
An Object-Oriented Approach to Programming Welding Robots in the Ship

Building Industry.

G Lambert, G Tewkesbury and D Sanders, University of Portsmouth, UK

SUMMARY

To achieve the flexibility required by the small amount of repeated work in some industries, automated systems should

be capable of being reprogrammed quickly and efficiently. One way of doing this is to create software dedicated to the

task of generating the required code. Using Object-Oriented Programming techniques, a software engineer can write

efficient code for machines that is faster to implement and extendable. This paper gives a brief overview of object-

oriented programming and then goes on to discuss research into the use of that technique to create programs to generate

code for a Motoman welding robot in the shipbuilding industry.

1. INTRODUCTION

The programming of automated systems within any

industry can be a complex matter. In the naval ship

industry it can become even more complex since a low

quantity of repeated jobs can require automated

equipment to be programmed frequently. Research

detailed within this paper has been conducted in

conjunction with VT Shipbuilding (VTS) at their

Portsmouth shipyard. The equipment that this software

has been created for is a Motoman UP6 arc welding

robot attached to a mobile gantry. The techniques used

are suitable for almost any industrial automation

application in the shipbuilding industry.

A programming technique that most programmers are

familiar with is procedural programming. This is where

sets of instructions are sub-divided into procedures which

can be used multiple times. A problem with this

methodology is that it can become complex to debug

and/or alter when dealing with large programs. An

answer to this problem is Object Oriented Programming

(OOP).

Section 2 briefly explains the history, concepts and

functionality of OOP. It gives a number of examples and

briefly introduces the subject.

The implementation of OOP within a welding

environment is discussed in Section 3. Information

regarding how the weld process was modelled and how

the software framework was constructed is presented.

Robot code generated by the software systems created is

presented in Section 4. Some of the assumptions made in

order to improve the robustness of the code are explained.

2. OBJECT ORIENTED PROGRAMMING

2.1 HISTORY

The first time that objects as entities were used in a

program was in Simula 67 during the 60’s. The two

creators were working on ship simulations and noticed

how the different attributes of different ships affected

one another.

In the 70’s the language Smalltalk was created at Xerox

Park and the term Object-oriented programming (OOP)

was introduced.

OOP continued to rise in popularity due, in part, to its

compatibility to graphical user interface creation and

computer games development.

OOP features and functionality were added to existing

languages such as BASIC, Fortran and Pascal. The

addition of these features sometimes led to compatibility

and reliability issues.

Some modern object-oriented languages operate within

programming frameworks. Frameworks include Sun’s

Java and Microsoft’s .NET platform [1].

2.2 CONCEPT

OOP is based upon fundamental concepts that are akin to

how humans see the world [2]. However, these concepts

are sometimes not how we may intuitively program a

computer. This means that obtaining a firm grasp of the

concepts behind OOP is important. OOP has been

increasingly used in various engineering fields. Using

OOP can make system design simpler, reduce time taken

for software implementation and improve

extensibility[3].

Objects within OOP are used to contain not just data but

also behaviour. This allows all elements within a

program to be represented by objects of some kind. All

objects have both data and behavioural characteristics; in

this way they are similar to the real-world.

The thought process of the programmer is important to

the success of OOP. In the initial stages of software

creation the programmer must conceptualise a task into

similar elements and then classify those elements into

intuitive grouping structures called classes. Take the

example of a Class called BALL as seen in Figure 1. All

balls (tennis balls, footballs etc.) are members of BALL

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29588588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Class. BALL must contain the data and behavioural

elements that are common to all balls. These classes

form the building blocks for OOP and are used as

templates when objects are instantiated from classes

during runtime.

Figure 1 – A Ball Class with Data and Behaviour

This object oriented approach means a programmer

should not think in terms of program paths as in

procedural programming. Programs are thought of as

collections of objects which co-operate and interact.

These interactions are initiated by events or messages

which are sent between objects.

Collections of these objects are inherently data stores

meaning that the program becomes data-driven as

opposed to process-driven.

2.3 FUNCTIONALITY

Although OOP is a programming concept or technique, it

is widely accepted that a true OOP language has certain

functionality. The following functionalities are

considered to be requisite for a true OOP language. [4,5]

Class

A class is the abstracted definition of an object. It

contains both characteristic data and behavioural

methods. These data and methods are traits that exist

within all possible objects of that class. Classes provide

the framework for object oriented programs with

modularity and structure.

