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Abstract

We provide evidence that the box-counting dimension of a structurally stable strange non-chaotic attractor
(SNA) of pinched skew product type is equal to 2 by showing that it has non-negligible area. The argument
presented is made more accurate in the study of a piecewise linear SNA. Furthermore we provide evidence that
the fractal dimension of a critical SNA is not equal to 2, but in fact lies between 1 and 2. We numerically calculate
the box-counting dimension for several critical SNAs, providing further evidence to support this conjecture.

1 Introduction

Strange non-chaotic attractors (SNAs) have been found to occur in a wide variety of quasi-periodically forced
systems. They are somewhat paradoxical in nature as the geometry of the attractor is strange (fractal) but the
dynamics on the set is stable, meaning that nearby points do not separate over time. A good indicator that the
dynamics are non-chaotic is the presence of a non-positive Lyapunov exponent. Although convincing evidence of
stability, we note that due to the so-called Perron effect for time-varying linearizations, this is not a sufficient
condition for stability of the attractor [15]. For most systems it is hard to show that the attracting set is strange,
but if the Lyapunov exponent is negative then one may use the methods presented in [20] to numerically indicate
strangeness.

The first example of an SNA was presented by Grebogi et al. in [8] and is given by (2.1)–(2.2) (which is commonly
referred to as the GOPY model after the authors), and it will be used as an example in Section 2 to demonstrate
our method for calculating the box-counting dimension.

The models under consideration are “pinched skew-products” (a term used by Glendinning in [6]), and undergo a
transition to SNA at a critical parameter value via the non-smooth pitchfork bifurcation which we have previously
studied in [1]. The work in [1] was motivated by [14], in which the bifurcation was labelled “the blow-out birth” of
an SNA. In both papers a renormalization approach is presented and scaling properties of the attractor both at and
near the critical point of transition are determined showing its self-similarity for certain choices of initial phase. In
[14] an adaptation of the system (2.1)–(2.2) is studied, whereas in [1] we perform the analysis on a more general
system based on that studied by Glendinning in [7].
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The idea behind the method we will use was first demonstrated in [4] and is described at the beginning of Section 2.
Essentially, we can examine how the area of the attractor inside a strip of width ε decays asymptotically upon
iteration of the system, and if we can show that the remaining area is not negligible in this limit then by the
definition of the box-counting dimension (as given in (2.5)) the dimension of the attractor is 2. This is achieved
by analysing the evolution of so-called “wedges” in this strip which propagate ergodically upon iteration of the
map and repeatedly delete area from the strip. We question the assumption made in [4] that the wedges widen
upon iteration and approach a limiting slope, as the “pinched” nature of the SNA suggests these slopes should
be unbounded asymptotically. We therefore re-examine the original idea, but use a different determination of the
slopes, which we also believe is more intuitive as the slope now depends on the bifurcation parameter.

It is conjectured in [4] that the information dimension of SNAs is equal to 1. In [9] this conjecture is proven for
SNAs which arise from pinched skew-product systems of the form

xn+1 = tanh(κxn) cos(2πθn) (1.1)

θn+1 = θn + ω (mod 1), (1.2)

for κ > 0 sufficiently large (which is determined by the diophantine ω) of which (2.1)–(2.2) is an example. Fur-
thermore, it is proved in [9] that the Hausdorff and pointwise dimension for this type of system are also equal to
1. However, this paper does not make rigorous the argument in [4] regarding the box-counting dimension being 2.
We will provide compelling evidence that the box-counting dimension is 2 for a class of piecewise linear pinched
skew-products. As the name suggests, these systems are composed of functions which are piecewise linear.

In Section 2 we begin by describing the basic properties of the GOPY model and then we use our modified approach
to the method presented in [4] to indicate that the box counting dimension is 2, using a combination of analytic
and numeric arguments. The method we use requires the assumption that locally each piece of the bounding curves
is approximately linear and in Subsection 2.1 we show that the argument can be made nearly exact for piecewise
linear SNAs. Section 3 shows how the results from Section 2 can be generalised to a class of pinched skew-product
systems.

