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Abstract

A Sophisticated Social Welfare Function (SSWF) is a mapping
from pro�les of individual preferences into a sophisticated preference
which is a pairwise weighted comparison of alternatives. We charac-
terize Pareto optimal and pairwise independent SSWFs in terms of
oligarchies that are induced by some power distribution in the society.
This is a fairly large class ranging from dictatoriality to anonymous
aggregation rules. Our results generalize the impossibility theorem of
Arrow (1951) and the oligarchy theorem of Gibbard (1969).
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1 Introduction

It is possible to have a more general perspective of the preference aggregation
problem by incorporating elements of ambiguity into individual and/or social
preferences. As there are various ways of conceiving ambiguity, there are also
various ways of generalizing the aggregation model of Arrow (1951) through
ambiguous preferences.
Two major strands of the literature emerge: One of these models a pref-

erence as a fuzzy binary relation and the other has a probabilistic conception
of preferences. Our analysis belongs to the latter strand.1 We introduce the
concept of a sophisticated preference which is a weighted pairwise compar-
ison of alternatives that allows some kind of a mixed feeling in comparing
any given pair of alternatives. To be more concrete, suppose an individual is
asked whether she likes Paris or Istanbul. A sophisticated preference allows
an answer of the following type: �I like Paris more than Istanbul in some
respect but I like Istanbul more than Paris in other respects�. The answer
is also required to quantify the �rate�at which Istanbul is better than Paris
and vice versa. Moreover, these are normalized rates which add up to unity.
In other words, a sophisticated preference � assigns to each ordered pair
(x; y) of alternatives some �(x; y) belonging to the interval [0; 1] such that
�(x; y) + �(y; x) = 1.2 Sophisticated preferences generalize the standard no-
tion of a preference when �(x; y) = 1 is interpreted as x being preferred to y
in its usual sense.
We consider sophisticated social welfare functions (SSWFs) which aggre-

gate vectors of (non-sophisticated) preferences into a sophisticated prefer-
ence. We propose two intepretations of our model. One of these is from
a social choice perspective which aims to represent the existing preferences
in a society. Here, a vector of preferences is seen as the list of preferences
that di¤erent individuals of the society have. These are aggregated into a
sophisticated preference which is a representation of the various opinions pre-
vailing in the society. Our second interpretation is from an individual choice
perspective where a vector of preferences contains various rankings of alter-
natives by one given individual, according to various criteria. For example,
a new Ph.D. graduate in the job market may rank universities according to
di¤erent criteria such as their location, their salaries etc. Each of these crite-
ria may result in a di¤erent ranking from which the individual has to derive

1As Barrett and Salles (2005) mention, there seems to be a debate between these two
strands to which this paper does not aim to contribute. One can see Fishburn (1998) and
Barrett and Salles (2005) for a survey of the related literatures.

2This is where a sophisticated preference technically di¤ers from a fuzzy one which
does not require �(x; y) + �(y; x) = 1.
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an overall preference with possibly mixed feelings.
Given these interpretations, we require a certain consistency of the ag-

gregated outcome, expressed by some transitivity condition imposed over
sophisticated preferences3: We qualify a sophisticated preference as transi-
tive whenever given any three alternatives x; y and z, we have �(x; y) = 1
=) �(x; z) � �(y; z). In other words, if x is preferred to y in all respects
and r is the �rate�at which y is preferred to z, then the �rate�at which x
is preferred to z is at least r. As we will discuss in details, this is a relatively
weak transitivity condition whose non-sophisticated counterpart is equiva-
lent to quasi-transitivity.4 However, given our interpretations of the model,
it seems the most appropriate and we do not wish to strengthen it so that its
re�ection over non-sophisticated preferences becomes equivalent to the usual
transitivity condition.5

