
1 

 

Running Head: The relationship between radiant heat, air temperature and thermal comfort 

The relationship between radiant heat, air temperature and thermal comfort at rest and 

exercise 

 

Corresponding Author: 

 

Julien Guéritée 

University of Portsmouth, Department of Sport and Exercise Science, Portsmouth, U.K. 

 

Tel: +33 6 78 67 14 93 

43 avenue de Lissardy – Zuhaizti 2 – Haritza – Appt 09 

64700 Hendaye - France 

julien.gueritee@gmail.com  

 

Michael J Tipton 

University of Portsmouth, Department of Sport and Exercise Science,  

Spinnaker Building, Cambridge Rd, Portsmouth, U.K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29588526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:julien.gueritee@


2 

 

Abstract 

 

The aims of the present work were to investigate the relationships between radiant heat load, 

air velocity and body temperatures with or without coincidental exercise to determine the 

physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven 

male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to 

increasing air velocities up to 3 m.s
-1

 and self-adjusted the intensity of the direct radiant heat 

received on the front of the body to just maintain overall thermal comfort, at rest or when 

cycling (60 W, 60 rpm). During the 30 minutes of the experiments, skin and rectal 

temperatures were continuously recorded. We hypothesized that mean body temperature 

should be maintained stable and the intensity of the radiant heat and the mean skin 

temperatures would be lower when cycling. In all conditions, mean body temperature was 

lower when facing winds of 3 m.s
-1

 than during the first five minutes, without wind. When 

facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when 

exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No 

other significant difference was observed. In all air temperatures, high correlation coefficients 

were observed between the air velocity and the radiant heat load. Other factors that we did not 

measure may have contributed to the constant overall thermal comfort status despite dropping 

mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust 

the thermal environment increases the tolerance of cold discomfort. 
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Introduction 

 

The thermal environment consists of a combination of air temperature, air velocity, relative 

humidity and radiation. These parameters influence skin temperature through conductive, 

convective, evaporative and radiant routes of heat exchange. Under normal circumstances, 

humans will respond to cutaneous thermal sensations by adjusting their behavior in order to 

maintain an overall thermally comfortable state, reflecting satisfaction with the thermal 

environment [1]. Adding or removing clothing layers, changing body position, or adjusting 

the heating system in a room conserves the resources (fluid, substrate) used by the autonomic 

responses when maintaining deep body temperature within its narrow range [2]. 

 

The conscious, subjective behavioural responses of humans to the thermal environment have 

been investigated by allowing volunteers to self-adjust the temperature of a liquid 

conditioning garment (and hence their skin temperature), at rest or when exercising in cold air 

[3]. It was shown that such adjustments related to changes in mean body temperature, as the 

rise in deep body temperature was counteracted by drops in skin temperature such that mean 

body temperature remained stable. Previous work revealed that thermoregulatory behaviour 

was driven by both deep body and skin temperatures [4, 5]. As skin and deep body 

temperatures equally contribute to thermal comfort [6], in situations where deep body 

temperature remains stable, thermal comfort (and thermoregulatory behavior) should be 

determined by skin temperatures. In support of this, in a recent study the decision to move 

between a warm and cool place was initiated before deep body temperature was affected [7]. 

At rest, the cutaneous thermoreceptors may thus provide the primary input for 

thermoregulatory behaviour. 

 

Amongst the main parameters defining the thermal environment, wind speed has been 

reported to be a better predictor of behavioural adjustments to the environment than ambient 

temperature [8]. However, in this study, skin temperatures were not recorded and therefore 

their impact on the thermoregulatory behaviour could not be estimated. Other investigations 

observed a liner relationship between thermal sensations and the intensity of simulated solar 

radiation [9]. Nevertheless, the authors did not consider air velocity. It is also important to 

note that in both studies, participants had no control over their thermal environment. 

 

Although their work was conducted without wind or direct radiant heat, and in a very cold air 

temperature (-20°C), Flouris and Cheung [3] demonstrated an accurate and objective way of 

collecting data on behavioural thermoregulation: if people are given some control over the 

environment in order to maintain their overall thermal comfort, they should provide relevant 

information regarding the satisfactory thermal profile (absolute and rate of change of body 

temperatures) required for that particular state of mind. 

