figure 12 is a compilation of four EBSD scans across a sheared calcite layer from 366 
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the dolomite-calcite matrix into the calcite layer. It highlights the effect of the second phase 367 

(dolomite) on calcite fabric development. The calcite layer has higher pfJ- and J-indices (Figure 368 

12E), indicating a stronger texture than the surrounding calcite-dolomite matrix (Figure 12B, 369 

12C, and 12C). The CPO of a region scanned ~600 µm away from the calcite layer (Figure 12C) 370 

shows the ‘background’ CPO of the matrix: both the c and a axes are well defined and 371 

asymmetrically distributed around the SZB and normal to the SZB, respectively. Adjacent to the 372 

calcite layer (~100 µm away from the calcite band; Figure 12D), which still contains dolomite 373 

grains, calcite has a similar CPO to that shown in Figure 12C. Within the calcite layer (Figure 374 

12E), the CPOs show the tightest clusters. The c-axis is symmetrically distributed perpendicular 375 

to the shear zone boundary (SZB). 376 

 To illustrate the evolution of fabric with increasing shear strain, thin sections were cut 377 

from different longitudinal axial sections (see Figure 5B) from the same core for each 378 

experiment, and CPOs were measured using EBSD (Figure 13). The calcite c-axes are inclined 379 

to the shear zone boundary and define tighter maxima with increasing shear strain. The pfJ- and 380 

J-indices also increase with increasing strain. For the Dm75 experiment, the c-axis maxima are 381 

more diffuse than for the Dm25 and Dm35 experiments.  382 

There is no well-developed CPO in dolomite from deformed samples (Figure 10C and 383 

10F), nor is there pervasive undulose extinction, though Dm75 shows minor undulose extinction 384 

in coarse-grained dolomite. The pfJ- and J-indices do not vary significantly from the starting 385 

material, although they are higher than the same indices for calcite. We interpret this to be, in 386 

large part, due to the limited number of data points used to calculate these values. 387 

 388 

6. Chemical Changes Attending Deformation 389 

EDS analysis of calcite and dolomite grains in deformed samples highlights changes in 390 

composition with increasing shear strain. In particular, the magnesium contents of calcite grains 391 

increase with increasing strain. This is most pronounced in calcite grains proximal to fine-392 

grained dolomite phases. Figure 14 demonstrates the evolution of magnesium transfer from γ=0 393 

(Figure 14A) to the largest strains (Figure 14C) for P1527 (Dm25). At γ=0, magnesium is 394 

restricted to dolomite grains, but with increasing strain magnesium becomes more mobile and 395 

defines a foliation between dolomite grains (white streaks in Figure 14C).  396 

Electron microprobe analysis was used to quantify the extent of Mg2+ migration from 397 

dolomite to calcite during deformation in high strain experiments P1527 (Dm25) and P1538 398 
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(Dm75). Microprobe analysis confirms depletion of Mg2+ in fine-grained dolomite proximal to 399 

Mg2+ enriched calcite in Dm25; however, calcite removed from dolomite grain boundaries is not 400 

enriched. Mg-enrichment of calcite is pervasive in Dm75, regardless of proximity to thin ribbons 401 

of plastically deformed calcite, owing to the abundance of dolomite throughout the system. 402 

Microprobe data can be found in the Supplementary Materials. 403 

7. Discussion 404 

7.1. The Role of Dolomite 405 

In all our experiments, peak shear stress is higher than that determined for 100% calcite 406 

of the same grain size and deformed under similar experimental conditions (Figure 7C). For 407 

example, the peak shear stress for pure, synthetic calcite aggregates with an average grain size of 408 

7 µm deformed in torsion at 727°C, Pc = 300 MPa, and ��  = 3x10-4 s-1 is 15 MPa (Barnhoorn et 409 

al., 2005a). Peak shear stresses for Solnhofen limestone (grain size ~5 µm) under the same 410 

conditions were ~40 MPa (Barnhoorn et al., 2005a). Predicted equivalent shear flow stresses for 411 

diffusion creep in Mg-rich calcite (Herwegh et al., 2003) and pure calcite (Walker et al., 1990) 412 

are 6 MPa and 13 MPa, respectively (see Herwegh et al. (2005) for flow law parameters used). 413 

All these peak stresses are significantly lower than the peak shear stress attained during the 414 

Dm25 dolomite content experiments (79 MPa for P1522 and 82 MPa for P1527) in this study. 415 

These larger recorded shear stresses may be symptomatic of an increased strain rate in the calcite 416 

phase as it deforms around rigid dolomite. Indeed, assuming all deformation in our samples is 417 

accommodated within the calcite phase, the predicted shear strain rates calculated using the peak 418 

shear stresses recorded for P1527 (Dm25) are over one order of magnitude faster (6x10-3 s-1 and 419 

4x10-3 s-1 for pure and Mg-rich calcite, respectively; see Herwegh et al. (2005) for flow laws and 420 

flow law parameters used) than the imposed strain rate of 3x10-4 s-1. 421 

In our low-dolomite content experiments (Dm25 and Dm35), coarse-grained dolomite 422 

grains show no evidence of extensive brittle or intracrystalline deformation. However, finer 423 

grained dolomite (< 50 µm) with aspect ratios >1 are rotated into the foliation, suggesting their 424 

active role as rotating rigid bodies. We propose that most shear strain was partitioned into the 425 

fine-grained calcite layers and that although the dolomite grains are not internally strained or 426 

highly fractured, the distribution of these rigid bodies acts to create anastomosing, connected 427 

networks of calcite grains. In effect, the dispersed dolomite grains provide local resistance to 428 

grain boundary sliding and this resistance results in an increase in the flow stresses necessary for 429 

steady state deformation.  430 
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 Although we observe a moderate increase in strength in the 51% dolomite experiment 431 

relative to Dm25 and Dm35 (Figure 7A), the Dm75 sample shows a two-fold increase in strength 432 

over compositions Dm25 (P1522 and P1527) and Dm35 (P1524). We interpret the high yield 433 

stress of Dm75 as a result of the load being supported by dolomite-dolomite contacts. We 434 

propose that the significant shear stress drop in experiment P1538 (Dm75) represents fracture of 435 

dolomite grains by Mode I, shear fractures, and subsequent grain size reduction (refer to Figures 436 

