
First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

1

A NEW COMPUTER AIDED DESIGN ENVIRONMENT USING

INTELLIGENCE THAT IS DISTRIBUTED THROUGHOUT ADVANCED

PRODUCTION MACHINES

ABSTRACT

With complex designs involving many

manufacturing processes, a designer may have a

broad understanding of the overall process, but a

limited detailed knowledge of the individual

processes. New techniques to analyse design

situations and to implement the results within a

new user interface are presented. The new

design environment focused and guided a

designer in the task of designing tooling for

plastic part manufacture. The work

demonstrated that in the future a designer’s

knowledge might be collected and analysed for

use in an automated system. This may allow

part or all of the design process to be automated.

To demonstrate this new design environment, a

small production area was created that included

new types of task machine and virtual

task-machines. The new task machinery was

successfully integrated into the production

environment and automatically scheduled,

configured, and programmed.

Key Words – COMPUTER, DESIGN,

INTELLIGENCE, DISTRIBUTED,

MACHINES.

I. INTRODUCTION

A new restricted programming language has

been created to program task oriented machines.

This led to a new method of integrating

advanced production machinery. The method

allows a design level to interface directly to a

manufacturing environment. The

manufacturing level advises on aspects of the

production tasks, which are necessary for the

design. The method offers a route towards full

factory automation, and integration with a design

level.

Programming approaches at a factory level are

presented, and novel techniques to fully

automate factories are described. The

framework allows the interrogation and

programming of any level within a factory

hierarchy. Each level of an automated factory

hierarchy has been included and a case study is

described to demonstrate a successful application

of the approach. The results of this application

are presented and conclusions drawn.

The concept of task machines was first presented

in 1992 [1]. Task machines are machines

constrained for a task, but are not product

dependent. A task machine would therefore be

specified in terms of task rather than functional

abilities, for example, a robot which can 'spray

panels' rather than a robot which has 'six degrees

of freedom'.

In the past only single task machines have tended

to be programmed [2]. This paper reports on

progress towards a method for integrating and

automatically programming more than one task

machine within a simple production environment

created during the research.

A new method for customising virtual task

machines was created by mapping

general-purpose machinery programming

languages to a new restricted programming

language. This new technique was used to

create two virtual task de-flashing machines.

These individual task machines were integrated

into work-cells, and then into a production

environment. This was achieved by the

creation of work-cell and factory co-ordinators.

Many robot-programming languages exist [3,4],

and more are being developed. A programmer

faced with the task of programming many

different machines has to cope with various

DA SANDERS
University of Portsmouth,

Portsmouth PO1 3DJ

United Kingdom

david.sanders@port.ac.uk

TEWKESBURY GE
University of Portsmouth,

Portsmouth PO1 3DJ

United Kingdom

giles.tewkesbury@port.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29588586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

2

levels of complexity, functionality, and structure

found in each of the languages encountered.

This variance can slow the writing and

maintenance of application programmes.

A new alternative approach is to take the

essential functional commands from each of the

different machines and to map them to a new

common restricted programming language.

The commands are mapped in such a way as to

provide continuity when changing from the

programming of one machine to another. This

continuity extends to the units and order of

parameters passed to the new commands.

The approach is suited to the quick customisation

and programming of machinery for applications.

This makes it particularly useful in the creation

of virtual task machines, enabling a task machine

to be quickly configured from any

general-purpose machinery.

The application of this approach to the creation

of a generic functional programming

environment is described. The environment

was used by an experienced programmer to

generate a user interface to verify task rules with

an application expert. After the rules had been

verified the programmer wrote software to

automatically capture design information from a

design level, and the user interface became an

optional means of viewing the task being

performed.

The work described in this paper demonstrated

that a task-oriented system can be automatically

scheduled, configured, and programmed from the

information generated by a design task level.