Our setting is closely related to the collective probabilistic judgement
model of Barberà and Valenciano (1983). In fact, their collective probabilistic
judgement functions being more general than our SSWFs, their results can
be imported to our environment. On the other hand, as further discussed in
in Section 4, we present a strong result which does not follow from Barberà
and Valenciano (1983): We give a full characterization of Pareto optimal and
pairwise independent SSWFs in terms of oligarchies induced by some power
distribution in the society. As an oligarchy is any non-empty subsociety
whose members share the decision power, this is a fairly large class rang-
ing from dictatoriality (where the oligarchy consists of a single individual)
to anonymous SSWFs (where decision power is equally distributed among
individuals). In fact, our characterization generalizes two major results of
the literature: In case the ranges of Pareto optimal and pairwise indepen-
dent SSWFs are restricted to non-sophisticated preferences that are linear
orders, the oligarchies must contain precisely one individual (thus a dictator)
- which is the impossibility theorem of Arrow (1951, 1963). In case the so-
cial outcome is restricted to non-sophisticated preferences that are complete
and quasitransitive, Pareto optimal and pairwise independent SSWFs are
oligarchical in the sense that the oligarchy has full decision power while all

3The literature on ambiguous preferences admits a range of transitivity conditions of
varying strenght, a list of which can be found in Dubois and Prade (1980) or Dasgupta
and Deb (1996).

4Quasi-transitivity of a non-sophisticated preference requires x being better than z,
whenever x is better than y and y is better than z. This is weaker than the usual tran-
sitivity requirement of x being at least as good as z, whenever x is at least as good as y
and y is at least as good as z.

5Nevertheless, we discuss, at the end of Section 3, how such strenghtenings a¤ect our
results.
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proper subsets of the oligarchy have equal decision power - a result which is
known as the oligarchy theorem of Gibbard (1969).
Section 2 introduces the basic notions. Section 3 states the results. Sec-

tion 4 makes some concluding remarks.

2 Basic Notions

We consider a �nite set of individualsN with#N � 2, confronting a �nite set
of alternatives A with #A � 3. A sophisticated preference is a mapping � :
A�A! [0; 1] such that for all distinct x; y 2 A we have �(x; y)+�(y; x) = 1
while �(x; x) = 0 8 x 2 A. Interpreting �(x; y) as the weight by which x is
preferred to y, the former condition imposes a kind of completeness over �
while the latter is an irre�exivity requirement.6 We qualify a sophisticated
preference � as transitive i¤�(x; y) = 1 =) �(x; z) � �(y; z) 8 x; y; z 2 A.7
We write � for the set of transitive sophisticated preferences. Let � =

f� 2 � : �(x; y) 2 f0; 1g for all x; y 2 Ag be the set of sophisticated prefer-
ences which map A�A into the f0; 1g doubleton. Note that by interpreting
�(x; y) = 1 as x being preferred to y in its usual meaning and writing x �
y whenever �(x; y) = 1, � becomes the set of linear orders over A.8 We
assume that individual preferences belong to � and we write �i 2 � for
the preference of i 2 N over A. A preference pro�le over A is an n-tuple
� = (�1; :::; �#N) 2 �N of individual preferences.
A sophisticated social welfare function (SSWF) is a mapping � : �N ! �.

So � (�) 2 � is a sophisticated preference over A which, by a slight abuse of
notation, we denote ��. Thus �� (x; y) 2 [0; 1] stands for the weight that �
assigns to (x; y) 2 A� A at � 2 �N .
Given any distinct x; y 2 A, let �(x; y) = f� 2 � : x � yg be the set

of preferences where x is preferred to y. A SSWF � : �N ! � is Pareto
Optimal (PO) i¤ given any distinct x; y 2 A and any � 2 �N where �i 2
�(x; y) for all i 2 N , we have �� (x; y) = 1. A SSWF � : �N ! � is
independent of irrelevant alternatives (IIA) i¤ given any distinct x; y 2 A

6Letting �(x; x) = 0 is conventional. All our results can be proven by taking �(x; x) = 1
or �(x; x) = 1

2 .
7Remark that �(y; z) = 1 =) �(x; z) � �(x; y) would be an equivalent statement of

transitivity. Moreover, transitivity implies �(x; y) = �(y; z) = 1 =) �(x; z) = 1. It is
also worth noting that Condition 1 (Consistency under Complete Rejection) of Barberà
and Valenciano (1983), adapted to our framework, is equivalent to transitivity

8In other words, for any � 2 � and any distinct x; y 2 A, precisely one of x � y and y
� x holds while x � x holds for no x in A. Moreover x � y and y � z implies x � z for all
x; y; z 2 A.
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and any �; �0 2 �N with �i 2 �(x; y) () �0i 2 �(x; y) for all i 2 N , we
have ��(x; y) = ��0 (x; y).9