 

The present study investigated the previously unexplored relationship between radiant heat 

load and air velocity with and without coincidental exercise to try to determine the 
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physiological mechanisms that drive thermal comfort and, thus, thermoregulatory behaviour 

in such situations.  

 

If, in agreement with earlier findings [3], mean body temperature is  the adjusted parameter in 

our study, we hypothesized that mean body temperature should be maintained relatively stable 

and the intensity of the radiant heat and the mean skin temperatures would be lower in the 

exercising conditions. 

 

Methods 

 

This study was approved by the University of Portsmouth BioSciences Research Ethics 

committee and was performed in accordance with the ethical standards of the 1964 

Declaration of Helsinki (2008). The participants gave their written informed consent to 

participate. 

 

Volunteers 

Seven male volunteers were recruited for this study (mean [SD]; Age 23.2 [5.1] yr; height 

1.77 [0.061] m; mass 75 [14.2] kg). They were instructed to avoid performing any vigorous 

physical activity and consuming alcohol for 24 hours prior to each test, and to avoid caffeine 

and hot food three hours before data collection. 

 

Experimental design 

The experiment was a repeated measures design in which each volunteer completed six tests, 

on three separate days (two tests per day, one at rest and the other during exercise). The order 

of presentation of conditions (to which each volunteer was randomly allocated) was 

influenced by practical considerations and could only be partially balanced. 

 

Experimental procedures and set-up 

Wearing minimal clothing (swimming trunks) in three different moderate air temperatures and 

relative humidity of 50 p. 100, volunteers were exposed to increasing air velocities and self-

adjusted the intensity of the direct radiant heat received to just maintain thermal comfort, at 

rest or during a low intensity exercise. 

 

During the entire experiment (30 minutes), the volunteers faced a panel of halogen lights 

simulating solar radiation. The intensity of the radiant heat produced was similar across the 

whole area of their body’s front side. Where the volunteers stood, the maximum intensity 

received from the radiant system was 1000 W.m
-2

, as established with a pyranometer, and in 

agreement with the maximum direct solar radiation one would get on earth at sea level [10]. 

During all six tests, volunteers wore dark glasses to reduce the total irradiance by 80 p. 100 

and protect them against UV radiation. 
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The experiment started with the radiant system off but, at anytime, the volunteers could 

accurately adjust the heat received by 10 W.m
-2

 from 0 to 1000 W.m
-2

 by using a computer 

mouse wheel with their right hand. They were asked to adjust the intensity so that they 

received the minimal radiant heat required to maintain their overall thermal comfort, as 

defined by the category “just comfortable” on the scale they had been familiarized with prior 

to each test. The delay between the control and the change in the intensity of the radiant heat 

produced was considered to be insignificant. The volunteers could not see any of the data 

recorded.  

 

Environmental conditions 

Throughout each of the six conditions, the air temperature was set at 18°C, 22°C or 26°C. 

Based on pilot studies the lowest air temperature was defined as that minimal temperature in 

which it was possible to just maintain thermal comfort with maximal radiant heat and 

maximum wind speed. The highest air temperature was defined as that minimal temperature 

in which thermal comfort was just achievable without wind and simulated solar radiation. 

 

At all times, volunteers faced a fan simulating wind. Air velocities were set by the 

investigator for five minutes before being increased as follows: 0, 1.5, 2, 3, 0 and 3 m.s
-1

. 

These air velocities correspond to a range of wind speeds going from “calm” to “light breeze” 

on the Beaufort scale. 

 

Exercise 

Each of the three air temperature conditions were completed at rest and when undertaking a 

low intensity physical activity on a bike (60 Watts, 60 rpm), to induce a moderate raise in 

deep body temperature and stay within comfortable limits (body in heat balance and skin 

wetness kept minimal). Cycling started five minutes before data collection to let volunteers 

habituate and make sure deep body temperature was already rising when the experiment 

started. This pre-test exercise did not involve any wind or solar radiation. In the three resting 

experiments, volunteers stood still, faced the fans and the solar panel. This position was 

adopted in order to get a finer control of the radiant heat system, as the face is known to be a 

highly sensitive region to thermal stimuli ([11], [12] and [13]). 