9A and 9D). A short-lived steady state is attained once a temporary grain boundary network is 437 

established within the fine-grained calcite (Figure 9C), permitting grain boundary sliding. In 438 

essence, disruption of the calcite network leads to strain hardening while re-establishment of the 439 

calcite networks leads to the final strain weakening (Figure 7A). Similar behaviour is suggested 440 

for the strong phases in other multi-phase systems (e.g. Rybacki et al. (2003)). For instance, in 441 

quartz-calcite composites, the addition of quartz (the strong phase, analogous to dolomite in our 442 

system) significantly increases the flow stress needed for steady state deformation (Rybacki et 443 

al., 2003).  444 

In our experiments, the high dolomite content (75%) samples are strongest, yet they are 445 

significantly weaker than 100% coarse- grained dolomite deformed under similar elevated 446 

pressure-temperature conditions (Figure 7C; (Davis et al., 2008; Holyoke et al., 2013). The peak 447 

shear stress of 167 MPa achieved in experiment P1538 (Dm75) is lower than the reported 448 

strengths for Madoc dolomite (grain size of 240 µm) at 700°C (equivalent yield shear stress of 449 

241 MPa; equivalent shear stress at 5% strain of 377 MPa; equivalent �� = 2x10-4 s-1) and 800°C 450 

(equivalent peak shear stress of 257 MPa for an equivalent ��  = 1.7x10-5 s-1). We attribute the 451 

relative weakness in our Dm75 sample to the role of calcite networks in weakening the rocks. 452 

Coarse-grained dolomite does not undergo any significant intracrystalline plasticity and deforms, 453 

instead, by fracture. We interpret that shear strain is partitioned into thin, fine-grained, 454 

interconnected calcite-dolomite layers that are developed during shear strain and are deflected 455 

around large dolomite clasts (Figure 9C). This shear strain-induced configuration results in a 456 

weaker rock.  457 

Our data suggest that for dolomite contents below a minimum of 35%, dolomite does not 458 

actively deform, but its presence is rate-controlling given the strength of the composites 459 

compared to micritic limestone (Figures 7C and 15A). Only when dolomite, the ‘strong’ phase, 460 

is present in sufficient quantities (>51%) to inhibit the flow of calcite and/or restrict calcite flow 461 

to narrow, localized bands does brittle fracture of dolomite grains become mechanically 462 
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significant in accommodating strain, indeed, leading to the initial embrittlement within the 463 

system.  464 

We propose that in shear systems containing <75% dolomite (with the remaining being 465 

calcite), rocks will have the ability to accommodate significant shear strain at much lower shear 466 

stresses than dolomite. Conversely, even at low concentrations (i.e. 25%), the presence of 467 

coarse-grained dolomite in a micritic calcite matrix will have a profound effect on the strength of 468 

composite materials; the strength increases with respect to a pure calcite system since dolomite 469 

grains inhibit the superplastic flow of calcite. Eventual embrittlement of dolomite within the 470 

system may be required to re-establish plastic networks of fine-grained calcite. 471 

 472 

7.2 The Case for Grain Boundary Sliding 473 

Contrasting stress exponents determined from the strain rate stepping experiments of 474 

Dm25, Dm35, and Dm75 suggest the influence of more than one deformation mechanism. For 475 

the adopted relationship, �� ∝ ��, calcite-rich samples give n = 1.7±0.23 (Dm35; P1529) and 476 

2.0±0.43 (Dm25; P1711), while dolomite-rich samples give n = 3.6±0.12 (Dm75; P1713). 477 

Broadly interpreted, a n ≥ 3 reflects dislocation creep related flow (Weertman, 1957), while 478 

1 < ( < 3  correlates with a grain-size-sensitive (GSS) rheology (Schmid et al., 1977). GSS 479 

deformation involves a component of independent grain boundary sliding that is accommodated 480 

by grain boundary diffusion (n = 1; Coble (1963)) or grain boundary dislocations (n = 2, Gifkins 481 

(1976)). 482 

In this study, the n = 1.7 and 2.0 determined for low dolomite experiments (Dm25 and 483 

Dm35) suggest a component of GSS rheology. The low dolomite composites attain mechanical 484 

steady state immediately following yield shear stress, which suggests the development of a stable 485 

microstructure. Microstructurally, the calcite matrices comprise small, equidimensional, 486 

polygonal grains that are strain free at the optical microscope and EBSD scale: a microstructure 487 

typically associated with GSS creep (Rutter, 1974; Schmid, 1976; Schmid et al., 1977; Walker et 488 

al., 1990). In addition, we do not observe any subgrains and there is no evidence for dynamic 489 

recrystallization. Furthermore, grain size distributions of the starting and deformed materials 490 

show limited change in calcite grain size; the grain size data calculated from EBSD processes 491 

record neither significant grain growth nor grain size reduction in the deformed samples.  492 

Preliminary TEM observations of the calcite aggregates show that dislocations are 493 

abundant while subgrains are absent (Figure 11). The dislocation density and the absence of 494 
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subgrains in tandem with polygonal grains meeting at triple junctions are consistent with shear 495 

strain accommodated by independent grain boundary displacements (Langdon, 2006). 496 

Reconciliation of the experimental and textural data is accomplished by considering mixed-mode 497 

deformation of the calcite aggregates including: independent grain boundary sliding, 498 

intracrystalline dislocation glide, and diffusion creep (Casey et al., 1997). This behaviour is 499 

characterized by near Newtonian flow (n = 1; typically 1< n <3 for constitutive equations of the 500 

form �� ∝ ��) and is observed for temperatures >0.5 the material’s homologous temperature 501 

(Langdon, 2006). We expect grains to be equiaxed, polygonal, strain free, and generally less than 502 

10 microns in diameter. As a result of irregularities at grain boundaries and, especially, at the 503 

junctions where more than two grains meet, independent grain boundary sliding is accomplished 504 

by Rachinger sliding resulting in strain free, equiaxed grains. Grain boundary sliding also 505 

encourages chemical exchange between phases, such as the transfer of Mg2+ between phases 506 

observed in our experimental run-products, since neighbouring grains are constantly moving past 507 

one another (Herwegh et al., 2003).  508 

Critically, small quantities of Mg2+ in calcite limit grain growth, thereby keeping grain 509 

size sensitive diffusion creep and grain boundary sliding operative during deformation (Herwegh 510 

et al. (2003), even under high homologous conditions. Herwegh et al. (2003) found that calcite 511 

grain size is inversely proportional to Mg-content, resulting in an extrinsic control on strength as 512 

calcite grain growth is inhibited. In our experiments, Mg2+ migration from dolomite to calcite 513 

confirms that diffusion creep processes occurred during deformation. Diffusion processes likely 514 

contributed to maintaining the small calcite grain size throughout the experiments (Davis et al., 515 