SSWFs satisfying IIA can, as usual, be expressed in terms of pairwise
SSWFs. To see this, take any distinct x; y 2 A and let fx

y
;
y

x
g be the set

of possible (non-sophisticated) preferences over fx; yg where x
y
is interpreted

as x being preferred to y and
y

x
is y being preferred to x. We denote the set

of sophisticated preferences over fx; yg as �xy.10 A pairwise SSWF (de�ned
over fx; yg) is a mapping f : fx

y
;
y

x
gn ! �xy. So at each r 2 fx

y
;
y

x
gn,

f(r) 2 �xy is a sophisticated preference over fx; yg which, by a slight abuse
of notation, we denote fr. Given any � 2 �N and any distinct x; y 2 A, we
write �xy 2 fx

y
;
y

x
gn for the restriction of � to fx; yg where for each i 2 N ,

we have �xyi =
x

y
i¤ x �i y.11 Thus, every SSWF � : �N ! � satisfying

IIA can equivalently be expressed in terms of a family of pairwise SSWFs
ffxyg indexed over all distinct pairs fx; yg such that given any � 2 �N
and any (distinct) x; y 2 A we have fxy�xy(x; y) = �� (x; y). Note that fxy

and f yx are by de�nition the same. We extend the notion of sameness to

any two pairwise SSWFs f : fx
y
;
y

x
gn ! �xy and g : fz

t
;
t

z
gn ! �zt with

fx; yg 6= fz; tg, by qualifying f and g as the same whenever there exists
a bijection � : fx; yg �! fz; tg such that fr(x; y) = gs(�(x); �(y)) 8r 2

fx
y
;
y

x
gn; 8s 2 fz

t
;
t

z
gn with ri =

x

y
() si =

�(x)

�(y)
8i 2 N .

fxy and f yx being the same does not mean an equal treatment of x and
y which is ensured by the following neutrality condition: We say that fxy :
fx
y
;
y

x
gn ! �xy is neutral i¤ fxyr (x; y) = fxys (y; x) 8r; s 2 f

x

y
;
y

x
gn with ri =

x

y
() si =

y

x
8i 2 N .

9Remark that a social welfare function (SWF) - as de�ned by Arrow (1951)- is a SSWF
� : �N ! �. Moreover, for such SSWFs, the de�nitions of PO and IIA coincide with
their original de�nitions made for SWFs. Hence our framework generalizes the Arrovian
aggregation model.
10A sophisticated preference is originally de�ned for a set of alternatives whose cardi-

nality is at least three while it can be easily adapted for doubletons: For every � 2 �xy,
we have �(x; y) 2 [0; 1], �(x; y) + �(y; x) = 1, �(x; x) = 0 and �(y; y) = 0.
11So �xyi =

y

x
if and only if y �i x.
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3 Results

Proposition 3.1 A PO and IIA SSWF ffxyg : �N ! � uses the same
neutral pairwise SSWF for each pair x; y 2 A.
Proof. Let ffxyg = � be a PO and IIA SSWF. We �rst show that fab

and fac are the same for any distinct a; b; c 2 A. Consider the bijection
� : fa; bg �! fa; cg de�ned as �(a) = a and �(b) = c. We will show

fabr (a; b) = facs (a; c) for all r 2 f
a

b
;
b

a
gn and for all s 2 fa

c
;
c

a
gn with ri =

a

b
() si =

a

c
8i 2 N . In case ri =

a

b
8 i 2 N , hence si =

a

c
8 i 2 N , we

have fabr (a; b) = facs (a; c) = 1, by PO. Now consider the case where for some

(non-trivial) partition fK; NnKg of N we have ri =
a

b
for all i 2 K and ri =

b

a
for all i 2 NnK. To see fabr (a; b) = facs (a; c), suppose for a contradiction

and without loss of generality that fabr (a; b) > facs (a; c). Take some � 2 �N
such that �i 2 �(a; b)\�(b; c) for all i 2 K and �i 2 �(b; c)\�(c; a) for all
i 2 NnK. Note that b �i c holds for all i 2 N . So by PO we have �� (b; c) = 1
and the transitivity of �� implies �� (b; a) � �� (c; a), which in turn implies
�� (a; b) � �� (a; c). As �ab = r and �ac = s; we have fabr (a; b) � facs (a; c),
giving the desired contradiction. Now take any distinct a; b; c; d 2 A. fab