 

Following the first test of the day, volunteers stayed equipped but rested for one hour in their 

own clothes, in a thermoneutral environment. Once thermal balance was recovered (as 

determined by a continuous monitoring of their rectal temperature and thermal comfort state), 

they entered the chamber for their second and last test of the day. 

 

Measurements 

Skin and rectal temperatures 

Deep body temperature was continuously recorded using a self-inserted rectal thermistor 

(Edale Instruments Ltd., UK) 15 cm beyond the anal sphincter. Once volunteers had changed 
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into a swimming costume, they entered the climatic chamber. Whole body front (directly 

exposed) surface temperatures were recorded using an infra-red camera (FLIR systems, 

Thermovision A320, UK). Local skin temperatures were determined by data acquisition on 

the largest body surface area possible on the face, upper chest, abdomen, arm, forearm, hand 

and thigh. Throughout the experiment, rectal and skin temperatures were recorded at 30 

second intervals on electronic data loggers (Squirrel 1000 and 2040 series meter loggers; 

Grant Instruments [Cambridge] Ltd., UK). Thermal images were recorded at five second 

intervals using an acquisition and analysis program (ThermaCAM Researcher Pro v2.9, FLIR 

systems, UK). 

 

Thermal comfort 

Before each test, volunteers were familiarized with the thermal comfort scale, consisting of 

six categories (A4 size), from bottom to top: very uncomfortable, uncomfortable, just 

uncomfortable, just comfortable, comfortable and very comfortable. 

 

Calculations 

The individual skin temperature recorded on the different body sites were combined to 

produce a mean skin temperature (Tsk) using an adjusted version of Hardy and Du Bois [14] 

to exclude the regions which were not directly exposed to the simulated solar radiation. 

Tsk = (0.07Tface + 0.0875Tchest + 0.0875Tabdomen + 0.035Tarm + 0.035Tforearm + 0.05Thand + 

0.095Tthigh)/0.46 

 

Mean body temperature (Tb) was estimated by extrapolating findings of Frank et al., [6], who 

showed that skin (Tsk) and rectal temperatures (Tre) equally contribute to thermal comfort: 

 

Tb = 0.5 Tre + 0.5 Tsk 

 

Ambient temperature 

The ambient temperature was estimated using the Wet Bulb Globe Temperature, recorded 

with the appropriate thermometer placed between the volunteer and the solar panel, as close 

as possible to the volunteer’s position. The following formula was used: 

  

WBGT= 0.7 Tnw + 0.2 Tg + 0.1 Ta, 

 

with Tnw the natural wet-bulb temperature, Tg the globe temperature and Ta the air 

temperature. 

 

Air velocity 
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Wind speeds were measured during pilot testing using an anemometer (Anemometer TMA10, 

Meterman Test Tools, USA) placed as close as possible to the volunteer, at a standardized and 

fixed position. 

 

Simulated solar radiation intensity 

The intensity received on the skin was continuously recorded using a pyranometer sensor 

(LP02 thermopile pyranometer, Campbell scientific, UK) attached to the chest. 

 

Data analyses 

All tests were conducted using SPSS 18 (Statistical Package for the Social Sciences, version 

18, Chicago, USA). Before any analysis was conducted, it was confirmed that the data met the 

requirements and assumptions of each statistical test used. Paired-sample t-tests were used to 

compare temperatures or radiant heat intensities between resting and exercising experiments, 

within air temperatures and velocities conditions, or when comparing initial and final data sets 

within each of the six conditions. The alpha level was set at 0.05. 

 

 

Results 

General observations 

Seven male participants were recruited for this study. They all completed the six conditions. 

Overall thermal discomfort was never reported, and on the rare occasions when the irradiance 

reached the maximum intensity of 1000 W.m
-2

 it was for very short periods. 

