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SUMMARY 

 

To achieve the flexibility required by the small amount of repeated work in some industries, automated systems should 

be capable of being reprogrammed quickly and efficiently.  One way of doing this is to create software dedicated to the 

task of generating the required code.  Using Object-Oriented Programming techniques, a software engineer can write 

efficient code for machines that is faster to implement and extendable.  This paper gives a brief overview of object-

oriented programming and then goes on to discuss research into the use of that technique to create programs to generate 

code for a Motoman welding robot in the shipbuilding industry. 

 

1. INTRODUCTION 

 

The programming of automated systems within any 

industry can be a complex matter.  In the naval ship 

industry it can become even more complex since a low 

quantity of repeated jobs can require automated 

equipment to be programmed frequently.  Research 

detailed within this paper has been conducted in 

conjunction with VT Shipbuilding (VTS) at their 

Portsmouth shipyard.  The equipment that this software 

has been created for is a Motoman UP6 arc welding 

robot attached to a mobile gantry.  The techniques used 

are suitable for almost any industrial automation 

application in the shipbuilding industry. 

 

A programming technique that most programmers are 

familiar with is procedural programming.  This is where 

sets of instructions are sub-divided into procedures which 

can be used multiple times.  A problem with this 

methodology is that it can become complex to debug 

and/or alter when dealing with large programs.  An 

answer to this problem is Object Oriented Programming 

(OOP). 

 

Section 2 briefly explains the history, concepts and 

functionality of OOP.  It gives a number of examples and 

briefly introduces the subject. 

 

The implementation of OOP within a welding 

environment is discussed in Section 3.  Information 

regarding how the weld process was modelled and how 

the software framework was constructed is presented. 

 

Robot code generated by the software systems created is 

presented in Section 4.  Some of the assumptions made in 

order to improve the robustness of the code are explained. 

 

2. OBJECT ORIENTED PROGRAMMING 

 

2.1 HISTORY 

 

The first time that objects as entities were used in a 

program was in Simula 67 during the 60’s.  The two 

creators were working on ship simulations and noticed 

how the different attributes of different ships affected 

one another. 

 

In the 70’s the language Smalltalk was created at Xerox 

Park and the term Object-oriented programming (OOP) 

was introduced. 

 

OOP continued to rise in popularity due, in part, to its 

compatibility to graphical user interface creation and 

computer games development. 

 

OOP features and functionality were added to existing 

languages such as BASIC, Fortran and Pascal.  The 

addition of these features sometimes led to compatibility 

and reliability issues. 

 

Some modern object-oriented languages operate within 

programming frameworks.  Frameworks include Sun’s 

Java and Microsoft’s .NET platform [1].  

 

2.2 CONCEPT 

 

OOP is based upon fundamental concepts that are akin to 

how humans see the world [2].  However, these concepts 

are sometimes not how we may intuitively program a 

computer. This means that obtaining a firm grasp of the 

concepts behind OOP is important.  OOP has been 

increasingly used in various engineering fields. Using 

OOP can make system design simpler, reduce time taken 

for software implementation and improve 

extensibility[3]. 
 

Objects within OOP are used to contain not just data but 

also behaviour. This allows all elements within a 

program to be represented by objects of some kind. All 

objects have both data and behavioural characteristics; in 

this way they are similar to the real-world. 

 

The thought process of the programmer is important to 

the success of OOP.  In the initial stages of software 

creation the programmer must conceptualise a task into 

similar elements and then classify those elements into 

intuitive grouping structures called classes.  Take the 

example of a Class called BALL as seen in Figure 1.  All 

balls (tennis balls, footballs etc.) are members of BALL 
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Class.  BALL must contain the data and behavioural 

elements that are common to all balls.  These classes 

form the building blocks for OOP and are used as 

templates when objects are instantiated from classes 

during runtime. 

 
Figure 1 – A Ball Class with Data and Behaviour 

  

This object oriented approach means a programmer 

should not think in terms of program paths as in 

procedural programming.  Programs are thought of as 

collections of objects which co-operate and interact.  

These interactions are initiated by events or messages 

which are sent between objects. 