II. VIRTUAL TASK MACHINES

The task orientated approach suggests that rather

than pursuing single robot structures which can

'do everything', the robot should be tailored to

the permanent aspects of the task. Strickland

presented three directives in his thesis which

summarised the task orientated approach [2] and

this was later extended to four directives in [5]:

Directive 1: Design industrial robots for the

permanent aspects of the surrounding

production environment and the task at

hand.

Directive 2: The robot controller should be

expandable to the requirements of the

customer, from a set of generic modules and

the robot itself should be constructed from

modular robotic elements.

Directive 3: Robots should be task not

functionally programmed using 'native'

production languages or graphical interfaces.

Such a rule-based hierarchy should interface

directly to existing CAD/CAM facilities.

Directive 4: The machine should be able to

accept prospective designs and advise on

manufacturing details associated with the

task. This advice may be, 'yes, I can

manufacture the part, - it would take xxx

seconds', or the machine could offer

solutions to enable a production task to be

performed, for example, new or alternative

orientation information.

[6] Shows the development process for a task

machine. The requirements, definitions, and

specifications of the task are the starting point in

creating a task machine. These specifications

encompass the variance that would occur within

the task being performed, that is they must not be

product dependent. This information is then

used in the design of both the hardware and the

software for the machine. The design of the

production machine hardware would take into

consideration the available equipment, the

hardware modules that have already been

developed, and the fore-mentioned task

specification. This would lead to the

customisation of existing functional systems or

the construction of a new machine using modular

machine elements. If a suitable machine

structure already exists then the controller can be

removed and modular control boards used to

control the machine. This second approach was

used by Strickland to create a surrogate task

machine.

A method which only caters for 'green field' (or

new) factories only considers a small region of

the potential market, and so methods of

constraining existing general-purpose machinery

have been developed. This involved the

creation of virtual task machines. Virtual task

machines use the existing machinery and

controller, but constrain them for a task. A

virtual task machine is not a true task machine in

that the hardware is not built from modular

First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

3

robotic elements. This means that the structure

may not always be the most suited for the task,

however, the interface to both types of machine

is the same.

III. A NEW RESTRICTED

PROGRAMMING LANGUAGE

The new restricted programming language

was a generically defined, broad base of

commands for the control and simulation

of advanced production machinery.

General-purpose machinery was

constrained by mapping the controller

commands to the restricted programming

language, using a predefined format and

protocol. The modules not only contained

the means to control the machinery, but

also a model of the machinery, which

allowed simulation. The modules were

placed in a library, and were used in the

structured programming environment to

create virtual task machines. [4] Shows

how the abilities of a robot controller were

mapped to a broad base of functional

commands.

A survey was conducted into robot

programming methods and languages and

is documented in [4,5]. The Fanuc

programming language was representative

of many programming languages

available?

IV. A DE-FLASHING TASK MACHINE

A Fanuc A-600 scara configuration robot

was selected for a de-flashing task. This

had a different structure and kinematics

compared to the Puma robots used in

previous work. The Fanuc's native

programming method was with NC type

instructions, and the puma with a higher

level programming language, Val I. The

robot was selected because it contrasted

with the Puma kinematics structures, and

programming languages, whilst both had

the ability to perform the task. A Fanuc

robot is shown in figure 1.

Block diagrams of virtual task machines

are included in [4]. Hardware interfaces

were created to interface any RS232

controller to a transputer-programming

environment. At the lowest level,

software was required to drive the

interface board, and to handle the

communication protocols for the functional

machine. This level effectively created a

'transparent' communication link with the

machine, enabling commands to be issued

from within the programming

environment.

Fig. 1 Fanuc A-600 SCARA Robot

The functional commands were then

'captured' within the task programming

system. This stage consisted of

generating a translation table, which

mapped the functional commands of the

specific functional machinery to a general

form for use within the task-programming

environment. To do this, the structure of

the language was analysed rather than the

commands themselves. This structure

was used to break down the languages and

to translate them to a general structure.

This translation table translated both

commands and parameters. The front

end to this translation table accepted

commands as functional program

First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

4

instructions.