 

Irradiance 

To maintain their overall thermal comfort, volunteers adjusted the intensity of the radiant heat 

received on the front of their body (Fig. 1). As the air velocity increased, volunteers required 

more irradiance to maintain their overall thermal comfort. The sudden increase in air velocity 

at the end of the experiments did not influence the intensity of the radiant heat required; no 

significant difference was observed between the two high wind periods (3 m.s
-1

).  
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Fig. 1. Mean irradiance required to maintain overall thermal comfort in swimming trunks, at 

rest or when exercising in three air temperatures when facing different air velocities (n=7). 

 

In 18°C and 22°C air temperatures, when facing winds, the irradiance was almost always 

significantly greater at rest than when exercising (Fig. 2). In 26°C, the irradiance at rest was 

not significantly different from that when exercising. 
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Fig. 2. Mean incident thermal radiation required to just maintain thermal comfort in different 

ambient temperatures with and without exercise. Each air velocity was set for five minutes 

and is presented on the axis in the same order as during the experiments: starting with 0 m.s
-1

, 

and 3 m.s
-1

 from the 25
th

 to the 30
th

 minute. Within each ambient temperature, significant 

differences between rest and exercise are indicated with * P < 0.05 (n = 7). 

 

High correlation coefficients were observed between the air velocity and the irradiance 

required to maintain thermal comfort (Table 1). These strong relationships can be described 

by linear trend lines between the air velocity and the irradiance (data not shown here). 

 

Table 1. Correlation coefficients between the air velocity and the irradiance (averaged over 

each five-minutes wind increments) required to maintain overall thermal comfort at rest or 

when exercising, in different air temperatures (n=7). 

 
 

REST EXERCISE 

A
ir
 

te
m

p
e
ra

tu
re

 

18°C 0.97 0.94 

22°C 0.99 0.89 

26°C 0.93 0.85 
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Skin temperatures 

Overall, mean skin temperatures dropped over the 30 minutes of each condition (Fig. 3). 

Every time the air velocity was increased, mean skin temperature dropped.  

 

 

 

Fig. 3. Average mean skin temperature of volunteers exposed to various wind speeds at rest or 

when exercising, in swimming trunks, in three different air temperatures (n=7). 

 

Table 2 indicates that when facing most air velocities in 26°C air, mean skin temperature was 

significantly higher when exercising than when at rest. No significant difference was observed 

in the 18°C and 22°C air temperatures. 
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Table 2. Average (SD) mean skin temperature of volunteers exposed to various air velocities 

at rest or when exercising, in swim trunks, in 26°C air temperature. Significant differences 

between rest and exercise are indicate with * P < 0.05; ** P < 0.01 (n = 7). 

  
Average (SD) mean Tsk ( °C) 

 Time 
(minutes) 

Air velocity 
(m.s

-1
) Rest Exercise Sig diff 

0-5 0 33.87 (0.62) 33.58 (0.81) / 

5-10 1.5 32.51 (0.42) 32.78 (0.74) / 

10-15 2 31.40 (0.45) 32.12 (0.72) * 

15-20 3 30.85 (0.61) 31.73 (0.66) ** 

20-25 0 31.99 (0.64) 32.59 (0.62) * 

25-30 3 31.36 (0.77) 31.98 (0.64) * 

 

Rectal temperature 

In all experimental conditions, rectal temperature rose throughout the 30 minutes of each test, 

whilst remaining within normal states. Table 3 shows that the mean (SD) rise in Tre over the 

30 minutes of all resting conditions was 0.07 (0.16) °C. Across all exercising conditions, the 

mean (SD) rise in Tre was 0.36 (0.16) °C. 

  

Table 3. Data sample of the rectal temperatures recorded throughout the 30 minutes of the 

experiments. The data presented are the temperatures averaged across the three air conditions 

(18, 22 and 26°C) at rest or when exercising (n = 7). 