Object

An object is a particular sort of Class. The BALL Class

in Figure 1 has data fields entitled diameter, mass etc. but

these fields have no values as a Class is an abstracted

definition of an object. An object of Class BALL, for

example, a tennis ball, will have the same data fields and

methods as the Class BALL. These fields will now have

values as a tennis ball is a real object and not an

abstraction.

Inheritance

Inheritance is a process by which Classes can pass their

data and methods to sub-Classes. This means that sub-

Classes can retain the description and functionality of

their parents but can also have further functionality or

description added. For example, consider a Class called

HUMAN. Some of the members of the Class HUMAN

may be:

 Number of Legs

 Hair

 Walk

All objects of Class HUMAN will have these attributes,

to some extent. Now we may want to create a Class

called ENGINEER and rather than defining every

abstracted detail of ENGINEER, a programmer can use

inheritance. An ENGINEER is a HUMAN and therefore

inherits all the members of the HUMAN Class. The

ENGINEER Class can then have additional members

added to better define ENGINEER and give added

functionality.

Polymorphism

Polymorphism allows a programmer to use child class

members in the same way as their parent’s class

members.

There are two types; Overriding Polymorphism and

Overloading Polymorphism.

Consider two classes that both inherit from a single

parent class. The parent class is called ANIMAL and the

two child classes are DOG and HUMAN. The ANIMAL

class has a member called SPEAK() and both the child

classes therefore inherit this member. A dog and a

human do not speak in the same way; Overriding

Polymorphism allows the programmer to individually

code the child class HUMAN to talk and the class DOG

to bark. However, both these members are called with

the same command, SPEAK().

Overloading Polymorphism is when a single method

signature is used to allow multiple functions depending

upon the situation. A member such as Add could need to

add a pair of integers or concatenate a pair of strings. By

defining one method as, perhaps, Add(int,int) and one as

Add(string,string) the programmer can specify the two

different methods by which the addition will take place.

This improves code readability since the same command

is being used in both instances and the actual required

routine is determined at either compile time or runtime.

3. WELD IMPLEMENTATION

As stated in Section 2, any software written using OOP

techniques must be carefully planned to provide clear

abstracted models to design any required classes.

Section 3.1 discusses the conceptualisation of welding as

a task. This allowed the creation of a weld model.

The software hierarchy that was created is detailed in

Section 3.2. This software hierarchy integrated with the

weld model detailed in Section 3.1.

BALL CLASS

DATA
 Diameter

 Mass

 Bounce
Factor

 Name

 Colour

 Material

BEHAVIOUR
 Kick

 Throw

 Bounce

After the process had been modelled and the software

hierarchy had been determined, the next stage in the

system creation was to produce a method by which the

various elements worked together to produce a

compatible program; this is discussed in Section 3.3.

3.1 WELD MODELLING

A model was developed to describe a weld in object

related terms. This was to allow any programming

solution to integrate with the real world weld required.

Figure 2 shows the objectified model of a weld beginning

with a whole panel and working down to individual

points.

Figure 2 – Hierarchy of a Ship Panel

In the same way that the construction of the

superstructure of a ship is broken down into smaller

elements such as sections, units and panels; the weld

requirements were sub-divided. Figure 2 shows that a

PANEL was considered the largest practical part. This

was intuitive as a factory system can be such that

PANELS have specific documentation. It was then

proposed that each PANEL could be made up of

collections of one or more JOBS. The inclusion of this

layer allowed collections of WELDS (the next layer) to

be logical grouped together in order to improve

production efficiencies. The final layer was that WELDS

are collections of POINTS. This was where the anatomy

concept fell back into line with the Real-world. Robot

programs that perform most welding were made from

collections of POINTS. These POINTS described where

the robot was to go.

3.2 SOFTWARE HIERARCHY

After the hierarchical object model of a weld had been

created, the software object hierarchy model was created.

This was to provide a framework within which the

software was created. Each layer of the model

represented a different level of abstraction from the Real-

world. Figure 3 shows the hierarchy of the created

system when compared to Rock’s Level Categorisation

model [6]; it can be seen that a WELD required a robot

PROGRAM. That PROGRAM was then constructed

from a number of ACTIONS. These ACTIONS are

determined by sub-dividing a PROGRAM into multiple

tasks. A PROGRAM generated to perform a linear

WELD could contain the following stages:

 Cut electrode wire to length.