2008; Delle Piane et al., 2009a; Delle Piane et al., 2008; Holyoke et al., 2013). Rybacki et al. 516 

(2003) suggest that in the quartz-calcite system, Si incorporated into the dislocation cores of 517 

calcite is responsible for the increase in flow strength of calcite. It is unknown if a similar 518 

driving force exists in the calcite-dolomite system, though this cannot be discounted due to the 519 

evidence for Mg2+ migration during deformation.  520 

CPO development in the grain size sensitive field has been observed in dolomite (Delle 521 

Piane et al., 2009a), calcite (Rutter et al., 1994a), olivine (Hansen et al., 2011; Sundberg and 522 

Cooper, 2008), orthopyroxene (Sundberg and Cooper, 2008), forsterite (Miyazaki et al., 2013), 523 

and ice (Goldsby and Kohlstedt, 2001). A CPO may occur in response to dislocation creep 524 

accommodating relative grain boundary displacements (Ashby and Verrall, 1973; Langdon, 525 

2006). However, Miyazaki et al. (2013) show that grain boundary orientation is often 526 

crystallographically controlled with grain boundary sliding (GBS) frequently occurring on 527 
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specific planes. CPO development can, therefore, be a by-product of grain rotation by GBS 528 

(Miyazaki et al., 2013). Critically, interface-controlled diffusion creep can lead to CPO 529 

development despite little dislocation mobility; grain boundary sliding may be favoured in 530 

systems where grain boundary anisotropy is significant thus precluding dislocation creep as the 531 

dominant deformation mechanism (Sundberg and Cooper, 2008). Our J-indices are similar to 532 

those calculated for Solnhofen limestone (Barnhoorn et al., 2005a) and fine-grained calcite-533 

dolomite composites (Delle Piane et al., 2009a) deformed to high shear strains; they are 534 

significantly lower than those reported in synthetic, fine-grained calcite aggregates deformed to 535 

high shear strains (Barnhoorn et al., 2005a). This likely results from the presence of a second 536 

phase in our samples that curtails grain growth in the material, keeping the grain size small 537 

(Barnhoorn et al., 2005a; Herwegh and Kunze, 2002; Olgaard, 1990) and hindering pervasive 538 

dislocation mobility. Indeed, even nano-scale second phases are sufficient to pin grain 539 

boundaries (Herwegh and Kunze, 2002); the fine-grained dolomite and minor accessory phases 540 

in our samples are likely sufficient to pin grain boundaries, hampering grain growth and keeping 541 

grain boundary sliding a dominant mechanism. The strength of the CPO for the calcite 542 

aggregates and the lack of subgrains are consistent with grain boundary sliding assisted by 543 

limited dislocation glide/creep (Rutter et al., 1994b; Schmid et al., 1987). Increased Mg2+ 544 

mobility from dolomite to calcite (see Figure 14 and Supplementary Material) suggests that 545 

diffusion processes are also active during deformation of our samples.  546 

The microstructure and texture of calcite aggregates in all run products in this study 547 

supports grain boundary sliding accommodated by diffusion creep and possible dislocation 548 

glide/creep (Ashby and Verrall, 1973; Casey et al., 1997; Langdon, 2006; Mukherjee, 1975; 549 

Schmid et al., 1977). Grain boundary diffusion results in the subtle elongation of calcite grains 550 

and the solid-state diffusion processes that accommodate Mg2+ movement from dolomite into 551 

calcite (Delle Piane et al., 2009a; Langdon, 2006). This is consistent with the more pronounced 552 

grain elongation and Mg2+ movement observed in Dm75. Similar microstructures and textures 553 

have been published on both 100%, fine-grained calcite (Casey et al., 1997; Schmid et al., 1977) 554 

and fine-grained dolomite-calcite composites (Delle Piane et al., 2009a) and the same 555 

deformation mechanisms have been proposed.  556 

The most dolomite-rich experiment (P1538; Dm75) shows a mixed response to 557 

deformation: fracture in dolomite and plastic flow of calcite. Mechanically, the Dm75 composite 558 

is the strongest and the most complex: the material sustained a stress drop followed by the 559 

attainment of stable flow after a shear strain of ~1, followed by an episode of strain hardening 560 
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and strain softening (Figure 7A). The rheological behaviour of Dm75 is better described by 561 

power law creep of calcite with Mohr Coulomb behavior in dolomite.  The stress drop in Dm75 562 

may have been a result of fracture of dolomite and reconfiguration of the material to attain an 563 

interconnected network of calcite, thereby attaining stable flow.  564 

7.3 Deformation of Two-Phase Aggregates 565 

 In our study, calcite is the weak phase. The addition of a second phase to a calcite matrix 566 

can both strengthen (Austin et al., 2014; Barnhoorn et al., 2005b; Delle Piane et al., 2009a; Delle 567 

Piane et al., 2009b; Rybacki et al., 2003) and weaken (Austin et al., 2014; Delle Piane et al., 568 

2009a) the composite aggregate. In fine-grained calcite aggregates that accommodate shear 569 

strain primarily by grain boundary sliding, the addition of fine-grained dolomite strengthens the 570 

aggregates at 700°C, but significantly weakens them at 800°C (Delle Piane et al., 2009a). This 571 

strength inversion results from a loss of competence in fine-grained dolomite at high 572 

temperatures and both dolomite and calcite deform by grain sensitive flow (Delle Piane et al., 573 

2009a). Our samples show significant strengthening with increasing dolomite content. This is, in 574 

large part, due to the significant size of the dolomite grains, which act as rigid bodies and restrict 575 

calcite flow in our samples. 576 

Initially homogeneous, fine-grained, two-phase aggregates (e.g. anhydrite-calcite, 577 

forsterite-pyroxene, and forsterite-diopside) develop compositional layering at high strain 578 

(Barnhoorn et al., 2005a; Hiraga et al., 2013; Miyazaki et al., 2013). In fine-grained forsterite-579 

pyroxene aggregates, grain boundary sliding was shown to encourage ‘demixing’ of the mineral 580 

phases through grain switching events, giving rise to compositional layering (Hiraga et al., 581 

2013). In our samples, the low-dolomite content (Dm 25 and Dm35) aggregates show 582 

compositional layering at high strains. We attribute this layering to the deformation of the 583 

spherical calcite aggregates present in the starting material and the segregation of coarse-grained 584 

dolomite. We do not observe convincing ‘demixing’ of phases within our aggregates, probably 585 

due to the large grain size of dolomite, which precludes the dolomite from participating in grain 586 

boundary sliding. The 75% dolomite content sample has a crude compositional foliation 587 

