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ABSTRACT 

With complex designs involving many 

manufacturing processes, a designer may have a 

broad understanding of the overall process, but a 

limited detailed knowledge of the individual 

processes.  New techniques to analyse design 

situations and to implement the results within a 

new user interface are presented.  The new 

design environment focused and guided a 

designer in the task of designing tooling for 

plastic part manufacture.  The work 

demonstrated that in the future a designer’s 

knowledge might be collected and analysed for 

use in an automated system.  This may allow 

part or all of the design process to be automated.  

To demonstrate this new design environment, a 

small production area was created that included 

new types of task machine and virtual 

task-machines.  The new task machinery was 

successfully integrated into the production 

environment and automatically scheduled, 

configured, and programmed. 

 

Key Words – COMPUTER, DESIGN, 

INTELLIGENCE, DISTRIBUTED, 

MACHINES. 

 

 

I. INTRODUCTION 

 

A new restricted programming language has 

been created to program task oriented machines.  

This led to a new method of integrating 

advanced production machinery.  The method 

allows a design level to interface directly to a 

manufacturing environment.  The 

manufacturing level advises on aspects of the 

production tasks, which are necessary for the 

design.  The method offers a route towards full 

factory automation, and integration with a design 

level. 

 

Programming approaches at a factory level are 

presented, and novel techniques to fully 

automate factories are described.  The 

framework allows the interrogation and 

programming of any level within a factory 

hierarchy.  Each level of an automated factory 

hierarchy has been included and a case study is 

described to demonstrate a successful application 

of the approach.  The results of this application 

are presented and conclusions drawn. 

 

The concept of task machines was first presented 

in 1992 [1].  Task machines are machines 

constrained for a task, but are not product 

dependent.  A task machine would therefore be 

specified in terms of task rather than functional 

abilities, for example, a robot which can 'spray 

panels' rather than a robot which has 'six degrees 

of freedom'. 

 

In the past only single task machines have tended 

to be programmed [2].  This paper reports on 

progress towards a method for integrating and 

automatically programming more than one task 

machine within a simple production environment 

created during the research. 

 

A new method for customising virtual task 

machines was created by mapping 

general-purpose machinery programming 

languages to a new restricted programming 

language.  This new technique was used to 

create two virtual task de-flashing machines.  

These individual task machines were integrated 

into work-cells, and then into a production 

environment.  This was achieved by the 

creation of work-cell and factory co-ordinators. 

 

Many robot-programming languages exist [3,4], 

and more are being developed.  A programmer 

faced with the task of programming many 

different machines has to cope with various 
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levels of complexity, functionality, and structure 

found in each of the languages encountered.  

This variance can slow the writing and 

maintenance of application programmes. 

 

A new alternative approach is to take the 

essential functional commands from each of the 

different machines and to map them to a new 

common restricted programming language.  

The commands are mapped in such a way as to 

provide continuity when changing from the 

programming of one machine to another.  This 

continuity extends to the units and order of 

parameters passed to the new commands. 

 

The approach is suited to the quick customisation 

and programming of machinery for applications.  

This makes it particularly useful in the creation 

of virtual task machines, enabling a task machine 

to be quickly configured from any 

general-purpose machinery. 

 

The application of this approach to the creation 

of a generic functional programming 

environment is described.  The environment 

was used by an experienced programmer to 

generate a user interface to verify task rules with 

an application expert.  After the rules had been 

verified the programmer wrote software to 

automatically capture design information from a 

design level, and the user interface became an 

optional means of viewing the task being 

performed.  

 

The work described in this paper demonstrated 

that a task-oriented system can be automatically 

scheduled, configured, and programmed from the 

information generated by a design task level. 