 Orientate robot arm to weld posture.

 Move to touch sense position.

 Touch sense part to be welded.

 Recalculate start of weld.

 Weld line with positional feedback on.

 Move to safe exit position.

Each of these tasks were performed by a combination of

COMMANDS. These combinations of COMMANDS

were termed collections. These COMMANDS included

Weld (turned the weld on) or LinearMove (moved the

end effector in a linear movement). Each COMMAND

was modelled using OOP techniques; this meant that to

create a new COMMAND was simplified by using

inheritance. When used, COMMANDS were linked to

one or more INSTRUCTIONS.

An INSTRUCTION was defined as being in the

Primitive Motion Layer; this was because basic code to

operate the robot was emitted when called. All the

documented robot instructions were modelled within the

created system. This meant that, theoretically, there was

no limitation to operation due to software.

Figure 3 – Software Hierarchy for Software System

3.3 WELD OBJECTS

The object-oriented elements of the code can be

separated into two levels; the COMMAND objects which

inhabit the Object-Oriented Layer of Figure 3 and the

INSTRUCTION objects which are positioned in the

Primitive Motion Layer of the Software Hierarchy

(Figure 3).

3.3 (a) Command Objects

COMMAND object functionality was inherited into three

different child classes. These classes were

WeldCommand, MoveCommand and ProgramCommand

as displayed in Figure 4. The primary role of these

classes was to separate any sub-classes into logical

groupings.

WELD

PROGRAM

ACTION

COMMAND

INSTRUCTION

HUMAN INTELLIGENCE LAYER

TASK LAYER

SYSTEM LAYER

OBJECT-ORIENTED LAYER

PRIMITIVE MOTION LAYER

PANEL

JOB

WELD

JOB JOB

WELD WELD WELD WELD

POINT POINT POINT POINT

Figure 4 – Objects inheriting from Command

The WeldCommand class was then inherited by two

more classes called ComArcWeld and Weld, (Figure 5).

The purpose of these classes was to contain all the

required information needed to enable the welding

process. Neither class contained any movement

instructions and would always need to be used in

conjunction with one of the MoveCommands in Figure 6

to perform a weld.

Figure 5 – Objects inheriting from WeldCommand

The Motoman robot being used for the research was able

to perform four different types of movement. These

types of movement formed the child classes of the parent

class MoveCommand. These four child commands had

many similarities which could be inherited from the

parent MoveCommand. It was theoretically possible to

weld with all the child commands, however,

JointCommand was likely to prove difficult to control

accurately. JointCommand was used only for weld

posture movements which will be discussed in Section 4.

Figure 6 – Objects inheriting from MoveCommand

Some of the child classes of ProgramCommand are

shown in Figure 8. These classes were required to

provide any functionality within the robot program that

was not either welding or moving. Examples of these

functions were ConditionalJump, Shift and Search.

Figure 7 – Photo showing author with robotic welder

ConditionalJump allowed a condition to be evaluated and

a depending on the outcome a set of instructions would

be run. This necessitated a list of commands (containing

the instructions to be run) to be contained within the

object. These commands were then nested in the correct

place within the finalised robot code. Shift used a

function specific to the Motoman robot that allows all

subsequent positions to be offset by a predetermined

amount until the shift function is deactivated. The

Search class provided an element of functionality

required to be used in conjunction with a LinearMove

class to achieve the touch sensing positional check.

Figure 8 – Objects inheriting from

ProgramCommand

3.3 (b) Instruction Objects

This was the lowest level of the programming and

generated script that the robot controller understood.

When the EmitProgram() method of any descendant of

Command class was run then the program emitted was a

predetermined list of instructions that had been tried and

tested.

Figure 11 shows some of the different positions that the

end effector needed to move through to successfully

weld.