(because of dolomite grain size differentiation) defined by predominantly calcite and finer-588 

grained dolomite grains, alternating with coarse-grained dolomite. Because of their bimodal 589 

grain size distribution (fine-grained calcite and coarse-grained dolomite) the behaviour of our 590 

samples is not consistent with the ‘demixing’ of phases via grain switching events but instead by 591 

mechanical sorting based on grain size. 592 
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7.4 Calcite Aggregates: Analogues for Veins in Nature? 593 

EBSD analysis of the compositionally homogeneous calcite bands present in P1527 and 594 

P1524 (Figures 8A, 8B, and 12) show stronger CPOs in these regions than in the surrounding 595 

calcite-dolomite matrix. This suggests that these layers record more applied shear strain (Rutter 596 

et al., 1994b). Additionally, the presence of deflected foliations suggests strain partitioning and 597 

localization (refer to Figure 8B): areas rich in dolomite accommodated less displacement (i.e. are 598 

less sheared) than monomineralic calcite layers. Strain partitioning may occur because 599 

compositionally homogeneous regions are more easily deformed as grain boundary pinning is 600 

not encouraged (Olgaard, 1990). This results in the maintenance of the initial compositional 601 

zoning of the samples.  602 

These calcite regions provide an interesting analog for calcite veins in nature that are 603 

observed to absorb more strain than the surrounding host rock (Kennedy and White, 2001). Low 604 

chemical potential gradients between single phase grains inhibit diffusion processes, leading to 605 

the activation of dislocation glide and, ultimately, back-stressing from the pileup of dislocations 606 

at grain boundaries, resulting in a population of strain free grains with similar CPO (Kennedy 607 

and White, 2001; Molli et al., 2011). This effect is more pronounced in pure calcite regions of 608 

Dm25 and Dm35 because the chemical potential gradients between grains are such that diffusion 609 

processes are curtailed (Kennedy and White, 2001). 610 

8. Conclusions 611 

 The styles and mechanisms of deformation associated with many variably dolomitized 612 

limestone shear systems are strongly controlled by strain partitioning between dolomite and 613 

calcite. The contrasting deformation behaviour of dolomite and calcite aggregates in our 614 

experiments is fundamentally related to grain size. Fine-grained calcite (and possibly dolomite) 615 

deform by grain boundary sliding assisted by diffusion creep and possible limited dislocation 616 

glide. In low dolomite composites, dolomite grains act to increase the strength of shear zones 617 

relative to 100% calcite, presumably because the fine-grained calcite must flow around rigid 618 

dolomite grains.  619 

In high dolomite content samples, two deformation mechanisms likely occur 620 

concomitantly (either in parallel or in series) during shear: brittle failure of dolomite and 621 

superplastic flow of calcite. We infer that strain hardening occurs until dolomite grains fracture 622 

permitting interconnected, fine-grained calcite to form crude layers such that grain boundary 623 

sliding of fine-grained calcite accommodates displacement. This results in extreme localization 624 
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of shear strain into thin, discontinuous calcite layers. These calcite layers are periodically 625 

obstructed by clusters of coarse-grained dolomite leading to further locking of the system. With 626 

increased dolomite content, a stress exponent greater than 3 indicates that 75% dolomite can still 627 

be described by power-law models, however, based on the microstructure, brittle deformation 628 

(Mohr –Coulomb) should be considered to act intermittently during shear strain. 629 

These observations are critical to the interpretation of fault systems where dolomite may 630 

periodically inhibit flow in calcite networks, thereby locking the fault system and resulting in the 631 

build up of shear stresses. We speculate that the embrittlement of dolomite within these zones 632 

may be necessary in the re-establishment of grain boundary sliding networks in calcite leading to 633 

a continued ductile response of such systems.  634 

 635 
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Figure Captions 651 

 652 

Figure 1. Grain size distributions (vol.%) of starting material powders. A. Grain size 653 

distributions of pure calcite and pure dolomite powders. Modal grain sizes of the calcite and 654 

dolomite powders are 9 µm and 120 µm, respectively. B. Grain size distributions of calcite-655 

dolomite powder mixtures used for fabricating the synthetic composites. 656 

 657 

Figure 2. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) 658 

analysis of Dm25 and Dm75 starting materials after synthesis. The a and b axes refer to the axes 659 

on the stereographic projections. The cold pressing direction is parallel to the canister length, 660 

into the page.  A. Dm25; Equiaxed calcite grains, closely packed with straight grain boundaries 661 

forming triple junctions. There is significant residual intergranular porosity at calcite grain 662 

boundaries. B. Dm25; Lower hemisphere contoured stereoplots for the c slip system for calcite 663 

(left) and dolomite (right). N is the number of grains used to produce the pole figures, J is the J-664 

texture index, and pfJ is the pole figure J-texture index, reflecting texture strength of the c-slip 665 

system. C. Dm75; Equiaxed calcite grains, closely packed with straight grain boundaries forming 666 

triple junctions. Residual porosity is concentrated at dolomite boundaries. D. Dm75. Lower 667 

hemisphere contoured stereoplots for the c slip system for calcite (left) and dolomite (right). N is 668 

the number of grains used to produce the pole figures, J is the J-texture index, and pfJ is the pole 669 

figure J-texture index, reflecting texture strength of the c-slip system. Note the large variation in 670 

dolomite grain size that is also common in naturally formed dolomitic limestones.  671 

 672 

Figure 3. Backscatter electron images of a pure calcite spherical aggregate in Dm35 starting 673 

material. A. The diameter of the imaged aggregate is ~200 µm. B. High aspect ratio dolomite 674 

grains are oriented such that their long axes are tangential to the circumference of the aggregate. 675 

The dashed white line identifies the boundary between pure calcite and calcite-dolomite. 676 

Porosity within the aggregate is homogeneously distributed and occurs along calcite grain 677 

boundaries, specifically at triple junctions. 678 

 679 

Figure 4. Grain size distributions (area fraction) of calcite (A) and dolomite (B) from coherent, 680 

hot isostatically pressed starting material and high strain experiments (Dm25, P1527; Dm75, 681 