and fac are the same, fac and f cd are the same, hence fab and f cd are the
same.
We now show the neutrality of fab. Suppose, for a contradiction, that

fab fails neutrality. So there exists r,r0 2 fa
b
;
b

a
gn with ri =

a

b
() r0i =

b

a
8i 2 N while fabr (a; b) 6= fabr0 (b; a), say f

ab
r (a; b) < fabr0 (b; a), without loss

of generality. Let K = fi 2 N : ri =
a

b
g. As fab and fac are the same, we

have facs (a; c) = fabr (a; b) for s 2 f
a

c
;
c

a
gn with si =

a

c
() i 2 K. As fab

and f bc are the same, we have f bct (b; c) = fabr0 (b; a) for t 2 f
b

c
;
c

b
gn with ti =

b

c
() i 2 K. Thus, facs (a; c) < f bct (b; c). Take some � 2 �N such that

�i 2 �(a; b)\�(b; c) for all i 2 K and �i 2 �(c; a)\�(a; b) for all i 2 NnK.
Note that a �i b holds for all i 2 N . So by PO we have �� (a; b) = 1 and
the transitivity of �� implies �� (a; c) � �� (b; c). As �ac = s and �bc = t;
we have facs (a; c) � f bct (b; c), contradicting f

ac
s (a; c) < f bct (b; c). Hence, f

ab is
neutral.
So by Proposition 3.1, any PO and IIA SSWF � : �N ! � is globally

neutral, i.e., it can be expressed in terms of a single neutral pairwise SSWF
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f : fx
y
;
y

x
gn ! �xy. We now show that f must be monotonic, i.e., 8r; r0 2

fx
y
;
y

x
gn with r0i =

x

y
=) ri =

x

y
8 i 2 N , we have fr(x; y) � fr0(x; y).

Proposition 3.2 Take any PO and IIA SSWF � : �N ! �. If f : fx
y
;
y

x
gn !

[0; 1] is the pairwise SSWF through which � is expressed, then f is monotonic.

Proof. Take any PO and IIA SSWF � and let f be the pairwise SSWF which
expresses �. Suppose f fails monotonicity. So there exists r; r0 2 fx

y
;
y

y
gn

with r0i =
x

y
=) ri =

x

y
8 i 2 N while fr(x; y) < fr0(x; y). Let K = fi 2

N : ri =
x

y
g and L = fi 2 N : r0i =

x

y
g. Note that L � K. Take any

distinct a; b; c 2 A and any � 2 �N such that �i 2 �(a; b) \ �(b; c) 8i 2 L,
�i 2 �(a; c)\�(c; b) 8i 2 KnL and �i 2 �(c; a)\�(a; b) 8i 2 NnK. By PO,
we have �� (a; b) = 1. As � and f are equivalent and by the choice of �, we
have �� (a; c) = fr(a; c) and �� (b; c) = fr0(b; c). Thus, �� (a; c) < �� (b; c),
violating the transitivity of ��.
We now show that PO and IIA SSWFs fall into a class that we call

�oligarchical� SSWFs. We say that a SSWF � : �N ! � is oligarchical i¤
there exists a nonempty coalition O � N (to which we refer as the oligarchy)
such that for any distinct x; y 2 A and any � 2 �N , we have �� (x; y) >
0 () 9 i 2 O such that x �i y.

Remark 3.1 We de�ne oligarchy as some kind of veto power given to indi-
viduals in a speci�c group. As each sophisticated preference satis�es �(x; y)+
�(y; x) = 1, this veto power of individuals su¢ ces to endow the group with
full power when unanimity prevails among its members. To state this for-
mally, take any oligarchical and IIA SSWF � : �N ! � expressed by the
pairwise SSWF f : fx

y
;
y

x
gn ! [0; 1].12 Let O � N be the oligarchy that

f induces. Given any distinct x; y 2 A and any r 2 fx
y
;
y

x
gn, we have

fr(x; y) = 1() ri =
x

y
for all i 2 O.

Theorem 3.1 Every PO and IIA SSWF is oligarchical.