The touch sense points allowed the robot to determine

the precise location of the part to be welded in relation to

ProgramCommand

+GetNextFlag()

+EmitProgram()

ConditionalJump

-VariableAddress

-JumpData

-LabelType

-UserFrameNumber

-CommandList

-FileName

-Conditions

+AllocateJumpLoc()

Shift

-CommandList

-Name

Search

-LinearMove

-RefPointID

-RefPointPosition

MoveCommand

-Velocity

-StartPoint

-EndPoint

-IndexType

 +ReversePath()

+ToString()

LinearCommand

-OptionalVelocity

-Touchsense

-TouchsenseOn

JointCommand

-JointStartPoint

-JointEndPoint

CircularCommand

-OptionalVelocity

-MidPoint

SplineCommand

-OptionalVelocity

-MidPoint

WeldCommand

-ArcConditions

+EmitProgram() Weld

-WeldOn

ComArcWeld

-ComArcData

Command

+EmitProgram()

WeldCommand

+EmitProgram()

MoveCommand

+EmitProgram()

ProgramCommand

+GetNextFlag()

the end effector. This was important as the end effector

must be positioned within 2mm of the correct weld start

point to achieve a satisfactory weld quality.

3.4 PROGRAM GENERATION

Once the hierarchy of the software and the required

objects had been created, it was then necessary to create

a framework that could combine the elements to generate

a compatible program. The program needed to be

syntactically correct in order for the robot controller to

understand it.

This was achieved by the creation of a program object

that modelled the requirements of a compatible robot

program. This meant that all the instructional rules were

extracted from knowledge of the existing system and

then modelled. Some of the syntax was modelled within

the instruction layer and some could only be modelled

within the program object.

The program object became a collection of actions

entered in order of processing. As stated in Section 3.2,

actions were collections of commands, made up of

instructions. The program object contained all the

instructions that were required to perform the objective.

The program object then generated other areas of the

code that were required to maintain compatibility, such

as adding positional points.

Figure 9 – Program Object ‘XRCProgram’

4. GENERATED ROBOT CODE

Previous Sections dealt with the concepts of OOP

(Section 2) and the implementation of those concepts

into the welding environment (Section 3). This Section

details the actual robot code methodology (Section 4.1)

used by the created system to perform a weld. Section

4.2 discusses some of the assumptions made in order to

simplify and improve the robustness of the weld process.

The robot was considered as two separate sub-systems,

an arm and a gantry. The arm was a standard robotic arm

and was suspended from the gantry. The purpose of this

was to allow the arm to have a large workspace. The

gantry had an operational space of approximately 15m by

10m by 2m.

4.1 Robot Code Methodology

Figure 10 shows the operational flowchart of the robot

programs generated by the created systems. The code

was kept as simple as possible to make the system more

robust. The arm was used to obtain the correct posture

for welding and the gantry was used to navigate into,

along and out of the weld. The positional offset

calculation was required to allow for any inaccuracies in

the position of the work piece and also in the robot

system itself.

Figure 10 – Flowchart showing Robot Code

Operation

The trajectory of the end effector is shown in Figure 11.

This path was determined by the requirements of the

robot system and shows the necessary positional points

for the corner tracking sub-system (ComArc) within the

robot controller.

4.2 Robot Code Discussion

The discussion presented in this sub-Section relates to

some of the assumptions made and also to some of the

real-world findings of the research.

4.2(a) Constraining Arm Movements

The posture for welding is critical to the standard of weld

quality. This posture is the same relative to any weld

within the same plane.

The arm system in use at VTS is a 6 degree-of-freedom

articulated model using three pivot joints and three hinge

joints.

Call Wirecut()

Move Arm to Weld Posture

Move Gantry to Touch Sense

Position

Is Touch Sense

successful?

Carry out Touch Sense

Error routine

Calculate positional offset

Apply positional offset

Move to weld start

Enable welding

Move to weld end

Disable welding

Move to safe location

No

Yes

XRCProgram

-ArmPointsList

-ArmVariablesList

-CommandsList

-GantryPointsList

-GantryVariablesList

-InstructionsList

-CurrentIndex

-RelativeJob

-Name

+AddInstruction()

+EmitHeader()

+EmitInstructions()

+EmitInstrHeader()

+EmitPosHeader()

+EmitRConf()

+EmitRFrame()

+PopulatePoints()

+ToString()

The calculation of the relative joint positions to achieve

the correct weld posture for any weld in the horizontal

plane was a complex task. To simplify this, the joint

Figure 11 – End Effector Path Diagram

configuration was found which placed the end effector

on the centre line of the main pivot joint (joint S) when

in the correct weld posture. This meant that for a

horizontal weld the end effector could be correctly

aligned to the weld line by rotating the arm about the

main pivot joint. A disadvantage was that the S joint

could not revolve through 360
o
, so an additional joint

configuration was found. With these two

configurations the end effector could be positioned

correctly for any horizontal weld and only one joint

position needed to be calculated.