P1538) measured using SEM and EBSD techniques. 682 

 683 
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Figure 5. A. Schematic of the Paterson deformation apparatus with torsion actuator (modified 684 

from Paterson and Olgaard, (2000)). B. Schematic diagram of the two principal thin section cuts 685 

used in this study (Paterson and Olgaard, (2000)). The longitudinal axial cut captures 686 

intermediate strains along the centre axis of the segment. The longitudinal tangential segment 687 

captures the maximum strain plane of the sample. d and l are the diameter and length of the 688 

perfect cylindrical sample, respectively. 689 

 690 

Figure 6. Log-log plot of shear strain rate vs. torque from the strain rate stepping experiments for 691 

A. Dm25 and Dm35 and, B. Dm75; the slope of the lines of best fit are the n-values (stress 692 

exponent, Eq. (4)) for the given compositions. Experimental conditions:  T=750˚C; Peff = 262 693 

MPa.  694 

 695 

Figure 7. Mechanical data for A. high-strain-rate experiments and B. low-strain-rate 696 

experiments. See Table 2 for experimental conditions. High-strain-rate experiments: P1522 697 

(Dm25), P1524 (Dm35), P1525 (Dm75), P1527 (Dm25), P1528 (Dm51), P1537 (Dm51), and 698 

P1538 (Dm75). The heating history of experiment P1537 (Dm51) is not known for shear strains 699 

above 2, therefore, this data is omitted. Low strain experiments: P1523 (Dm51), P1533 (Dm75), 700 

and P1543 (Dm35). C. Shear stress as a function of dolomite content. Shear stress increases with 701 

dolomite content. Triangles denote yield stress; squares denote the shear stress at a shear strain 702 

equal to 1.5; circles denote peak shear stress. Shear stresses for 0%, 9%, 40%, and 100% 703 

dolomite contents are taken from Barnhoorn et al. (2005a), Delle Piane et al. (2009a), Davis et 704 

al. (2008), and Holyoke et al. (2013). Equivalent shear stresses for the reported differential 705 

stresses in Davis et al. (2008) and Holyoke et al. (2013) were calculated using Paterson and 706 

Olgaard (2000). 707 

 708 

Figure 8. SEM images. Dolomite is the larger, dark grey phase. Calcite makes up the light grey 709 

matrix. Pyrite is white. High strain, deformed material: Dm25; P1527; γ~5; 750˚C; 3x10-4 s-1. 710 

Longitudinal tangential plane (refer to Figure 5B). The shear zone boundary is horizontal in all 711 

images. A. Foliation is defined by elongate calcite aggregates (dashed ellipse). Shear strain is 712 

calculated by � = cot ;< − cot ;. B. The foliation in the bulk calcite-dolomite matrix is deflected 713 

and converges with the higher strained pure-calcite band (oriented sub-parallel to the shear zone 714 

boundary). Dashed white lines delineate the bulk foliation within the sample. Dashed black line 715 

delineates the boundaries of the pure-calcite band. C. C-s mylonite texture. Foliation is defined 716 
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by surfaces of apparent localized strain (black rectangle), elongate pyrite grains, and rotated, 717 

high aspect ratio dolomite grains (black arrows). Dolomite grains are organized along both s- 718 

and c-foliations and are not obviously rounded. D. Localised c-surfaces appear as thin, dark, 719 

discontinuous layers defined by ultrafine-grained material. A selection of c-surfaces are 720 

highlighted by arrows. E. Closely packed, equiaxed to tabular calcite-grains. Grain boundaries 721 

form triple junctions and are generally straight. Note significant isolated porosity. F. 722 

Considerable isolated porosity located within ‘pressure shadow’-like regions of dolomite grains. 723 

 724 

Figure 9. SEM images. Dolomite is the larger, dark grey phase. Calcite makes up the light grey 725 

matrix. Pyrite is white. High strain deformed material: Dm75. P1538; γ~5; 750˚C; 3x10-4 s-1. 726 

Longitudinal tangential plane (refer to Figure 5B); the shear zone boundary (SZB) is horizontal 727 

in all images. A. Patchy foliation development in Dm75 where tabular dolomite is rotated to 728 

define a shape fabric (centre of the image). The pyrite grain in the top left hand corner (white) 729 

has been boudinaged and deformed around the more rigid dolomite grain. The white ellipse 730 

highlights a dolomite grain that has fragmented by shear fracture during sinistral shear. B. 731 

Closely packed, equiaxed to elongate calcite grains. Rounded, tabular dolomite grains are rotated 732 

into foliation. C. Evidence of ductile deformation. The dashed black line defines the local 733 

foliation developed within the calcite matrix. The foliation is deflected around large dolomite 734 

grains. A highly sheared pyrite grain is identified by the white arrow. D. Antithetic shear fracture 735 

of a large dolomite grain. 736 

 737 

Figure 10. EBSD analysis of high strain experiments, Dm25 (P1527) and Dm75 (P1538). The 738 

shear zone boundary (SZB) is horizontal in all images and pole figures. N is the number of 739 

grains used to produce the pole figures, J is the J-texture index, and pfJ is the pole figure J-740 

texture index, reflecting texture strength of the individual slip systems. A. Dm25; low 741 

magnification BSE image. B. Dm25. Calcite: EBSD map (top); lower hemisphere contoured 742 

stereoplots (bottom) for the c and a slip systems. C. Dm25. Dolomite: EBSD map (top); lower 743 

hemisphere contoured stereoplots (bottom) for the c and a slip systems. Blackened portions of 744 

the EBSD maps are components of different phases, not indexed. See text for details. D. Dm75; 745 

low magnification BSE image. E. Dm75. Calcite: EBSD map (top); lower hemisphere contoured 746 

stereoplots (bottom) for the c and a slip systems. F. Dm75. Dolomite: EBSD map (top); lower 747 

hemisphere contoured stereoplots (bottom) for the c and a slip systems. Blackened portions of 748 

the EBSD maps are components of different phases, not indexed. See text for details. 749 
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 750 

Figure 11. Transmission electron microscopy (TEM BF). A. Glide dislocations within calcite 751 

grain. B. Equant grain texture in deformed calcite consistent with grain boundary sliding 752 

(superplasticity). Despite the absence of grain shape change (elongation), there are high 753 

dislocation densities within individual grains, suggesting creep accommodated grain boundary 754 

sliding.  755 

 756 

Figure 12. Crystallographic preferred orientation development near calcite aggregates. The shear 757 

zone boundary (SZB) is horizontal in all BSE images and EBSD maps. N is the number of grains 758 

used to produce the pole figures, J is the J-texture index, and pfJ is the pole figure J-texture 759 

index, reflecting texture strength of the individual slip systems. All pole figures are lower 760 

hemisphere projections. A. BSE image of Dm25 sample deformed to γ~5.5 (see Table 2; P1527). 761 