 

Collections of these objects are inherently data stores 

meaning that the program becomes data-driven as 

opposed to process-driven.  

 

2.3 FUNCTIONALITY 

 

Although OOP is a programming concept or technique, it 

is widely accepted that a true OOP language has certain 

functionality.  The following functionalities are 

considered to be requisite for a true OOP language.  [4,5] 

 

Class 

 

A class is the abstracted definition of an object. It 

contains both characteristic data and behavioural 

methods.  These data and methods are traits that exist 

within all possible objects of that class.  Classes provide 

the framework for object oriented programs with 

modularity and structure. 

 

Object 

 

An object is a particular sort of Class.  The BALL Class 

in Figure 1 has data fields entitled diameter, mass etc. but 

these fields have no values as a Class is an abstracted 

definition of an object.  An object of Class BALL, for 

example, a tennis ball, will have the same data fields and 

methods as the Class BALL.  These fields will now have 

values as a tennis ball is a real object and not an 

abstraction. 

 

Inheritance  

 

Inheritance is a process by which Classes can pass their 

data and methods to sub-Classes.  This means that sub-

Classes can retain the description and functionality of 

their parents but can also have further functionality or 

description added. For example, consider a Class called 

HUMAN.  Some of the members of the Class HUMAN 

may be: 

 

 Number of Legs 

 Hair 

 Walk 

 

All objects of Class HUMAN will have these attributes, 

to some extent.  Now we may want to create a Class 

called ENGINEER and rather than defining every 

abstracted detail of ENGINEER, a programmer can use 

inheritance.  An ENGINEER is a HUMAN and therefore 

inherits all the members of the HUMAN Class.  The 

ENGINEER Class can then have additional members 

added to better define ENGINEER and give added 

functionality. 

 

Polymorphism 

 

Polymorphism allows a programmer to use child class 

members in the same way as their parent’s class 

members. 

 

There are two types; Overriding Polymorphism and 

Overloading Polymorphism. 

 

Consider two classes that both inherit from a single 

parent class.  The parent class is called ANIMAL and the 

two child classes are DOG and HUMAN.  The ANIMAL 

class has a member called SPEAK() and both the child 

classes therefore inherit this member.  A dog and a 

human do not speak in the same way; Overriding 

Polymorphism allows the programmer to individually 

code the child class HUMAN to talk and the class DOG 

to bark.  However, both these members are called with 

the same command, SPEAK(). 

 

Overloading Polymorphism is when a single method 

signature is used to allow multiple functions depending 

upon the situation.  A member such as Add could need to 

add a pair of integers or concatenate a pair of strings.  By 

defining one method as, perhaps, Add(int,int) and one as 

Add(string,string) the programmer can specify the two 

different methods by which the addition will take place.  

This improves code readability since the same command 

is being used in both instances and the actual required 

routine is determined at either compile time or runtime. 

 

3. WELD IMPLEMENTATION 

 

As stated in Section 2, any software written using OOP 

techniques must be carefully planned to provide clear 

abstracted models to design any required classes.  

Section 3.1 discusses the conceptualisation of welding as 

a task.  This allowed the creation of a weld model.   

 

The software hierarchy that was created is detailed in 

Section 3.2.  This software hierarchy integrated with the 

weld model detailed in Section 3.1.     

 

BALL CLASS 

DATA 
 Diameter 

 Mass 

 Bounce 
Factor 

 Name 

 Colour 

 Material 

BEHAVIOUR 
 Kick 

 Throw 

 Bounce 

 



After the process had been modelled and the software 

hierarchy had been determined, the next stage in the 

system creation was to produce a method by which the 

various elements worked together to produce a 

compatible program; this is discussed in Section 3.3. 

 

3.1 WELD MODELLING 

 

A model was developed to describe a weld in object 

related terms.  This was to allow any programming 

solution to integrate with the real world weld required.  

Figure 2 shows the objectified model of a weld beginning 

with a whole panel and working down to individual 

points.  