At a critical point in parameter space we have an SNA which is not persistent under a small perturbation, and
such an SNA is called a critical SNA. Note that renormalization group approaches have previously been applied to
study dimensions in critical situations occurring in circle maps [12] and in Feigenbaum’s attractor [13]. In Section 4
we demonstrate that the box-counting dimension for a critical “pinched” SNA should lie between 1 and 2. We give
evidence to suggest that at a critical point the area of the attractor inside an ε strip is negligible, and hence the
dimension may not be two. In [14] and [1] it is demonstrated that SNAs occurring at critical points are fractal in
nature and so the dimension can be bigger than 1.

2 Structurally stable strange non-chaotic attractors

Following [8], we give the definition below of a strange non-chaotic attractor :

Definition (Strange attractor, strange non-chaotic attractor). A strange attractor is an attractor which is not a
finite set of points and is not piecewise differentiable. A strange non-chaotic attractor (SNA) is a strange attractor
which does not exhibit sensitive dependence on initial conditions. Quantitatively, we take the latter to mean that
the largest Lyapunov exponent is non-positive.

We also give a definition of a structurally stable SNA and a critical SNA:

Definition (Structurally stable and critical). We refer to an strange non-chaotic attractor (SNA) as structurally
stable if it is persistent under a small perturbation of any of the parameters of the underlying system. A critical
SNA is an SNA which is not structurally stable.

In Grebogi et al. [8] the existence of SNAs was established for two different systems, the first of which has become
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Figure 1: Strange non-chaotic attractor occurring for σ = 1.5 in system (2.1)–(2.2).

known as the GOPY model (after the authors) and is given by

xn+1 = f(xn, θn) = 2σ tanh(xn) cos(2πθn), (2.1)

θn+1 = θn + ω (mod 1). (2.2)

Here ω is taken to be irrational and in particular we set ω = (
√

5− 1)/2, the inverse of the golden mean. The map
has two Lyapunov exponents, one of which corresponding to (2.2) is trivially zero, and the other (in the x-direction)
is given by

λ = lim
N→∞

(
1

N

N∑
i=1

ln

∣∣∣∣∂f∂x
∣∣∣∣
θi,xi

)
(2.3)

=

∫ 1

0

ln

∣∣∣∣∂f∂x
∣∣∣∣ dθ, (2.4)

where the latter equation follows from the ergodicity in θ. A positive Lyapunov exponent is an indication that
motion on the resulting attractor (which exists due to the bounded nature of (2.1)) is chaotic, whereas a non-
positive Lyapunov exponent suggests it is stable. In [8] it is analytically proven that λ is non-positive for the
GOPY model for all choices of σ > 0. Note that a positive (resp. non-positive) exponent is not a sufficient criterion
for chaos (resp. stability). See [15] for more details on the so-called Perron effect which can cause sign-inversions
of the exponent for time varying linearisations.

In [8] it is shown that for σ < 1 the attractor is simply the circle x = 0, whereas for σ > 1 we have an SNA. The
transition is caused as the circle L = {(θ, x) : x = 0} becomes unstable for σ > 1 (verifiable through calculation
of its transverse Lyapunov exponent), and thus there must be non-zero x. Furthermore, because cos(2πθ) is zero
for θ0 = 1/4 or 3/4, x is fixed at zero for all future iterates of these initial points. Due to the ergodicity in θ, the
attractor thus contains a dense set of points on L causing a “pinching” effect, and hence the attractor is nowhere
differentiable and thus strange. The critical point σ = 1 will be of interest to us later on. A plot of the SNA for
σ = 1.5 is shown in Figure 1.

The SNA is structurally stable (which from now we will refer to as a “stable SNA” for brevity) for σ > 1, and the
aim of this paper is to amend and simplify some of the arguments produced in [4] with regard to the box-counting
dimension of SNAs. Recall that the box-counting dimension is defined as follows:

Definition (Box-counting dimension). The box counting dimension of an attractor is given by

D0 = lim
ε→0

logN(ε)

log 1/ε
, (2.5)

where N(ε) is the number of boxes of width ε required to cover the attractor.
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In [4] it is conjectured that D0 = 2 for a stable SNA. An argument is presented in support of this result, and involves
the following approach. Consider the initial area A0 of the region given by 0 ≤ θ < 1, −∞ < x <∞. Applying the
system (2.1)–(2.2) to it repeatedly produces successive iterates of it which will converge to the attractor. The first
four such iterates are shown in Figure 2.