 

Rest Exercise 

Mean (SD) initial Tre 37.0 (0.2) 37.0 (0.3) 

Mean (SD) final Tre 37.1 (0.2) 37.4 (0.2) 

Mean (SD) rise 0.07 (0.16) 0.36 (0.16) 

Max rise 0.42 0.62 

Max drop 0.24 0.03 

 

 

Mean body temperature 

 

In all conditions, mean body temperatures dropped every time the air velocity was increased 

(Fig. 4). Statistical analyses revealed that in all six experimental conditions, mean body 

temperatures were significantly lower when facing air velocities of 3 m.s
-1

 (from the 15
th

 to 

the 20
th

 minute) than with no wind, during the first five minutes of the experiment (Table 4). 
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Fig. 4. Average mean body temperature of volunteers exposed to various air velocities at rest 

or when exercising, in swimming trunks, in three different air temperatures (n=7). 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Average (SD) mean body temperature of volunteers exposed to air velocities of 0 or 

3 m.s
-1

 at rest or when exercising, in swimming trunks, in various air temperatures. 
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Significant differences between rest and exercise are indicate with * P < 0.05; **** P < 

0.0001 (n = 7). 

 

  
Average (SD) mean Tb ( °C) 

 Air 
temperature Wind=0 m.s

-1
 Wind=3 m.s

-1
 Sig diff 

1
8
°C

 

Rest 34.08 (0.60) 32.69 (0.83) * 

Exercise 33.75 (0.64) 32.62 (0.60) * 

 

    

2
2
°C

 

Rest 34.89 (0.11) 33.70 (0.91) * 

Exercise 34.56 (0.43) 33.82 (0.72) * 

 

    

2
6
°C

 

Rest 35.48 (0.30) 34.00 (0.29) **** 

Exercise 35.32 (0.43) 34.51 (0.34) **** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
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The aims of the present work were to investigate the relationships between radiant heat load, 

air velocity and body temperatures with or without exercise to determine the physiological 

mechanisms that drive thermal comfort and thermal behaviour. 

 

When facing winds, in all but the 26°C air temperature, the radiant heat required to just 

maintain overall thermal comfort was statistically higher at rest than when exercising, and we 

accept our hypothesis. In addition, we reject the hypothesis that mean skin temperature is 

higher at rest than when exercising as no significant difference was found in 18°C or 22°C. 

On the contrary, in 26°C mean skin temperature was significantly higher when cycling. At 

rest, in the warmest air temperature, rectal temperature was almost constant throughout the 30 

minutes whereas it was continuously rising in the exercise condition. This moderate but 

consistent rise in rectal temperature when exercising may have been sufficient to avoid 

peripheral vasoconstriction and thus maintain skin temperature at higher levels when 

compared to the resting condition.  

 

In all three air temperatures, the intensity of the radiant heat required to maintain overall 

thermal comfort was strongly related to air velocity. This relationship was refined and it 

seemed that linear trend lines could best reflect the patterns observed. When air velocities 

increased from 0 to 3 m.s
-1

, volunteers proportionally increased the radiant heat load received 

on the front of their body. The impact of radiant heat on thermal comfort has been 

investigated in very few studies. However, our observations support previous work from 

Hodder and Parsons [9] who noted that the thermal sensation votes of volunteers increased by 

one scale unit for each increase of simulated solar radiation of 200 W.m
-2

. Nevertheless, the 

experiment from Hodder and Parsons was conducted in hot conditions only, which were 

rapidly perceived as uncomfortably warm. Furthermore, volunteers had no control over the 

thermal environment, as a consequence of which no behavioural adaptation was investigated. 

In addition, the authors did not consider air velocity, or the impact of coincidental exercise on 

thermal responses. To the authors’ knowledge, the present study is the first to describe the 

relationships between radiant heat, body temperatures, wind speeds and thermal comfort in 

three different air temperatures. 