 

II. VIRTUAL TASK MACHINES 

 

The task orientated approach suggests that rather 

than pursuing single robot structures which can 

'do everything', the robot should be tailored to 

the permanent aspects of the task.  Strickland 

presented three directives in his thesis which 

summarised the task orientated approach [2] and 

this was later extended to four directives in [5]: 

 

Directive 1: Design industrial robots for the 

permanent aspects of the surrounding 

production environment and the task at 

hand. 

Directive 2: The robot controller should be 

expandable to the requirements of the 

customer, from a set of generic modules and 

the robot itself should be constructed from 

modular robotic elements. 

Directive 3: Robots should be task not 

functionally programmed using 'native' 

production languages or graphical interfaces.  

Such a rule-based hierarchy should interface 

directly to existing CAD/CAM facilities. 

Directive 4: The machine should be able to 

accept prospective designs and advise on 

manufacturing details associated with the 

task.  This advice may be, 'yes, I can 

manufacture the part, - it would take xxx 

seconds', or the machine could offer 

solutions to enable a production task to be 

performed, for example, new or alternative 

orientation information. 

 

[6] Shows the development process for a task 

machine.  The requirements, definitions, and 

specifications of the task are the starting point in 

creating a task machine.  These specifications 

encompass the variance that would occur within 

the task being performed, that is they must not be 

product dependent.  This information is then 

used in the design of both the hardware and the 

software for the machine.  The design of the 

production machine hardware would take into 

consideration the available equipment, the 

hardware modules that have already been 

developed, and the fore-mentioned task 

specification.  This would lead to the 

customisation of existing functional systems or 

the construction of a new machine using modular 

machine elements.  If a suitable machine 

structure already exists then the controller can be 

removed and modular control boards used to 

control the machine.  This second approach was 

used by Strickland to create a surrogate task 

machine. 

 

A method which only caters for 'green field' (or 

new) factories only considers a small region of 

the potential market, and so methods of 

constraining existing general-purpose machinery 

have been developed.  This involved the 

creation of virtual task machines.  Virtual task 

machines use the existing machinery and 

controller, but constrain them for a task.  A 

virtual task machine is not a true task machine in 

that the hardware is not built from modular 
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robotic elements.  This means that the structure 

may not always be the most suited for the task, 

however, the interface to both types of machine 

is the same. 

 

III. A NEW RESTRICTED 

PROGRAMMING LANGUAGE 

 

The new restricted programming language 

was a generically defined, broad base of 

commands for the control and simulation 

of advanced production machinery.  

General-purpose machinery was 

constrained by mapping the controller 

commands to the restricted programming 

language, using a predefined format and 

protocol.  The modules not only contained 

the means to control the machinery, but 

also a model of the machinery, which 

allowed simulation.  The modules were 

placed in a library, and were used in the 

structured programming environment to 

create virtual task machines.  [4] Shows 

how the abilities of a robot controller were 

mapped to a broad base of functional 

commands. 

 

A survey was conducted into robot 

programming methods and languages and 

is documented in [4,5].  The Fanuc 

programming language was representative 

of many programming languages 

available? 
 

IV. A DE-FLASHING TASK MACHINE 

 

A Fanuc A-600 scara configuration robot 

was selected for a de-flashing task.  This 

had a different structure and kinematics 

compared to the Puma robots used in 

previous work.  The Fanuc's native 

programming method was with NC type 

instructions, and the puma with a higher 

level programming language, Val I.  The 

robot was selected because it contrasted 

with the Puma kinematics structures, and 

programming languages, whilst both had 

the ability to perform the task.  A Fanuc 

robot is shown in figure 1. 

 

Block diagrams of virtual task machines 

are included in [4].  Hardware interfaces 

were created to interface any RS232 

controller to a transputer-programming 

environment.  At the lowest level, 

software was required to drive the 

interface board, and to handle the 

communication protocols for the functional 

machine.  This level effectively created a 

'transparent' communication link with the 

machine, enabling commands to be issued 

from within the programming 

environment. 