A calcite sphere that has been sheared into an ellipsoid is delineated by the red lines. B. EBSD 762 

map and stereonet projection of the c and a slip systems in calcite across the deformed calcite 763 

band. C. EBSD map and steronet projection of calcite in a region removed from the calcite band. 764 

D. EBSD map and stereonet projections of a region adjacent to the calcite band, but including 765 

dolomite grains. E. EBSD map and stereonet projection of a region within the calcite band. 766 

 767 

Figure 13. Evolution of crystallographic preferred orientation (CPO) of the c-axis slip system in 768 

calcite with strain. Stress-strain curves represent the stress-strain conditions at the sample edge. 769 

Stereonets are lower hemisphere projections; shear zone boundary (SZB) is horizontal. For a 770 

given composition, each stereonet is produced by analysing a different longitudinal axial section 771 

from the same deformed core (see Figure 5B), thus representing the state of the material at 772 

different shear strains. N is the number of grains used to produce the pole figures, J is the J-773 

texture index, and pfJ is the pole figure J-texture index, reflecting texture strength of the c-axis 774 

slip system. Red dots indicate the approximate points on the stress-strain curve that correspond 775 

to the longitudinal axial cuts made. CPO becomes more defined with increasing shear strain (i.e. 776 

the c-axis girdle becomes more narrow with increasing strain and the J- and pfJ-indices generally 777 

increase, with the exception of C). A. Dm25 (P1527). B. Dm35 (P1524). C.  Dm75 (P1538).  778 

 779 

Figure 14 Energy-dispersive X-ray spectroscopy (EDS) maps of magnesium concentration for 780 

experiment P1527. Experimental conditions: Peff=262 MPa, T=750˚C, and strain rate 3x10-4 s-1. 781 

The shear zone boundary (SZB) is horizontal in all images. A. EDS map of a longitudinal axial 782 
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section of the sample corresponding to γ~0 (see Figure 5B). B. EDS map of a longitudinal axial 783 

section of the sample corresponding to γ~2.25. C. EDS map of the longitudinal tangential section 784 

of the sample, corresponding to γ~5.5. White grains are dolomite. The calcite matrix contains 785 

very little magnesium and, therefore, is black. For γ~0, there is no magnesium observed within 786 

the matrix. With increasing strain, Mg2+ concentrations increase in the matrix; note the increase 787 

in white streaking between dolomite grains in B and C. This only occurs in regions of the sample 788 

with locally significant fine-grained dolomite content. With increasing shear strain, Mg2+ 789 

becomes more concentrated along the developing foliation of the sample. 790 

 791 

Figure 15 A. Comparison of the study data with the reported deformation mechanism map of 792 

Solnhofen limestone (taken from Schmid et al., 1977). Log-log plot of the differential stress vs. 793 

strain rate for compression deformation experiments on Solnhofen limestone. Regime 1: 794 

Exponential relationship between strain rate and stress; Regime 2: Power-law creep; Regime 3: 795 

Superplasticity. Regimes 1 and 2 are characterized in the microstructure by dislocation glide 796 

and/or dislocation creep.  Regime 3 is characterized in the microstructure by grain boundary 797 

sliding. Triangles indicate data from this study. With increasing differential stress, these triangles 798 

represent the peak strengths of Dm25, Dm35, Dm51, and Dm75. The square and circle indicate 799 

the peak stress for Solnhofen limestone deformed by torsion to high strains at 700˚C and 800˚C, 800 

respectively (Schmid et al., 1987). B. Comparison of study data with reported deformation 801 

behaviour of Madoc dolomite (Davis et al., 2008; Holyoke et al., 2013). The deformation 802 

mechanism map is taken from Holyoke et al. (2013) and is contoured for dolomite grain size. 803 

The contours denote the transition between dislocation creep and diffusion creep. Experiment 804 

P1538 (Dm75, taken to high strain) is plotted as a triangle and lies in the diffusion creep field for 805 

dolomite grain sizes <10 µm and the dislocation creep field for dolomite grain sizes >100 µm. 806 

The square and circle represent the differential stress of Madoc dolomite (grain size = 240 µm) at 807 

700˚C (Davis et al., 2008) and 900˚C (Holyoke et al., 2013), respectively. 808 

  809 
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Table 1. Properties of HIP samples: dolomite  
content (Dm), connected porosity (φ), density (ρ). 
Dm φ ρ 

(%) (%) (kg m-3) 

25 3.3±0.2 2.76 

35 3.3±0.2 2.77 

51 2.7±0.3 2.80 

75 5.2±0.3 2.85 
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Table 2 List of deformation experiments performed and results.  

Experiment Dm T PC Pe 
  

τyield τpeak τγ=1.5 n 

 (%) (°C) (MPa) (MPa) (s-1)  (MPa) (MPa) (MPa)  

Constant Strain Rate Experiments 

P1522 25 750 300 262 3x10-4 4.4 33 79 33  

P1523 51 750 300 262 1x10-4 1.9 17 77 -  

P1524 35 750 300 262 3x10-4 5 33 79 33  

P1525 75 750 300 262 3x10-4 0.16 36 117 -  

P1527 25 750 300 262 3x10-4 5.5 27 82 27  

P1528 51 750 300 262 3x10-4 0.21 28 79 -  

P1533 75 750 300 262 1x10-4 0.17 44 92 -  

P1537 51 750 300 262 3x10-4 1.7 35 135 35  

P1538 75 750 300 262 3x10-4 5.5 57 167 37  

P1543 35 750 300 262 1x10-4 0.1 12 63 -  

Strain Rate Stepping Experiment 

P1529 35 750 300 262 stepping n.d. - - - 2.0±0.43 

P1711 25 750 300 262 stepping n.d. - - - 1.7±0.23 
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P1713 75 750 300 262 stepping n.d.    3.6±0.12 

n.d. not determined, Dm – dolomite content (%), T – temperature (°C), PC – confining pressure (MPa), Pe – confining pressure (MPa),  - shear strain rate 

(s-1),  – maximum shear stress, n – stress exponent, τyield – yield strength (MPa), τpeak – peak strength (MPa), τγ=1.5 - strength at a shear strain of 1.5 

(MPa). 
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• The strength of calcite-dolomite composites increases with dolomite content. 
• Calcite accommodates strain via grain boundary sliding accommodated by 

diffusion creep and limited dislocation creep. 
• Dolomite leads to periodic embrittlement within the system, eventually allowing 

plastic flow of calcite. 
• Grain boundary sliding is associated with CPO development. 
• Monomineralic calcite bands accommodate more strain than bi-mineralic regions. 
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Supplementary Material – Microprobe Analysis 

 Microprobe analysis was performed on Dm25 and Dm75 deformed to high strain 

at 750°C (experiments P1527 and P1538). Figure S.1 is a map of all data points collected. 