At the highest level, task rules translated

the task commands into functional

commands. The task commands entered

the system through a task interface. This

interface was created to interface to a

higher level within the system (for

example a design level or work-cell

co-ordinator level), or to interface with a

programming environment driven by a

user.

The design of the programming

environment relied on the experience of an

'application expert' (someone well

acquainted with the task being automated)

to help shape the user interface. At this

stage any obvious sub-tasks were also

identified. The modular software

framework was used to help configure the

programming environment, and the task

rules acquired along with any sub-tasks

defined were also programmed. The

application expert, away from the

manufacturing equipment could then

verify the rules. Higher and higher level

sub-tasks were developed until the

sub-tasks eventually collapsed into one

main task.

V. CREATION OF MATERIALS

HANDLING TASK MACHINES

A Kuikka conveyor system servicing four

work-cells was used as a materials handler.

A hardware interface controlled each

work-cell station on the conveyor. A

series of rules were developed to interface

the functional control of each station to the

work-cell co-ordinator. Software was

written so that each station on the

conveyor operated independently, as an

intelligent station that could be

interrogated to obtain the ability of the

particular stations. The relationship

between the materials handling task and

the functional control was simple, and

though the machines created were task

machines the task was functional.

Various types of conveyor station were

defined. The specifications were not

specific to the hardware available for the

research, but were developed as generic

specifications that could be applied to any

materials handling equipment. Three

materials handling task machines were

created, two standard stations, and one

feeder. The task software was written in

a modular, stand-alone form. This

allowed the software to be used with a

multiplexed single interface to all the

actuators, or with separate interface

hardware for each local station. A user

interface was created to show the

operation and the task programming of the

stations. The real time operation of the

interface was not possible because all the

links on the driving transputer were being

used.

VI. INTEGRATING THE TASK

MACHINE AND A PRODUCTION

ENVIRONMENT

The production environment created for

the research consisted of a number of

work-cells servicing task machines. The

work-cells were linked to a factory

co-ordinator. 0 shows the hierarchical

structure of the environment.

The software was organised in the same

structure, having work-cell co-ordinators,

and a factory co-ordinator.

Work-cell Co-ordinators: The work-cell

co-ordinators controlled the task

machinery within a work-cell. They

scheduled and sequenced events, handled

errors, and serviced the requirements of

the machinery (for example, service

materials, such as cooling fluids). The

work-cells created were not generic,

configurable work-cells and did not have

the full functionality which would be

expected of a generic co-ordinator. The

work-cells did provided identical

functional behaviour to that of a generic

First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

5

work-cell, for correct operation of the task

machinery. The work-cells were able to

schedule jobs and control the production

using the available task machines.

Factory Scheduler / co-ordinator: The

Factory co-ordinator, co-ordinated the

tasks necessary for the manufacture of a

product. A number of scheduling

packages existed and it was not the

purpose of this research to try and compete

with these packages, but to show that the

techniques used in these packages were

naturally applicable to the experimental

production environment created within

this research. To demonstrate this, two

functions were written into the factory

co-ordinator. These were to schedule

basic multiple tasks, and to show the

automatic re-scheduling of tasks and parts

within the manufacturing environment

when machinery failed.

Two levels of priority were assigned to the

tasks. The high priority jobs were

assigned to the faster of two de-flashing

task machines, and the low priority tasks

to the slower. However the actual

functional abilities of the two machines

varied and so certain jobs (involving

circular holes) needed to be routed to a

certain machine. On the breakdown of

one machine high priority jobs were

rescheduled to another machine.

VII RESULTS (AUTOMATIC

CONFIGURATION AND

PROGRAMMING)

Initially each task machine was

programmed and interrogated in isolation

to the rest of the production environment.

The de-flashing task machines were given

task data, which would have originated

from a design level. 0 shows an example

of the data for a tool to produce a simple

plastic box. (a) and (b) show the two

tooling sections generated at a design level,

and (c) shows the contact data where the

two sections of the tooling touch. It was

this information which was used by the

task machines. Information concerning

the location of aesthetically important

faces was also sent, along with data, which

defined the edges of the tool.