 

When responding to a cooling stimulus, cold receptors will first exhibit high frequencies of 

discharge, rapidly followed by a partial adaptation: for the same linear stimulus, the afferent 

signal will be lower [15]. Therefore, it was expected that each of the wind increments would 

be followed by an increase in the intensity of the radiant heat before it is reduced to lower 

levels. Surprisingly, when air velocity was suddenly increased (causing a rapid fall in mean 

skin temperature), no overshoot was observed in the intensity of the radiant heat required to 

maintain thermal comfort. In addition, when immediately increasing the air velocity from 0 to 

3 m.s
-1

, the same behavioural adaptation was observed as when the increase occurred over 15 

minutes; the radiant heat load was similar in both high wind periods. Although rectal 

temperatures were continuously rising, the very low rates of change in some conditions 

(0.1°C in 30 minutes) suggest that other factors may have been involved.  
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Deep body and skin temperatures equally contribute to thermal comfort [6], and it is possible 

that they also equally contribute to thermal behaviour. We thus investigated mean body 

temperature responses based on the formula attributing identical weighting factors for rectal 

and skin temperatures. Although rectal and skin temperatures seemed to have opposite 

patterns, the rise of the former was not sufficient to compensate the fall of the latter. As a 

consequence, in all experimental conditions, mean body temperature was lower when facing 

air velocities of 3 m.s
-1

 (from the 15
th

 to the 20
th

 minute) than without wind, during the first 

five minutes of the experiment. We reject our hypothesis that mean body temperature is the 

definitive variable and is maintained relatively stable. As opposed to what can be observed in 

the present study, Flouris and Cheung [3] showed that conscious responses to thermal inputs 

were adjusted to changes in mean body temperature. However, these authors used the more 

classical formulae from Burton [16], where, on the basis of calorimetric considerations, rectal 

temperature accounts for 70 percent in the average body temperature. Not only this estimation 

may not be appropriate for thermal comfort investigations, but it would not be sufficient to 

explain why in our resting conditions, with near-stable rectal temperature, overall thermal 

comfort was maintained despite falling mean skin temperatures. 

 

The cutaneous thermal sensitivity is not uniform across the body ([17], [18]). The constant 

thermal comfort status with continuously falling mean skin temperatures may therefore be 

partially explained when looking at local skin temperatures. It appeared that in almost all six 

experimental conditions, the face and the chest were the body regions showing the smallest 

fall in skin temperature over the first 20 minutes, from 0 to 3 m.s
-1

 wind (data not presented 

here). Conversely, the change in local skin temperature was greatest for the hands. The face 

and the chest have been reported to be highly sensitive to thermal stimulus ([13], [19]) and it 

is possible in our study that they had a disproportionate influence on overall thermal comfort, 

and in turn on behavioural adjustment. The present experiment did not provide the data to 

fully test this statement; the fact that skin temperatures on some body sites remained more 

stable than others may just be coincidental, and related to local physiological characteristics 

such as vasomotor responses [15]. To further investigate this result, it would be necessary to 

allow volunteers to adjust skin temperature of each body region independently. It is thus 

proposed that further research concentrates on the impact of local skin temperatures on 

behavioural adjustments. 

 

Finally, other factors that we did not measure may have contributed to the constant overall 

thermal comfort status despite falling mean skin and body temperatures. Hormonal 

mechanisms, inhibitory mechanisms on the synaptic system or psychological aspects such as 

attention have been proposed to explain the influence of exercise on thermal sensitivity ([20], 

[21], [22]). We cannot exclude that such factors contributed to lower the threshold for thermal 

discomfort, thus delaying and/or reducing the initiation of behavioural adjustments. However, 

if they did it is only partially, as similar situations were observed in the resting conditions. It 

is possible that allowing direct and precise control of the thermal environment had a positive 

influence on thermal comfort. Already suggested by Paciuk [23], such influence of personal 

control was later investigated by Brager et al., [24]. These authors reported that when allowed 
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to control some thermal conditions of their workplace (in particular, the operable window in 

buildings) participants were more tolerant of the thermal environment. 

 

The present experiment was the first to explore the relationships between radiant heat load, air 

velocity and body temperatures with or without exercise in several thermal environments to 

determine the physiology behind thermal behaviour. It was expected that behavioural 

thermoregulation would rely on thermal comfort through cutaneous thermal afferents mainly. 

In natural situations, this conscious adaptation would tend to prevent or delay large variations 

in deep body temperatures. We conclude that factors that we did not measure account for the 

responses observed in our study, and that the allowance to behaviourally adjust the thermal 

environment increases the tolerance of cold discomfort. 
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