Table S.1 gives xCa and xMg values at each point. 

 

Figure S.1. Microprobe analysis maps. Data from Table S.1 is plotted as follows: yellow 

points represent Cc (0.90<xCa<1.00); green points represent Dm (0.50<xCa<0.55); red 

points represent Mg-enriched calcite (0.55<xCa<0.90). A. Microprobe analysis map for 

Dm25, P1527. B. Microprobe analysis map for Dm75, P1538. 
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Measurement Point anion CO2 anion MgO anion CaO anion MnO anion FeO

sum of x-
site cation

xCa xMg

    'P1527_1_Scan3_1' 3.9768 0.1 1.9074 0.0027 0.0015 2.0116 0.9482 0.0497

    'P1527_1_Scan3_2' 4.0527 0.4492 1.5184 0.0005 0.0056 1.9737 0.7693 0.2276

    'P1527_1_Scan3_3' 4.0919 0.9298 1.0071 0.0012 0.0159 1.954 0.5154 0.4758

    'P1527_1_Scan3_4' 4.0552 0.9527 1.0045 0.0013 0.0139 1.9724 0.5093 0.483

    'P1527_1_Scan3_5' 4.048 0.0934 1.8816 0 0.001 1.976 0.9522 0.0472

    'P1527_1_Scan3_6' 4.0326 0.1243 1.8564 0 0.0031 1.9837 0.9358 0.0627

    'P1527_1_Scan3_7' 3.9979 0.1025 1.8959 0.0007 0.002 2.001 0.9474 0.0512

    'P1527_1_Scan3_8' 4.0148 0.5163 1.4735 0.0002 0.0026 1.9926 0.7395 0.2591

    'P1527_1_Scan3_9' 4.0552 0.0909 1.8771 0.002 0.0023 1.9724 0.9517 0.0461

    'P1527_1_Scan3_10' 4.003 0.16 1.8335 0.0007 0.0043 1.9985 0.9174 0.0801

    'P1527_1_Scan3_11' 4.0707 0.1161 1.8472 0 0.0013 1.9646 0.9402 0.0591

    'P1527_1_Scan3_12' 3.9834 0.666 1.3355 0.0004 0.0064 2.0083 0.665 0.3316

    'P1527_1_Scan3_13' 4.0165 0.5344 1.4495 0 0.0078 1.9917 0.7277 0.2683

    'P1527_1_Scan3_14' 4.0305 0.9482 1.0176 0.0014 0.0175 1.9848 0.5127 0.4777

    'P1527_1_Scan3_15' 4.04 0.9505 1.0105 0 0.019 1.98 0.5103 0.4801

    'P1527_1_Scan3_16' 4.0309 0.121 1.8537 0 0.0099 1.9845 0.9341 0.0609

    'P1527_1_Scan3_17' 4.0154 0.1114 1.8787 0.0005 0.0018 1.9923 0.943 0.0559

    'P1527_1_Scan3_18' 4.1112 0.8974 1.0354 0.0008 0.0108 1.9444 0.5325 0.4615

    'P1527_1_Scan3_19' 4.058 0.087 1.8828 0.0001 0.0011 1.971 0.9553 0.0442

    'P1527_1_Scan3_20' 4.0394 0.7412 1.2265 0.0017 0.0109 1.9803 0.6193 0.3743

    'P1527_1_Scan3_21' 4.0517 0.9514 1.0116 0.0014 0.0098 1.9742 0.5124 0.4819

    'P1527_1_Scan3_22' 4.0916 0.1267 1.8251 0 0.0024 1.9542 0.9339 0.0648

    'P1527_1_Scan3_23' 4.0508 0.0924 1.8812 0 0.001 1.9746 0.9527 0.0468

    'P1527_1_Scan3_24' 4.0139 0.0698 1.9231 0.0001 0 1.9931 0.9649 0.035

    'P1527_1_Scan3_25' 4.0043 0.0768 1.9209 0 0.0001 1.9978 0.9615 0.0385

    'P1527_1_Scan3_26' 4.1012 0.9245 1.0035 0.0014 0.02 1.9494 0.5148 0.4742

    'P1527_1_Scan3_27' 4.0163 0.9699 1.0104 0 0.0116 1.9919 0.5073 0.4869

    'P1527_1_Scan3_28' 4.0299 0.1447 1.8372 0.0002 0.003 1.9851 0.9255 0.0729

    'P1527_1_Scan3_29' 4.0392 0.8591 1.1071 0.0002 0.0141 1.9804 0.559 0.4338

    'P1527_1_Scan3_30' 4.0826 0.0943 1.8626 0.0004 0.0015 1.9587 0.9509 0.0481

    'P1527_1_Scan3_31' 4.0299 0.0824 1.9027 0 0 1.9851 0.9585 0.0415

    'P1538_1_Scan4_1' 4.0297 0.9638 1.0036 0.0004 0.0174 1.9851 0.5056 0.4855

    'P1538_1_Scan4_2' 4.0541 0.8177 1.1431 0.0002 0.012 1.9729 0.5794 0.4144

    'P1538_1_Scan4_3' 4.0866 0.5664 1.3755 0.0014 0.0135 1.9567 0.703 0.2894

    'P1538_1_Scan4_4' 4.052 0.9458 1.0066 0.0027 0.0189 1.974 0.5099 0.4791

    'P1538_1_Scan4_5' 5.4704 1.0689 0.1651 0 0.0308 1.2648 0.1305 0.8451

    'P1538_1_Scan4_6' 4.0593 0.8242 1.1338 0.0004 0.012 1.9704 0.5754 0.4183

    'P1538_1_Scan4_7' 4.0453 0.4146 1.5548 0.0017 0.0064 1.9774 0.7863 0.2097

    'P1538_1_Scan4_8' 5.3765 1.0137 0.2661 0 0.0319 1.3117 0.2029 0.7728

    'P1538_1_Scan4_9' 4.0208 0.244 1.7439 0 0.0017 1.9896 0.8765 0.1226
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Measurement Point anion CO2 anion MgO anion CaO anion MnO anion FeO