Figure 2: Successive iterates of the initial region A0 = {(θ, x) : 0 ≤ θ < 1, −∞ < x < ∞} with σ = 1.2. The red
lines represent the approximate iterates of the first pair of symmetric wedges whose slopes are given by (2.7).

As these iterations continue, all points will converge towards the attractor, but our interest is in how the remaining
area inside an ε strip about the θ axes decreases as n→∞. The initial area of the strip is 2ε and as in [4] our aim
is to show that the area deleted from the strip is bounded above by some multiple of ε2, in which case the area
remaining is non-negligible, which is sufficient for the box-counting dimension to be 2.

Notice that in the first iterate there are four wedges within the ε strip (shown in blue) and that if ε is sufficiently
small the slopes of the edges of these wedges are approximately linear. Each of these wedges stem from the fact
that cos(2πθ) = 0 when θ = 1/4 or 3/4. Indeed, the four wedges appear at the two values of θ which are the images
of 1/4 and 3/4 under (2.2) i.e. 3/4 + ω (mod 1) = 0.368 and 1/4 + ω (mod 1) = 0.868 to 3 d.p.

The map is iterated forward and the tips of the wedges are mapped ergodically along the θ axis, and four new
wedges are spawned upon each iteration (corresponding to values of θ0 such that θn = ±1/4 (mod 1)). In [4] it is
stated that the number of wedges doubles at each step, which is clearly not the case as can be seen from Figure 2.
Furthermore, as cos(2πθ) is symmetric about θ = 1/2, we see that the attractor repeats itself with period 1/2.
Letting the (positive) slope of the four initial wedges (which we are assuming is linear for ε sufficiently small) be λ0
it is trivial to show that the area of a wedge is given by ε2/λ0. Note that the set of points which map to the tips of
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the wedges is S = {(1/4, x) or (3/4, x)|x ∈ R} and so we can see that the maximum possible derivative of equation
(2.1) with respect to θ has magnitude 4πσ and so λ0 = 4πσ. We now use elementary straight line geometry to gain
a knowledge of how the slopes of the wedges evolve.

Assume the point of the wedge is located at the point (α, 0) (here we assume without loss of generality that the
wedge is positive in x), then taking ε sufficiently small we can see that locally the right hand edge of the wedge
is given by the line x = λ0(θ − α). The height of the wedge is ε and so using elementary line geometry we can
calculate the two other points on the wedge (or triangle) as shown in Figure 3. To see how the slope evolves we
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Figure 3: A schematic diagram of a wedge for ε sufficiently small.

simply apply the equations (2.1)–(2.2) to these points to give three new points, which will be the next iterate of
the wedge. We then calculate the gradient λ1 of the new edges in the usual manner giving

λ1 =
2σ tanh(ε)| cos(2π(α+ ε

λ0
))|λ0

ε
. (2.6)

We have two equivalent choices for α, those being 1/4 + ω or 3/4 + ω (which due to the symmetry about θ = 1/2
of cos(2πθ) give rise to the same slope) and so we pick α = 1/4 +ω. As ε→ 0 we have tanh(ε)/ε→ 1 and iterating
forward we thus find the equation of the nth such iterate of the slope to be

λn = λ0

n∏
i=1

2σ| cos(2π(a+ iω))|, (2.7)

where a = 1/4. Note that this formula is different to the one produced in [4]. A concern is the balance between the
behaviour of how ε must behave as it tends to zero in relation to n, and we explore this numerically later on. In
Figure 2 the red lines present the linear approximations to successive iterates of the first pair of symmetric wedges
obtained using this construction, and shows good agreement. In fact we observe that the linear approximation to
the wedges gets closer to the actual wedges as we iterate further, which is indicative of the fact that the wedges
asymptote to vertical lines. We would like an understanding of the long term behaviour of λn in order to understand
how the area inside the strip evolves, and the following Lemma provides us with this information.

Lemma 1. Sn = (
∏n
i=1 | cos(2π(a+ iω))|)1/n → 1/2 as n→∞.