 
Figure 2 – Hierarchy of a Ship Panel 

 

In the same way that the construction of the 

superstructure of a ship is broken down into smaller 

elements such as sections, units and panels; the weld 

requirements were sub-divided.  Figure 2 shows that a 

PANEL was considered the largest practical part.  This 

was intuitive as a factory system can be such that 

PANELS have specific documentation.  It was then 

proposed that each PANEL could be made up of 

collections of one or more JOBS.  The inclusion of this 

layer allowed collections of WELDS (the next layer) to 

be logical grouped together in order to improve 

production efficiencies.  The final layer was that WELDS 

are collections of POINTS.  This was where the anatomy 

concept fell back into line with the Real-world.  Robot 

programs that perform most welding were made from 

collections of POINTS.  These POINTS described where 

the robot was to go. 

 

3.2 SOFTWARE HIERARCHY  

 

After the hierarchical object model of a weld had been 

created, the software object hierarchy model was created.  

This was to provide a framework within which the 

software was created.  Each layer of the model 

represented a different level of abstraction from the Real-

world.  Figure 3 shows the hierarchy of the created 

system when compared to Rock’s Level Categorisation 

model [6]; it can be seen that a WELD required a robot 

PROGRAM.  That PROGRAM was then constructed 

from a number of ACTIONS.  These ACTIONS are 

determined by sub-dividing a PROGRAM into multiple 

tasks.  A PROGRAM generated to perform a linear 

WELD could contain the following stages: 

 

 Cut electrode wire to length. 

 Orientate robot arm to weld posture. 

 Move to touch sense position. 

 Touch sense part to be welded. 

 Recalculate start of weld. 

 Weld line with positional feedback on. 

 Move to safe exit position. 

 

Each of these tasks were performed by a combination of 

COMMANDS.  These combinations of COMMANDS 

were termed collections.  These COMMANDS included 

Weld (turned the weld on) or LinearMove (moved the 

end effector in a linear movement).  Each COMMAND 

was modelled using OOP techniques; this meant that to 

create a new COMMAND was simplified by using 

inheritance.  When used, COMMANDS were linked to 

one or more INSTRUCTIONS.  

 

An INSTRUCTION was defined as being in the 

Primitive Motion Layer; this was because basic code to 

operate the robot was emitted when called.  All the 

documented robot instructions were modelled within the 

created system.  This meant that, theoretically, there was 

no limitation to operation due to software.    

 
Figure 3 – Software Hierarchy for Software System 

 

3.3 WELD OBJECTS 

 

The object-oriented elements of the code can be 

separated into two levels; the COMMAND objects which 

inhabit the Object-Oriented Layer of Figure 3 and the 

INSTRUCTION objects which are positioned in the 

Primitive Motion Layer of the Software Hierarchy 

(Figure 3). 

  

3.3 (a) Command Objects 

 

COMMAND object functionality was inherited into three 

different child classes.  These classes were 

WeldCommand, MoveCommand and ProgramCommand 

as displayed in Figure 4.  The primary role of these 

classes was to separate any sub-classes into logical 

groupings. 
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PANEL 

JOB 

WELD 

JOB JOB 

WELD WELD WELD WELD 

POINT POINT POINT POINT 



 
Figure 4 – Objects inheriting from Command 

 

The WeldCommand class was then inherited by two 

more classes called ComArcWeld and Weld, (Figure 5).  

The purpose of these classes was to contain all the 

required information needed to enable the welding 

process.  Neither class contained any movement 

instructions and would always need to be used in 

conjunction with one of the MoveCommands in Figure 6 

to perform a weld.  

 
Figure 5 – Objects inheriting from WeldCommand 

 

The Motoman robot being used for the research was able 

to perform four different types of movement.  These 

types of movement formed the child classes of the parent 

class MoveCommand.  These four child commands had 

many similarities which could be inherited from the 

parent MoveCommand. It was theoretically possible to 

weld with all the child commands, however, 

JointCommand was likely to prove difficult to control 

accurately.  JointCommand was used only for weld 

posture movements which will be discussed in Section 4. 