 
 

Fig. 1 Fanuc A-600 SCARA Robot 

 

The functional commands were then 

'captured' within the task programming 

system.  This stage consisted of 

generating a translation table, which 

mapped the functional commands of the 

specific functional machinery to a general 

form for use within the task-programming 

environment.  To do this, the structure of 

the language was analysed rather than the 

commands themselves.  This structure 

was used to break down the languages and 

to translate them to a general structure.  

This translation table translated both 

commands and parameters.  The front 

end to this translation table accepted 

commands as functional program 
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instructions. 

 

At the highest level, task rules translated 

the task commands into functional 

commands.  The task commands entered 

the system through a task interface.  This 

interface was created to interface to a 

higher level within the system (for 

example a design level or work-cell 

co-ordinator level), or to interface with a 

programming environment driven by a 

user. 

 

The design of the programming 

environment relied on the experience of an 

'application expert' (someone well 

acquainted with the task being automated) 

to help shape the user interface.  At this 

stage any obvious sub-tasks were also 

identified.  The modular software 

framework was used to help configure the 

programming environment, and the task 

rules acquired along with any sub-tasks 

defined were also programmed.  The 

application expert, away from the 

manufacturing equipment could then 

verify the rules.  Higher and higher level 

sub-tasks were developed until the 

sub-tasks eventually collapsed into one 

main task. 
 

V. CREATION OF MATERIALS 

HANDLING TASK MACHINES 

A Kuikka conveyor system servicing four 

work-cells was used as a materials handler.  

A hardware interface controlled each 

work-cell station on the conveyor.  A 

series of rules were developed to interface 

the functional control of each station to the 

work-cell co-ordinator.  Software was 

written so that each station on the 

conveyor operated independently, as an 

intelligent station that could be 

interrogated to obtain the ability of the 

particular stations.  The relationship 

between the materials handling task and 

the functional control was simple, and 

though the machines created were task 

machines the task was functional. 

 

Various types of conveyor station were 

defined.  The specifications were not 

specific to the hardware available for the 

research, but were developed as generic 

specifications that could be applied to any 

materials handling equipment.  Three 

materials handling task machines were 

created, two standard stations, and one 

feeder.  The task software was written in 

a modular, stand-alone form.  This 

allowed the software to be used with a 

multiplexed single interface to all the 

actuators, or with separate interface 

hardware for each local station.  A user 

interface was created to show the 

operation and the task programming of the 

stations.  The real time operation of the 

interface was not possible because all the 

links on the driving transputer were being 

used. 

 

 

VI. INTEGRATING THE TASK 

MACHINE AND A PRODUCTION 

ENVIRONMENT 

 

The production environment created for 

the research consisted of a number of 

work-cells servicing task machines.  The 

work-cells were linked to a factory 

co-ordinator.  0 shows the hierarchical 

structure of the environment. 

 

The software was organised in the same 

structure, having work-cell co-ordinators, 

and a factory co-ordinator. 

 

Work-cell Co-ordinators: The work-cell 

co-ordinators controlled the task 

machinery within a work-cell.  They 

scheduled and sequenced events, handled 

errors, and serviced the requirements of 

the machinery (for example, service 

materials, such as cooling fluids).  The 

work-cells created were not generic, 

configurable work-cells and did not have 

the full functionality which would be 

expected of a generic co-ordinator.  The 

work-cells did provided identical 

functional behaviour to that of a generic 
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work-cell, for correct operation of the task 

machinery.  The work-cells were able to 

schedule jobs and control the production 

using the available task machines.   

 

Factory Scheduler / co-ordinator: The 

Factory co-ordinator, co-ordinated the 

tasks necessary for the manufacture of a 

product.  A number of scheduling 

packages existed and it was not the 

purpose of this research to try and compete 

with these packages, but to show that the 

techniques used in these packages were 

naturally applicable to the experimental 

production environment created within 

this research.  To demonstrate this, two 

functions were written into the factory 

co-ordinator.  These were to schedule 

basic multiple tasks, and to show the 

automatic re-scheduling of tasks and parts 

within the manufacturing environment 

when machinery failed. 