Proof. Taking the logarithm of the expression converts it from a geometric mean into the arithmetic mean

µn =
1

n

n∑
i=1

ln(| cos(2π(a+ iω))|). (2.8)

As n→∞, µn → µ and, using the ergodicity in θ, we can write

µ =

∫ 1

0

ln | cos(2πθ)|dθ = − ln(2). (2.9)

Taking the exponential gives eµ = 1/2 and hence the result follows.
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In Figure 4 we give a plot of Sn against n showing the oscillatory nature of the convergence to 0.5. Numerically we
see that Sn > 0.5, which for other values of a is not necessarily the case.
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Figure 4: Plot of n vs. Sn.

A further understanding of the behaviour can be derived from a renormalization analysis. We consider Sn(a) at
the characteristic times Fn, where Fn denotes the Fibonacci sequence Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1.
We have

SFn+2
(a) =

Fn+2∏
i=1

| cos(2π(a+ iω))|

1/Fn+2

(2.10)

=

Fn+1∏
i=1

| cos(2π(a+ iω))|
Fn+2∏

i=Fn+1+1

| cos(2π(a+ iω))|

1/Fn+2

(2.11)

= SFn+1(a)Fn+1/Fn+2SFn(a− (−ω)n+1)Fn/Fn+2 , (2.12)

using the fact that Fn+1ω = −(−ω)n+1 (mod 1). We now define the rescaled functions

Qn(x) = SFn
((−ω)nx+ a0), (2.13)

and from (2.12) we see that

Qn+2(x) = Qn+1(−ωx)Fn+1/Fn+2Qn(ω2x+ ω)Fn/Fn+2 , (2.14)

where Q0(x) = 1, Q1(x) = | cos(2π(−ωx + a0 + ω))|. Note that we can remove the powers in (2.14) by defining
Q̂n = QFn

n which gives the same recurrence for Q̂n obtained in studies of symmetric barrier billiards ([3],[19],[2]),
two-level quantum systems ([5],[16]) and the Harper equation ([11], [17]). However, numerically it is better to use
the recurrence (2.14) because as discussed above Q̂n will decay like (0.5)Fn which means that upon iteration we will
be dealing with negligible numbers which will reduce the accuracy (and will fail at the point when the computer
identifies them as zero). What we are effectively doing here is factoring out this decay.

Setting a0 = 0.25 as the origin we iterate (2.14) and discover that Qn converges to a scaled period three orbit which
is shown in Figure 5.

We see that the value of these functions at the origin (corresponding to a0 = 0.25) is always > 0.5, whereas a small
perturbation (due to the fact that we are analysing the function in intervals of decreasing length about a0) causes the
value of the function to drop below 0.5, and so a0 = 0.25 seems to be a local maximum of Sn(a). The value of Q32(0)
is 0.500000120963, which of course corresponds to the value of Sn (with a = 0.25) at n = F32 = 2, 178, 309. Without
the renormalization analysis the numerics break down at around n = 1200 as Snn becomes so small it is identified as
zero! Note also that SFn

are likely to be the smallest values of this sequence because 1/4+Fnω = 1/4−(−ω)n → 1/4
as n→∞, and so cos(2π(1/4 + Fnω))→ 0.

We can also approximate the scaling factor for the convergence using this approach. We do this by defining
Q̃n = Qn − 0.5 which represents the deviation of Qn from 0.5 at time Fn. Examining the sequence Q̃n(0)/Q̃n+3(0)
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Figure 5: Successive iterates starting with Q6 showing clear repetition of the decaying oscillations about 0.5.

we see convergence to a constant value of ν = ω−3. Hence the deviation from 0.5 decays with exponent γ =
ln(ω−3)/3 ln(ω) = −1. Thus the deviation decays proportional to n−1 as shown on the logarithmic scale in Figure 6.
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Figure 6: Plot of the deviation of the sequence Sn from its limiting value of 0.5, and the theoretical decay rate n−1

(dashed line).