sum of x-
site cation

xCa xMg

    'P1538_1_Scan4_10' 4.0303 0.2526 1.7291 0 0.0031 1.9848 0.8712 0.1273

    'P1538_1_Scan4_11' 3.9954 0.6116 1.3775 0 0.0132 2.0023 0.688 0.3054

    'P1538_1_Scan4_12' 4.005 0.954 1.0225 0 0.0209 1.9975 0.5119 0.4776

    'P1538_1_Scan4_13' 4.0703 0.3188 1.6397 0.0003 0.0061 1.9649 0.8345 0.1623

    'P1538_1_Scan4_14' 3.9921 0.2485 1.7506 0 0.0049 2.004 0.8736 0.124

    'P1538_1_Scan4_15' 5.3297 1 0.3035 0.0004 0.0313 1.3351 0.2273 0.749

    'P1538_1_Scan4_16' 4.0275 0.2997 1.6831 0.0004 0.0031 1.9863 0.8474 0.1509

    'P1538_1_Scan4_17' 4.0487 0.2886 1.683 0.0001 0.004 1.9757 0.8519 0.1461

    'P1538_1_Scan4_18' 4.0191 0.8969 1.0764 0.0023 0.0149 1.9905 0.5408 0.4506

    'P1538_1_Scan4_19' 4.0512 0.2244 1.744 0 0.006 1.9744 0.8833 0.1136

    'P1538_1_Scan4_20' 4.0398 0.2275 1.7464 0 0.0062 1.9801 0.882 0.1149

    'P1538_1_Scan4_21' 4.0644 0.9409 1.0083 0.0006 0.018 1.9678 0.5124 0.4781

    'P1538_1_Scan4_22' 4.0083 0.9745 1.0127 0 0.0087 1.9959 0.5074 0.4882

    'P1538_1_Scan4_23' 4.0366 0.8325 1.1393 0.0012 0.0086 1.9817 0.5749 0.4201

    'P1538_1_Scan4_24' 3.9877 0.5287 1.4693 0.0016 0.0066 2.0061 0.7324 0.2635

    'P1538_1_Scan4_25' 4.051 0.3577 1.611 0 0.0058 1.9745 0.8159 0.1812

    'P1538_1_Scan4_26' 4.0422 0.958 1.0063 0.0014 0.0132 1.9789 0.5085 0.4841

    'P1538_1_Scan4_27' 4.0321 0.9484 1.0224 0.0005 0.0126 1.9839 0.5153 0.478

    'P1538_1_Scan4_28' 4.0206 0.3519 1.6311 0.0003 0.0065 1.9897 0.8198 0.1768

    'P1538_1_Scan4_29' 4.0119 0.2797 1.7101 0 0.0042 1.994 0.8576 0.1403

    'P1538_1_Scan4_30' 4.0343 0.3951 1.5802 0.0005 0.0071 1.9829 0.7969 0.1992

    'P1538_1_Scan4_31' 4.0021 0.5661 1.4204 0 0.0124 1.9989 0.7106 0.2832

    'P1538_1_Scan4_32' 4.0717 0.8993 1.0524 0 0.0125 1.9641 0.5358 0.4578

    'P1538_1_Scan4_33' 4.0094 0.306 1.6804 0.0011 0.0077 1.9953 0.8422 0.1534

    'P1538_1_Scan4_35' 4.063 0.9209 1.0279 0.0002 0.0195 1.9685 0.5222 0.4678

    'P1538_1_Scan4_36' 4.0375 0.2436 1.7313 0.0002 0.0061 1.9812 0.8739 0.1229

    'P1538_1_Scan4_37' 4.0097 0.2306 1.7608 0.0015 0.0022 1.9951 0.8826 0.1156

    'P1538_1_Scan4_38' 3.9981 0.9458 1.0373 0.0004 0.0175 2.001 0.5184 0.4727

    'P1538_1_Scan4_39' 4.006 0.797 1.1846 0.0008 0.0146 1.997 0.5932 0.3991

    'P1538_1_Scan4_40' 3.9713 0.9674 1.0289 0.0019 0.0162 2.0144 0.5108 0.4803

    'P1538_1_Scan4_41' 3.9748 0.9435 1.0524 0.0003 0.0165 2.0126 0.5229 0.4688

    'P1538_1_Scan4_42' 4.0177 0.2656 1.7218 0 0.0038 1.9912 0.8647 0.1334

    'P1538_1_Scan4_43' 4.0178 0.9636 1.0125 0.0008 0.0143 1.9911 0.5085 0.4839

    'P1538_1_Scan4_44' 4.012 0.9644 1.0157 0.0008 0.0131 1.994 0.5094 0.4836

    'P1538_1_Scan4_45' 4.0054 0.9189 1.0637 0.0012 0.0136 1.9973 0.5326 0.4601

    'P1538_1_Scan4_46' 4.0048 0.9705 1.0132 0.0006 0.0133 1.9976 0.5072 0.4858

    'P1538_1_Scan4_47' 4.0462 0.9375 1.0264 0.0017 0.0113 1.9769 0.5192 0.4742

    'P1538_1_Scan4_48' 3.9847 0.9823 1.01 0 0.0154 2.0077 0.5031 0.4893

    'P1538_1_Scan4_49' 4.0671 0.2927 1.6676 0 0.0062 1.9665 0.848 0.1488

    'P1538_1_Scan4_50' 4.0803 0.9191 1.0234 0.0009 0.0165 1.9599 0.5222 0.469



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Measurement Point anion CO2 anion MgO anion CaO anion MnO anion FeO
sum of x-

site cation
xCa xMg

    'P1538_1_Scan4_51' 3.9947 0.9127 1.0772 0.0002 0.0125 2.0027 0.5379 0.4558

    'P1538_1_Scan4_52' 4.0099 0.2625 1.7285 0 0.004 1.9951 0.8664 0.1316

    'P1538_1_Scan4_53' 4.0202 0.9551 1.018 0.0018 0.015 1.9899 0.5116 0.48

    'P1538_1_Scan4_54' 4.026 0.7788 1.196 0.0005 0.0116 1.987 0.6019 0.3919

    'P1538_1_Scan4_55' 4.0276 0.2161 1.7636 0.0006 0.0059 1.9862 0.8879 0.1088

    'P1538_1_Scan4_56' 3.9652 0.7217 1.2812 0.0015 0.013 2.0174 0.6351 0.3577

    'P1538_1_Scan4_57' 4.0506 0.2421 1.7277 0 0.0049 1.9747 0.8749 0.1226
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