 
Figure 6 – Objects inheriting from MoveCommand 

 

Some of the child classes of ProgramCommand are 

shown in Figure 8.  These classes were required to 

provide any functionality within the robot program that 

was not either welding or moving.  Examples of these 

functions were ConditionalJump, Shift and Search.  

 
Figure 7 – Photo showing author with robotic welder 

 

ConditionalJump allowed a condition to be evaluated and 

a depending on the outcome a set of instructions would 

be run.  This necessitated a list of commands (containing 

the instructions to be run) to be contained within the 

object.  These commands were then nested in the correct 

place within the finalised robot code.  Shift used a 

function specific to the Motoman robot that allows all 

subsequent positions to be offset by a predetermined 

amount until the shift function is deactivated.  The 

Search class provided an element of functionality 

required to be used in conjunction with a LinearMove 

class to achieve the touch sensing positional check. 

 

 
Figure 8 – Objects inheriting from 

ProgramCommand 

 

3.3 (b) Instruction Objects 

  

This was the lowest level of the programming and 

generated script that the robot controller understood.  

When the EmitProgram() method of any descendant of 

Command class was run then the program emitted was a 

predetermined list of instructions that had been tried and 

tested.  

 

Figure 11 shows some of the different positions that the 

end effector needed to move through to successfully 

weld.   

 

The touch sense points allowed the robot to determine 

the precise location of the part to be welded in relation to 

ProgramCommand 

 
+GetNextFlag() 

+EmitProgram() 

ConditionalJump 

-VariableAddress 

-JumpData 

-LabelType 

-UserFrameNumber 

-CommandList 

-FileName 

-Conditions 

 
+AllocateJumpLoc() 

Shift 

-CommandList 

-Name 

 

 

Search 

-LinearMove 

-RefPointID 

-RefPointPosition 

 

 

MoveCommand 

-Velocity 

-StartPoint 

-EndPoint 

-IndexType 

 +ReversePath() 

+ToString() 

 

LinearCommand 

-OptionalVelocity 

-Touchsense 

-TouchsenseOn 

 

JointCommand 

-JointStartPoint 

-JointEndPoint 

 

 

CircularCommand 

-OptionalVelocity 

-MidPoint 

 

 

SplineCommand 

-OptionalVelocity 

-MidPoint 

 

 

WeldCommand 

-ArcConditions 

+EmitProgram() Weld 

-WeldOn 

 

ComArcWeld 

-ComArcData 

 

Command 

 
+EmitProgram() 

WeldCommand 

 
+EmitProgram() 

MoveCommand 

 
+EmitProgram() 

ProgramCommand 

 
+GetNextFlag() 



the end effector.  This was important as the end effector 

must be positioned within 2mm of the correct weld start 

point to achieve a satisfactory weld quality. 

 

3.4 PROGRAM GENERATION 

 

Once the hierarchy of the software and the required 

objects had been created, it was then necessary to create 

a framework that could combine the elements to generate 

a compatible program.  The program needed to be 

syntactically correct in order for the robot controller to 

understand it. 

 

This was achieved by the creation of a program object 

that modelled the requirements of a compatible robot 

program.  This meant that all the instructional rules were 

extracted from knowledge of the existing system and 

then modelled.  Some of the syntax was modelled within 

the instruction layer and some could only be modelled 

within the program object. 

 

The program object became a collection of actions 

entered in order of processing.  As stated in Section 3.2, 

actions were collections of commands, made up of 

instructions.  The program object contained all the 

instructions that were required to perform the objective.  

The program object then generated other areas of the 

code that were required to maintain compatibility, such 

as adding positional points. 

 
Figure 9 – Program Object ‘XRCProgram’ 

 

4. GENERATED ROBOT CODE 

 

Previous Sections dealt with the concepts of OOP 

(Section 2) and the implementation of those concepts 

into the welding environment (Section 3).  This Section 

details the actual robot code methodology (Section 4.1) 

used by the created system to perform a weld.  Section 

4.2 discusses some of the assumptions made in order to 

simplify and improve the robustness of the weld process.  