 

Two levels of priority were assigned to the 

tasks.  The high priority jobs were 

assigned to the faster of two de-flashing 

task machines, and the low priority tasks 

to the slower.  However the actual 

functional abilities of the two machines 

varied and so certain jobs (involving 

circular holes) needed to be routed to a 

certain machine.  On the breakdown of 

one machine high priority jobs were 

rescheduled to another machine. 

 

VII RESULTS (AUTOMATIC 

CONFIGURATION AND 

PROGRAMMING) 

 

Initially each task machine was 

programmed and interrogated in isolation 

to the rest of the production environment.  

The de-flashing task machines were given 

task data, which would have originated 

from a design level.  0 shows an example 

of the data for a tool to produce a simple 

plastic box.  (a) and (b) show the two 

tooling sections generated at a design level, 

and (c) shows the contact data where the 

two sections of the tooling touch.  It was 

this information which was used by the 

task machines.  Information concerning 

the location of aesthetically important 

faces was also sent, along with data, which 

defined the edges of the tool. 

Various design data were given, some of 

manufacturable designs, some of designed 

where the aesthetically important faces 

would be damaged, and some of designed 

impossible to manufacture.  When asked 

to advise on the design, the task machines 

either responded with a confirmation that 

the part could be manufactured, and the 

time it would take to do so.  Warnings 

were indicated to identify aesthetic faces 

that would be damaged. 

 

When asked to advise on a design, the task 

machine responded with information 

concerning the manufacture of the part.  

This information in its simplest form 

would simply acknowledge that the part 

could be de-flashed and report the time it 

would take to complete the operation.  If 

only aesthetic damage was detected then 

the same information was returned, along 

with warnings that the laser cutting 

process would scorch particular surfaces.  

If however manufacture was not possible 

then an error was returned.  Advice was 

provided on reorientation to eliminate 

manufacturing and aesthetic errors. 

 

To demonstrate that the machinery was 

being programmed in terms of task and 

that the programming was independent 

from the kinematics structure of the robot 

an experiment was created so that the 

same data could be sent to either task 

machine.  Both task machines responded 

in the correct way. 

 

The de-flashing and the materials 

handling task machines were integrated 

into the production environment.  The 

environment was given a number of low 

and high priority jobs to perform, and it 

successfully scheduled and completed 

these tasks.  The work-cells and factory 

co-ordinator were able to advise on the 
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time it would take for production, and the 

factory co-ordinator automatically 

scheduled parts within the environment. 

 

The system was able to automatically 

reconfigure itself, and was fault tolerant.  

During production one de-flashing 

machine was removed to simulate 

machinery failure.  The system 

automatically rescheduled the high 

priority jobs to another task machine, 

de-scheduling the low priority jobs.  When 

the machine was replaced, the system 

again re-scheduled work back to that 

machine. A video demonstrating these 

results is available upon request from the 

author. 

 

VIII. DISCUSSION AND 

CONCLUSIONS. 

 

A method for programming automated 

machinery has been presented.  This was 

successfully applied to a small 

manufacturing environment.  The virtual 

task machines created were programmed 

in terms of the task to be performed rather 

than their functional operation. 

 

The initial results proved that the new 

programming techniques described in this 

paper can be used at a factory level as well 

as for a single task machine.  The 

successful automatic scheduling and 

programming of the machinery with data 

supplied directly from a design level 

demonstrated that this is a potential route 

towards full factory automation. 

 

The production environment created as 

part of this research supports further 

research being conducted at the University 

of Portsmouth into the integration of the 

design level.  Methods of integrating the 

advice from task machines and the factory 

co-ordination elements of a factory, with an 

interactive design level are being 

investigated, along with new methods for 

capturing the knowledge of a designer. 
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