Proof: Take any SSWF � : �N ! � which satis�es PO and IIA. We
say that a coalition K � N is decisive for x 2 A over y 2 Anfxg if and only
12Every oligarchical SSWF is PO. Thus, by Proposition 3.1, an oligarchical and IIA

SSWF can be expressed by a single pairwise SSWF.
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if at some � 2 �N with �i 2 �(x; y) for all i 2 K and �i 2 �(y; x) for all
i 2 NnK, we have �� (x; y) > 0.13
We prove the theorem through �ve lemmata about the properties of de-

cisive coalitions.

Lemma 3.1 If K � N is decisive for some a 2 A over some b 2 Anfag,
then given any distinct x; y 2 A, K is decisive for x 2 A over y:

Proof. Let K � N be decisive for some a 2 A over some b 2 Anfag.
Claim 1: Given any x 2 Anfa; bg, K is decisive for a over x. To

show the claim, take any x 2 Anfa; bg. Consider a pro�le � 2 �N where
�i 2 �(a; b) \ �(b; x) for all i 2 K and �i 2 �(b; x) \ �(x; a) for all
i 2 NnK. As K is decisive for a over b, we have �� (a; b) > 0. By PO,
we have �� (b; x) = 1. Suppose �� (x; a) = 1. The transitivity of �� implies
��(b; a) = 1, contradicting �� (a; b) > 0. Thus, �� (x; a) < 1, which means
�� (a; x) > 0, showing that K is decisive for a over x as well.
Claim 2: Given any x 2 Anfa; bg, K is decisive for x over b. To show

the claim, take any x 2 Anfa; bg. Consider a pro�le � 2 �N where �i 2
�(x; a)\�(a; b) for all i 2 K and �i 2 �(b; x)\�(x; a) for all i 2 NnK. As
K is decisive for a over b, then �� (a; b) > 0. By PO, we have �� (x; a) = 1
and, by transitivity of ��, we have �� (x; b) > 0, showing that K is decisive
for x over b as well.
Now take any distinct x; y 2 A and consider the following three exhaustive

cases:
CASE 1: x 2 Anfbg. By Claim 2, K is decisive for x over b and by Claim

1 K is decisive for x over y.
CASE 2: x = b and y 2 Anfag. By Claim 1, K is decisive for a over y

and by Claim 2 K is decisive for x over y.
CASE 3: x = b and y = a. Take some z 2 Anfa; bg. By Claim 1, K is

decisive for a over z; by Claim 2 K is decisive for b over z and by Claim 1
K is decisive for a over b.
We call a coalition K � N decisive i¤ given any distinct x; y 2 A, K is

decisive for x over y. 14

Lemma 3.2 Given any disjoint K;L � N which are both not decisive, K[L
is not decisive either.

Proof. Take any disjoint K;L � N which are both not decisive. Consider
distinct x; y; z 2 A. Pick a pro�le � 2 �N where �i 2 �(x; z) \ �(z; y) for
13As � satis�es IIA, the de�nition can be equivalently stated for all � 2 �N .
14Remark that the decisiveness of K does not rule out the decisiveness of NnK.
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all i 2 K, �i 2 �(z; y) \ �(y; x) for all i 2 L and �i 2 �(y; x) \ �(x; z) for
all i 2 Nn(K [ L). As K is not decisive, �� (x; y) = 0. As L is not decisive,
�� (z; x) = 0. The transitivity of �� implies �� (y; z) = 1; thus �� (z; y) = 0,
showing that K [ L is not decisive.

Lemma 3.3 Take any K � N which is decisive. For all L � K, L or Kn
L is decisive.

Proof. Take any K � N which is decisive and any L � K. Suppose neither
L nor Kn L is decisive. But by Lemma 3.2, L [ (K n L) = K is not decisive
either, which contradicts that K is decisive.

Lemma 3.4 If K � N is decisive then any L � K is also decisive.

Proof. Take any K � N which is decisive and any L � K. Consider
distinct x; y; z 2 A. Pick a pro�le � 2 �N where �i 2 �(z; x) \ �(x; y) for
all i 2 K, �i 2 �(z; y) \ �(y; x) for all i 2 LnK and �i 2 �(y; z) \ �(z; x)
for all i 2 NnL. As K is decisive, we have �� (x; y) > 0. By PO, we have
�� (z; x) = 1. By the transitivity of ��, we have �� (z; y) > 0; showing that
L is decisive for z over y, hence by Lemma 3.1 decisive.
Let � � 2N stand for the set of decisive coalitions.