Various design data were given, some of

manufacturable designs, some of designed

where the aesthetically important faces

would be damaged, and some of designed

impossible to manufacture. When asked

to advise on the design, the task machines

either responded with a confirmation that

the part could be manufactured, and the

time it would take to do so. Warnings

were indicated to identify aesthetic faces

that would be damaged.

When asked to advise on a design, the task

machine responded with information

concerning the manufacture of the part.

This information in its simplest form

would simply acknowledge that the part

could be de-flashed and report the time it

would take to complete the operation. If

only aesthetic damage was detected then

the same information was returned, along

with warnings that the laser cutting

process would scorch particular surfaces.

If however manufacture was not possible

then an error was returned. Advice was

provided on reorientation to eliminate

manufacturing and aesthetic errors.

To demonstrate that the machinery was

being programmed in terms of task and

that the programming was independent

from the kinematics structure of the robot

an experiment was created so that the

same data could be sent to either task

machine. Both task machines responded

in the correct way.

The de-flashing and the materials

handling task machines were integrated

into the production environment. The

environment was given a number of low

and high priority jobs to perform, and it

successfully scheduled and completed

these tasks. The work-cells and factory

co-ordinator were able to advise on the

First Humanoid, Nanotechnology, Information Technology, Communication and Control

Environment and Management (HNICEM) International Conference
March 27-30, 2003, Holiday Inn, Manila, Philippines

6

time it would take for production, and the

factory co-ordinator automatically

scheduled parts within the environment.

The system was able to automatically

reconfigure itself, and was fault tolerant.

During production one de-flashing

machine was removed to simulate

machinery failure. The system

automatically rescheduled the high

priority jobs to another task machine,

de-scheduling the low priority jobs. When

the machine was replaced, the system

again re-scheduled work back to that

machine. A video demonstrating these

results is available upon request from the

author.

VIII. DISCUSSION AND

CONCLUSIONS.

A method for programming automated

machinery has been presented. This was

successfully applied to a small

manufacturing environment. The virtual

task machines created were programmed

in terms of the task to be performed rather

than their functional operation.

The initial results proved that the new

programming techniques described in this

paper can be used at a factory level as well

as for a single task machine. The

successful automatic scheduling and

programming of the machinery with data

supplied directly from a design level

demonstrated that this is a potential route

towards full factory automation.

The production environment created as

part of this research supports further

research being conducted at the University

of Portsmouth into the integration of the

design level. Methods of integrating the

advice from task machines and the factory

co-ordination elements of a factory, with an

interactive design level are being

investigated, along with new methods for

capturing the knowledge of a designer.

REFERENCES

[1] P Strickland and J E L Hollis, "Task
Oriented Robotics", Proceedings of the

SICICI conference, Singapore, Vol 2,

pp 835-840. 1992.

[2] P Strickland P, “Task Orientated
Robotics”, Portsmouth Polytechnic,

PhD, UK. 1992.

[3] S A Bonner, “Comparative Study of
Robot Languages”, Rensselaer

Polytechnic Institute, Troy. S A, MS

Thesis, 1983.

[4] M P Deisenroth, "A Survey of Robot
Programming Languages",

Proceedings of The 1985 Annual

International Industrial Engineering

Conference, IIE, pp 191-194. 1985.

[5] G E Tewkesbury GE, “Design using
distributed intelligence within
advanced production machinery”, PhD,

University of Portsmouth, UK, 1994.

[6] G E Tewkesbury, P Strickland, D A

Sanders and J E L Hollis), "Product
Orientated Manufacturing",

Proceedings of the 25th Dedicated

Conference on Mechatronics (part of

ISATA 92), Florence, Italy, pp 505-512.

1992.

[7] G E Tewkesbury , D A Sanders, P

Strickland and J E L Hollis, "Task
Orientated Programming of Advanced
Production Machinery", Proceedings of

the 26th Dedicated Conference on

Mechatronics (part of ISATA 93)

Aachen, Germany, pp 623-630. 1993.