From Lemma 1 we can write

λn = λ02nσn(0.5 + ε̃(n))n (2.15)

= λ0σ
n

1 + 2n

(
n∑
k=1

(
n
k

)
0.5n−k ε̃(n)k

)
︸ ︷︷ ︸

 , (2.16)

and for large n this causes substantial growth of the “error” term as ε̃(n) ∼ n−1. In particular we can write the
error term given in the under-brace of (2.16) as being proportional to the function

ξ(n) = 2n((0.5 + βn−1)n − 0.5n), (2.17)
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where β is a constant. Logarithmic differentiation gives us

ξ′(n) =
((n+ 2β) ln

(
n+2β
n

)
− 2β)

(
n+2β
n

)n
n+ 2β

. (2.18)

Our aim is to prove this is positive for all n ≥ 0. Note that t(n) = (n + 2β) ln
(
n+2β
n

)
is a monotonic decreasing

sequence as its derivative t′(n) = ln
(

1 + 2β
n

)
− 2β

n < 0. Hence if (n + 2β) ln
(
n+2β
n

)
has a limit it will tend to it

from above. Taking the exponential of this expression we can calculate instead the limit

lim
n→∞

(
1 +

2β

n

)n+2β

= e2β , (2.19)

through the definition of the exponential function. Thus (n + 2β) ln
(
n+2β
n

)
→ 2β from above and so ξ′(n) is

positive for all n ≥ 0. Hence ξ(n) is an increasing function of n for n ≥ 0. In fact ξ(n) tends to a constant which
we can calculate as

lim
n→∞

2n((0.5 + βn−1)n − 0.5n) = lim
n→∞

(
1 +

2β

n

)n
− 1 (2.20)

= e2β − 1. (2.21)

The consequence of all these results is clear: as n→∞ we see that

λn ∼ σn. (2.22)

This suggests a different asymptotic behaviour than that described in [4], as for σ > 1 there is no limiting slope
as the slopes become unbounded. To demonstrate this result, we provide in Figure 7 plots of the partial products
pn =

∏n
i=1 2σ| cos(a+ iω)| (in blue) against the graph of σn (shown in black) for σ = 0.99 and σ = 1.01. Note that

as described numerically above Sn > 0.5 for all n, and so σn is a lower bound for pn. Indeed we have observed that
Sn > 0.5 for n up to 1200 and that SFm

> 0.5 up to m = 32 using the renormalization approach.
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Figure 7: Plot of n vs pn and the limiting curve σn (dashed).

The behaviour (2.22) is to be expected because for σ < 1 the attractor is just x = 0 and so the gradients should be
asymptotically zero, whereas for σ > 1 the attracting curve is given by a pair of symmetric non-zero semi-continuous
curves [10] and the attractor must be zero on a dense set of points on the θ axis, and thus we expect the slope at
these points to be arbitrarily large and the wedge to turn into a vertical line asymptotically.

Now we examine the effect this has on the area deleted from the ε strip. Firstly, we ignore the fact that the wedges
may overlap, so in what follows our estimate will be an upper bound of the area deleted. Secondly, we only focus
on the evolution of one wedge, as the result can simply be multiplied through by 4 at the end.
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Thus initially we have one wedge and the area of the wedge is A0 = ε2/λ0. After one iterate we have two wedges,
the first is a copy (locally) of the original (corresponding to θ0 = (1/4 or 3/4) − ω) and the other is the image of
the first and has slope λ1. So the total area deleted is A1 = A0 + ε2/λ1. Iterating forward once more we have
three wedges, the first two follow from the previous argument, whereas the third is the image of the second in the
previous iteration. Thus A2 = A1 + ε2/λ2. Generally we have An = An−1 + ε2/λn and so

An = ε2
n∑
i=0

λ−1i =
ε2

λ0

(
1 +

n∑
i=1

1

pi

)
. (2.23)

Using the fact that σi is a lower bound for pi we can thus write

An <
ε2

λ0

(
1 +

n∑
i=1

(
1

σ

)i)
. (2.24)

Since this is an upper bound we learn nothing about An if the right hand side diverges. The sum on the right is a
geometric series which converges if, and only if, σ > 1. In this case we can write An ' Cε2 < 2ε for ε sufficiently
small. Hence for σ > 1 we have non negligible area in the ε strip and we conclude that the box-counting dimension
is 2.