4.2(b) End Effector Path

The existing RinasWeld system used a method that

produced a complex path to the start of the weld. The

need for this was not understood and in this research

that complex path has been replaced by a path which

obtains the correct weld posture (as discussed in

Section 4.2(a)), then moves the end effector almost

vertically above the start point of the weld line and then

drops the end effector down to the touch sense point as

seen in Figure 11. This is based upon the assumption

that the robot could move freely even when the arm

was in the weld posture position. This was not

unreasonable as the end effector (the lowest point) is

still over 500mm from the weld deck. Another

assumption was that the end effector had a clear

vertical path. In the case of large T-bar this may not

always be the case.

This method has reduced the number of positional

points to move to the start of the weld from around

thirty to eight. The main benefit is not in processing

time but in reliability as the calculation of those eight

points is simple and highly repeatable.

5. RESULTS

The system was tested by performing a straight line

horizontal weld. A test piece was placed in the robot

welder’s workspace. The start and end coordinates of

the required weld were measured and the data entered

into the program generation system. The generated

program was then sent to the robot controller and run.

The robotic welder performed the weld in the required

position on the test piece. The quality of the weld was

of a satisfactory standard.

6. FIGURES

Figure 1 – A Ball Class with Data and Behaviour

Figure 2 – Hierarchy of a Ship Panel

Figure 3 – Software Hierarchy for Software System

Figure 4 – Objects inheriting from Command

Figure 5 – Objects inheriting from WeldCommand

Figure 6 – Objects inheriting from MoveCommand

Figure 7 – Photo showing author with robotic welder

Figure 8 – Objects inheriting from ProgramCommand

Figure 9 – Program Object ‘XRCProgram’

Figure 10 – Flowchart showing Robot Code Operation

Figure 11 – End Effector Path Diagram

7. CONCLUSIONS

This paper began by giving a brief overview of the

history, concepts and functionality of OOP. It stated

that any software written using OOP techniques must

be carefully planned to provide clear abstracted models

to design any required classes.

Section 3 saw the discussion switch to the practical

application of OOP techniques to write software

capable of programming a welding robot within the

shipbuilding industry. The Section discussed the

hierarchy of welding and how requirements may be

achieved within a software framework.

The specific weld application robot code was

introduced in Section 4. This included a description of

the robot code methodology and a discussion of some

of the assumptions made to simplify the process.

Section 5 details the use of the program generation

system to perform a straight line horizontal weld.

Further development of the system could include

adding vertical weld or curved weld functionality.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance

provided by VT Shipbuilding in the research found

within this paper.

9. REFERENCES

1. MEYER, B., ‘Object-Oriented Software

Construction’, Prentice Hall, 1997.

2. BOOCH, G. et al, ‘Object oriented design

with applications’ 3
rd

 Ed., Addison-Wesley,

2007

3. FANG, H. et al, ‘An object-oriented

framework for finite element pavement

analysis’, Advances in Engineering Software

38, 2007.

4. ARMSTRONG, D.J., ‘The Quarks of Object-

Oriented Development’, Communications of

the ACM 49(2):123-128, 2006.

5. DENNIS, A., WIXOM, B.H. & TEGARDEN,

D., ‘Systems Analysis and Design with UML

Version 2.0’ 2
nd

 Ed., John Wiley & Sons, 2005.

6. TEWKESBURY, G., ‘Design using

Distributed Intelligence within Advanced

Production Machinery’, PhD Thesis,

Portsmouth:University of Portsmouth, 1994.

10. AUTHORS’ BIOGRAPHIES

Gareth Lambert is a research student at the University

of Portsmouth. He is studying for the award of Doctor

of Philosophy in Intelligent Systems for welding in the

shipbuilding industry.

Dr Giles Tewkesbury MBE is a Senior Research

Fellow and Senior Lecturer in Computing and

Electronics at the University of Portsmouth.

Dr David Sanders TD is a Reader in Systems and

Knowledge Engineering and leader of the Systems

Engineering Research Group at the University of

Portsmouth.