The robot was considered as two separate sub-systems, 

an arm and a gantry.  The arm was a standard robotic arm 

and was suspended from the gantry.  The purpose of this 

was to allow the arm to have a large workspace.  The 

gantry had an operational space of approximately 15m by 

10m by 2m.   

 

 

 

4.1 Robot Code Methodology 

 

Figure 10 shows the operational flowchart of the robot 

programs generated by the created systems.  The code 

was kept as simple as possible to make the system more 

robust.  The arm was used to obtain the correct posture 

for welding and the gantry was used to navigate into, 

along and out of the weld.  The positional offset 

calculation was required to allow for any inaccuracies in 

the position of the work piece and also in the robot 

system itself.   

 
Figure 10 – Flowchart showing Robot Code 

Operation 

 

The trajectory of the end effector is shown in Figure 11.  

This path was determined by the requirements of the 

robot system and shows the necessary positional points 

for the corner tracking sub-system (ComArc) within the 

robot controller. 

 

4.2  Robot Code Discussion 

 

The discussion presented in this sub-Section relates to 

some of the assumptions made and also to some of the 

real-world findings of the research. 

 

4.2(a) Constraining Arm Movements 

 

The posture for welding is critical to the standard of weld 

quality.  This posture is the same relative to any weld 

within the same plane. 

 

The arm system in use at VTS is a 6 degree-of-freedom 

articulated model using three pivot joints and three hinge 

joints.   
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The calculation of the relative joint positions to achieve 

the correct weld posture for any weld in the horizontal 

plane was a complex task.  To simplify this, the joint  



 

Figure 11 – End Effector Path Diagram 

 

configuration was found which placed the end effector 

on the centre line of the main pivot joint (joint S) when 

in the correct weld posture.  This meant that for a 

horizontal weld the end effector could be correctly 

aligned to the weld line by rotating the arm about the 

main pivot joint.  A disadvantage was that the S joint 

could not revolve through 360
o
, so an additional joint 

configuration was found.  With these two 

configurations the end effector could be positioned 

correctly for any horizontal weld and only one joint 

position needed to be calculated.  

 

4.2(b) End Effector Path 

 

The existing RinasWeld system used a method that 

produced a complex path to the start of the weld.  The 

need for this was not understood and in this research 

that complex path has been replaced by a path which 

obtains the correct weld posture (as discussed in 

Section 4.2(a)), then moves the end effector almost 

vertically above the start point of the weld line and then 

drops the end effector down to the touch sense point as 

seen in Figure 11.  This is based upon the assumption 

that the robot could move freely even when the arm 

was in the weld posture position.  This was not 

unreasonable as the end effector (the lowest point) is 

still over 500mm from the weld deck.  Another 

assumption was that the end effector had a clear 

vertical path.  In the case of large T-bar this may not 

always be the case. 

This method has reduced the number of positional 

points to move to the start of the weld from around 

thirty to eight.  The main benefit is not in processing 

time but in reliability as the calculation of those eight 

points is simple and highly repeatable.  

 

5.  RESULTS 

 

The system was tested by performing a straight line 

horizontal weld.  A test piece was placed in the robot 

welder’s workspace.  The start and end coordinates of 

the required weld were measured and the data entered 

into the program generation system.  The generated 

program was then sent to the robot controller and run. 

 

The robotic welder performed the weld in the required 

position on the test piece.  The quality of the weld was 

of a satisfactory standard.    
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7. CONCLUSIONS 

 

This paper began by giving a brief overview of the 

history, concepts and functionality of OOP.  It stated 

that any software written using OOP techniques must 

be carefully planned to provide clear abstracted models 

to design any required classes. 

 

Section 3 saw the discussion switch to the practical 

application of OOP techniques to write software 

capable of programming a welding robot within the 

shipbuilding industry.  The Section discussed the 

hierarchy of welding and how requirements may be 

achieved within a software framework.   

 

The specific weld application robot code was 

introduced in Section 4.  This included a description of 

the robot code methodology and a discussion of some 

of the assumptions made to simplify the process. 

 

Section 5 details the use of the program generation 

system to perform a straight line horizontal weld.  

Further development of the system could include 

adding vertical weld or curved weld functionality. 
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