2.1 Making the argument exact: piecewise linear SNAs

In the example above, we assume that for ε sufficiently small the edges of the wedges are approximately linear.
However, there are examples of SNAs where locally every piece of the SNA is linear - the so-called piecewise linear
SNAs. We define a piecewise linear SNA to be an system exhibiting SNA where the non-linearity in the x component
is piecewise linear. As an example we take the slightly modified system

xn+1 = 2f(xn)g(θn), (2.25)

θn+1 = θn + ω (mod 1). (2.26)

We take

f(x) =

{
αx, |x| ≤ 1/α

sign(x), |x| > 1/α,
(2.27)

and g(θ) = cos(2πθ) as before. The system undergoes transition to SNA at α = 1, which can be verified using the
same technique introduced in [8].

The upper bound for the area deleted from an ε strip An for this system is the same as before – only more accurate,
as the wedges are now practically linear in nature for ε sufficiently small. We conclude once more that the box-
counting dimension is 2 for α > 1. An interesting point to note is that for any initial value x0 such that |xi| > 1/α
for some i = 0, 1, 2, . . . we have that f ′(xi) = 0 and so the Lyapunov exponent λ = −∞ giving a “superstable”
attractor. This will always be the case for α > 1, because if we assume that |x0| ≤ 1/α then under iteration of
(2.25) we have xi ∼ αix0 from Lemma 1, and hence eventually we will have |xm| > 1/α for some m. We will call
such an attractor a super strange non-chaotic attractor (SSNA).

We can however do even better than this by ensuring that all components of the system are piecewise linear. In
[18] a similar piecewise linear system was studied of the form

xn+1 = αf(xn)g(θn), (2.28)

θn+1 = θn + ω (mod 1)., (2.29)

with g(θ) = θ − 1/2 and f(x) as above. Using the argument presented in [8] for systems of pinched skew product
type we conclude that the attractor is strange.
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Figure 8: Strange non-chaotic attractor occurring for α = 2.5 in system (2.28)–(2.29).

A plot of the SNA obtained at α = 2.5 is shown in Figure 8. In [18] it is numerically observed that the transition
to SNA occurs at α ' 2.33. In fact, the precise value of this constant may be readily derived by calculation of the
transverse Lyapunov exponent of x = 0. Letting F (x, θ) = αf(x)g(θ) we have that this exponent is given by (using
the ergodicity in θ)

λt =

∫ 1

0

ln

∣∣∣∣∂F∂x
∣∣∣∣
x=0

(2.30)

=

∫ 1

0

ln |αf ′(x)g(θ)|x=0 dθ (2.31)

=

∫ 1

0

ln |α2(θ − 1/2)|dθ (2.32)

=
1

α2

∫ α2/2

−α2/2

ln |y|dy (2.33)

= ln(α2/2)− 1. (2.34)

The critical point at which x = 0 loses stability is when λt = 0, which corresponds to αc =
√

2e = 2.331643 . . ..
Using the methods described above we can show that the box-counting dimension becomes 2 for α > αc.

In particular, using the same elementary straight linear geometry as before we can show that, in the limit ε → 0
we have that the slopes of the wedges satisfy

λn = λ0

n∏
i=1

α2|g((i+ 1)ω)|. (2.35)

In Figure 9 we show the plot of the evolution of the initial area A0 = {(θ, x) : 0 ≤ θ < 1, −∞ < x < ∞}, for four
iterates of system (2.28)–(2.29) and the wedges are clearly visible in the ε strip in similar fashion to Figure 2. Using
the same argument as in Lemma 1 we can show that

rn =

(
n∏
i=1

|g((i+ 1)ω)|

)1/n

→ e−1

2
, n→∞. (2.36)

We see numerically similar to before that rn > e−1/2 and so an upper bound for the area deleted from the ε strip is

An <
ε2

λ0

(
1 +

n∑
i=1

(
2

α2e−1

)i)
. (2.37)

10



The geometric series on the right will not converge unless α >
√

2e and we conclude that D0 = 2 for α > αc. If
α > αc then for any |x0| ≤ 1/α we have xi ∼ (α2e−1/2)ix0 and so eventually |xm| > 1/α for some m which makes
∂F

∂x
(θm, xm) = 0 and hence we have a SSNA.