Lemma 3.5 There exists O 2 2Nnf;g such that given any K 2 2N , we have
K 2 � if and only if K \O 6= ;.

Proof. By PO, we have N 2 �. Applying Lemma 3.3 successively and by
the �niteness of N , the set O = fi 2 N : fig 2 �g is non-empty. Now
take any K 2 2N . If K \ O 6= ;, then K � fig for some fig 2 �, so by
Lemma 3.4, K 2 � as well. If K 2 �, then again by applying Lemma 3.3
successively and by the �niteness of K, there exists i 2 K such that fig 2 �,
hence i 2 O, establishing that K \O 6= ;.
We complete the proof of Theorem 3.1, by asking the reader to check

that the coalition O de�ned in Lemma 3.5 is the oligarchy which makes �
oligarchical. Q.E.D.
Remark that the converse statement of Theorem 3.1 does not hold. For,

although an oligarchical SSWF is PO, it need not satisfy IIA.15 To transform
Theorem 3.1 into a full characterization, we need to know more about IIA

15To see this, consider the following Example 1 where N = f1; 2; 3g and A = fa; b; cg.
Take any � 2 �N and any distinct x; y 2 A. If � admits a Condorcet winner, i.e., 9 c 2 A
such that for each z 2 Anfcg, #fi 2 N : c �i zg � 2, then let �� (x; y) = #fi 2 N : x
�iyg=3. If � admits no Condorcet winner, then let �� (x; y) = 1

2 . One can check that �
exempli�es a SSWF which is oligarchical but not IIA.
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and oligarchical SSWFs. So we proceed by showing that under IIA and
oligarchical SSWFs, the social outcome depends only on the preferences of
the oligarchy members.

Proposition 3.3 Take any oligarchical and IIA SSWF � : �N ! � ex-
pressed by the pairwise SSWF f : fx

y
;
y

x
gn ! [0; 1]. Let O � N be the

oligarchy that f induces. Given any r; r0 2 fx
y
;
y

x
gn with ri =

x

y
() r0i =

x

y
8i 2 O, we have fr = fr0.

Proof. Let �, f , and O be as in the statement of the proposition. Take
any r; r0 2 fx

y
;
y

x
gn with ri =

x

y
() r0i =

x

y
8i 2 O. Let Oxy

r = fi 2

O : ri =
x

y
g, Oyx

r = fi 2 O : ri =
y

x
g, Oxy

r = fi 2 NnO : ri =
x

y
g and

O
yx

r = fi 2 NnO : ri =
y

x
g. Take any distinct a; b; c 2 A and pick some

� 2 �N such that �i 2 �(a; c) \ �(c; b) for all i 2 Oxy
r , �i 2 �(c; b) \ �(b; a)

for all i 2 Oyx
r [ O

yx

r , �i 2 �(a; b) \ �(b; c) for all i 2 O
xy

r . By the choice
of � we have �ab = �ac = r, implying ��(a; c) = ��(a; b). Now take some
�0 2 �N such that �0i = �i 8i 2 O and a �0i c () a �i c 8i 2 NnO. Thus
��0(c; a) = ��(c; a). As c �0i b 8i 2 O, by Remark 3.1, we have ��0(c; b) = 1
and the transitivity of ��0 implies ��0(c; a) = ��(c; a) � ��0(b; a). Now pick
some �00 2 �N such that �00i = �0i 8i 2 NnO and b �00i c () c �0i b
8i 2 O while a �00i x () a �0i x 8x 2 fb; cg 8i 2 O. Note that a �00i
c () a �0i c 8i 2 O. Thus ��00(c; a) = ��0(c; a). As b �00i c 8i 2 O,
by Remark 3.1, we have ��00(b; c) = 1 and the transitivity of ��00 implies
��00(b; a) � ��00(c; a) = ��0(c; a). Noting ��00(b; a) = ��0(b; a); we establish
��0(b; a) = ��(c; a) = ��(b; a), completing the proof.
We de�ne a power distribution in the society as a mapping ! : 2N ! [0; 1]

such that !(K)+!(NnK) = 1 for allK 2 2N . We considermonotonic power
distributions which satisfy !(K) � !(L) for all K;L 2 2N with K � L while
!(N) = 1. We qualify a monotonic power distribution ! as oligarchical i¤
!(L) = 0 =) !(K [ L) = !(K) 8K;L 2 2N . Remark that when ! is
oligarchical, the set fi 2 N : !(fig) > 0g is non-empty. Moreover, !(K) = 0
8K 2 2N with K\ fi 2 N : !(fig) > 0g = ;.