Figure 9: Successive iterates of the initial area A0 under (2.28)–(2.29).
.

3 Generalising the result to a class of pinched skew-products

This method may be applied to a whole class of “pinched skew-products”, which we define following the work of
Glendinning in [6] as a map of the form P : X → X with

P (θ, x) = (θ + ω, b(θ, µ)f(x, µ)), (3.1)

where ω ∈ R\Q, X = (R\Z)× R and µ is a bifurcation parameter. We now make a number of assumptions on the
function appearing in the second component of (3.1) as follows.

1. We assume that b and f are piecewise smooth functions and in addition that f and db/dθ are both bounded.

2. f(0, µ) = 0 and

lim
ε→0

f(ε, µ)

ε
(3.2)

exists for all µ.

3. The function b has at least one zero at θ̃ (say), and that the number of zeros is finite.

The first of these assumptions ensures that the function in the second component of P can be well approximated
by a linear function in a neighbourhood of a point, which is required if our methodology is to work in calculating
the fractal dimension.

The line L = {(θ, x) : x = 0} is invariant. If the transverse Lyapunov exponent of L is positive then L is unstable
and the pinching effect occurs, creating the approximately linear wedges within an ε strip required for our analysis
to be valid.
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Let the m roots of b(θ, µ) be given by θ̃i, i = 1, . . . ,m. Then there will be tips of wedges located at θ̃i +ω after the
first iterate of the initial area A0 = {(θ, x) : 0 ≤ θ < 1,−∞ < x <∞}. Each of these wedges will have a slope λ0,i
which can be calculated (although it is not necessary to the analysis) using the formula

λ0,i = max
−∞<x<∞

{∣∣∣∣∂F∂θ (θ̃i, x, µ)

∣∣∣∣} , (3.3)

where F (θ, x, µ) = b(θ, µ)f(x, µ). If b(θ, µ) is periodic on the unit interval, then many of these initial slopes will
trivially be duplicated which simplifies matters, as is the case in (2.1)–(2.2) where b(θ, µ) = cos(2πθ) is symmetric
about 1/2. We can now write

λn,i = λ0,i|lnµ|
n∏
i=1

|b(θ0,i + iω)|, (3.4)

where

lµ = lim
ε→0

f(ε, µ)

ε
, (3.5)

a limit that we have assumed exists. Using the ergodicity in θ we can say that sn = (
∏n
i=1 |b(θ + iω)|)1/n → eχ

where

χ =

∫ 1

0

ln |b(θ, µ)|dθ. (3.6)

This means that λn,i ∼ |lµeχ|n and so an upper bound on the area deleted in the evolution of a single wedge can
be given by

An = Cε2

(
1 +

n∑
i=1

(
1

|lµeχ|

)i)
, (3.7)

for some constant C. This will converge if, and only if, |lµeχ| > 1. If this is the case then the box-counting dimension
is 2, and a condition on µ can typically be derived to ensure this is the case. For example, for system (2.1)–(2.2)
we let b(θ, µ) = cos(2πθ) and f(x, µ) = 2µ tanh(x). This gives us lµ = 2µ and eχ = 0.5, and so |lµeχ| > 1 implies
µ > 1. In system (1.1)–(1.2) we can easily verify that the dimension is 2 for κ > 2 using this method.

For system (2.28)–(2.29) we can let b(θ, µ) = θ − 1/2 and f̃(x, µ) = µf(x, µ) with f as defined in (2.27). Then
eχ = e−1/2 and lµ = µ2 and hence the box-counting dimension is 2 for µ >

√
2e which is the value derived in

Subsection 2.1 as the critical point of transition to SNA for this system.

Finally, we take

b(θ, µ) = | cos(2πθ)| (3.8)

f(x, µ) = 2µx(1− x), (3.9)

so that we have a quasiperiodically forced logistic map. The above method then tells us that the dimension of
the attractor is 2 for µ > 1. A plot of the attractor for µ = 2 is given in Figure 10. Numerical calculation of
the Lyapunov exponent indicates that the attractor is non-chaotic (as shown in Figure 11), and once again we can
apply the arguments in [8] to confirm its strangeness.
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Figure 10: Plot of the attractor for the quasiperiodically forced logistic map (3.8)–(3.9) when µ = 2.
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Figure 11: Plot of a numerical evaluation of the Lyapunov exponent λ against the bifurcation parameter µ.

4 Dimensions of critical SNAs

Section’s 2 and 3 also enlighten us as to the behaviour of the systems at the critical point of transition to SNA. For
example let us consider the system (2.1)–(2.2) at the critical point of transition to SNA at σc = 1. A plot of the
attractor at the critical point is shown in Figure 12.
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Figure 12: Strange non-chaotic attractor occurring at σc = 1.0 in system (2.1)–(2.2).

Now, according to (2.22), at the critical point the slopes of successive iterates of the wedges do not grow expo-
nentially. Of course, using the fact that ε̃(n) ∝ n−1 and the results from Section 2 we could conclude that λn is
proportional to a constant asymptotically, but from Figure 6 we see that the actual decay fluctuates either side
of the theoretical decay, and these fluctuations are magnified upon multiplication by 2n giving linearly growing
oscillations on a logarithmic scale. A plot of λn against n is presented in Figure 13 confirming this. Hence there are
infinitely many wedges whose area is non-negligible, and thus, due to the fact that the tips of the wedges explore
the θ axis ergodically, the area in the ε strip should decay to zero asymptotically, indicating that the box counting
dimension may not be 2.
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Figure 13: Plot of λn vs. n for σc = 1 showing the existence of finite slope sizes for arbitrarily large n.

However, the dimension is not necessarily equal to 1 either. In [14] a renormalization analysis of the dynamics at
the critical point reveals the self-similarity of the attractor at repeatedly smaller scales, and thus its fractal nature.
Hence it is reasonable to expect that the dimension lies between 1 and 2.

We have numerically calculated the box-counting dimension using boxes of size h = 1/23, . . . , 1/28 with 2 × 106

iterations for the GOPY model. The resulting plot and line of best fit is shown in Figure 14. The resulting plot is
convincingly linear and has slope ' 1.5 (to 1 d.p) which is our estimate of the fractal dimension. We also find the
same approximate value of D0 for the critical SNA of the piecewise linear system (2.25)–(2.26).
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For the piecewise linear system (2.28)–(2.29) from Section 4 we have calculated that the box-counting dimen-
sion at αc =

√
2e is D0 ' 1.4. Finally we note that a numerical calculation of the box-counting dimension for

quasiperiodically forced logistic map (3.8)–(3.9) at the critical point µ = 1 gives D0 = 1.
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Figure 14: Plot of log2(1/h) vs. log2(N(h)) and the line of best fit.

5 Conclusion

We have modified the approach first used in [4] to provide strong evidence that the box counting dimension of a
structurally stable “pinched” strange non-chaotic attractor (SNA) is equal to 2. The result is obtained by examining
the evolution of the area spanned by the x and θ directions under iterations of the system within a small ε strip
around the θ axis. Using a combination of techniques including a renormalization analysis, we are able to show that
an upper bound of the area deleted is given by some constant multiple of ε2, indicating that for ε small enough the
area remaining is non-negligible.

This argument can be made more accurate for piecewise linear SNAs. We used our new approach to verify that the
piecewise linear SNA studied in [18] has dimension 2 past the critical bifurcation point, which we derived through
both consideration of the transverse Lyapunov exponent of x = 0 and our method of dimension calculation. Indeed,
one of the benefits of this method is that the calculation of the dimension is dependent on the bifurcation parameter
and so can be used to calculate the point of transition from a 1D attractor to a 2D attractor i.e. the point of transition
to SNA. The piecewise linear SNAs under consideration are also of interest as they give rise to attractors which
are super-stable (their Lyapunov exponent is −∞) and we have dubbed these super strange non-chaotic attractors
(SSNAs)!

Finally, we have provided evidence that the box-counting dimension of an SNA at a critical point is not typically
equal to 2, but rather lies between 1 and 2. Numerical calculation of the dimension for several examples of critical
SNAs adds further weight to this argument.
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