Lemma 3.6 Any oligarchical power distribution ! : 2N ! [0; 1] induces a
PO and IIA SSWF � : �N ! � which is de�ned as �� (x; y) = !(fi 2
N : �i 2 �(x; y)g) 8 � 2 �N , 8x; y 2 A. Moreover � is oligarchical where
O = fi 2 N : !(fig) > 0g is the oligarchy.
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Proof. Let ! and � be as in the statement of the lemma. Take any � 2 �N
and any x; y 2 A. If x and y are not distinct, then �� (x; x) = 0 holds by the
irre�exivity of individual preferences and the fact that !(;) = 0. If x; y are
distinct, then the de�nition of a power distribution implies �� (x; y) 2 [0; 1]
and �� (x; y) + �� (y; x) = 1. So �� is a sophisticated preference. To see
the transitivity of ��, take any x; y; z 2 A with �(x; y) = 1. Let K1 =
fi 2 N : �i 2 �(x; y) \ �(y; z)g, K2 = fi 2 N : �i 2 �(x; z) \ �(z; y)g,
K3 = fi 2 N : �i 2 �(z; x)\�(x; y)g, L1 = fi 2 N : �i 2 �(y; x)\�(x; z)g,
L2 = fi 2 N : �i 2 �(y; z) \ �(z; x)g and L3 = fi 2 N : �i 2 �(z; y) \
�(y; x)g. Note that fK1; K2; K3; L1; L2; L3g is a partition of N . Moreover,
the way ! induces � implies ��(x; y) = !(K1 [ K2 [ K3) = 1, ��(y; z) =
!(K1 [L1 [L2) and ��(x; z) = !(K1 [K2 [L1) . As !(K1 [K2 [K3) = 1,
!(L1 [ L2 [ L3) = 0 and by the monotonicity of !, we have !(L) = 0 for
all L � L1 [ L2 [ L3. As ! is oligarchical, ��(y; z) = !(K1 [ L1 [ L2) =
!(K1) and ��(x; z) = !(K1 [K2 [ L1) = !(K1 [K2) and the monotonicity
of ! implies ��(x; z) � ��(y; z), showing the transitivity of ��. Thus, � is a
SSWF. Checking that � is PO, IIA and oligarchical is left to the reader.
So every oligarchical power distribution ! generates a PO and IIA SSWF

� where at each � 2 �N , the weight by which x is socially preferred to y
equals to the power of the coalition of individuals who prefer x to y at �.16

We refer to � as the !�oligarchical SSWF with O = fi 2 N : !(fig) > 0g
being the corresponding oligarchy.
We now state our central result which is the characterization of PO and

IIA SSWFs in terms of !�oligarchical SSWFs.

Theorem 3.2 A SSWF � : �N ! � is PO and IIA if and only if � is
!�oligarchical for some oligarchical power distribution !.

Proof. The �if�part follows from Lemma 3.6. To see the �only if�part,
recall that by Proposition 3.1, � can be expressed in terms of a single neutral
pairwise SSWF f . On the other hand, f can be expressed in terms of a value
function v : 2N ! [0; 1] which is de�ned for each K 2 2N as v(K) = fr(x; y)

where x; y 2 A is an arbitrarily chosen distinct pair while r 2 fx
y
;
y

x
g is such

that ri =
x

y
8i 2 K and ri =

y

x
8i 2 NnK. The fact that fr(x; y)+fr(x; y) =

1 for any distinct x; y 2 A and any r 2 fx
y
;
y

x
g results in v being a power

16Remark the ! being oligarchical is critical for Lemma 3.6 to hold. To see this let
N = f1; 2; 3g and consider the monotonic power distribution !(fig) = 0 8i 2 N and
!(K) = 1 8K 2 2N with #K > 1. Picking some distinct x; y; z 2 A, one can check that
�� fails transitivity at � 2 �N where �1 2 �(x; y) \�(y; z)g, �2 2 �(y; z) \�(z; x)g and
�3 2 �(z; x) \�(x; y)g.
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distribution. Moreover, v is a monotonic by Proposition 3.2 and oligarchical
by Proposition 3.3. As v and f uniquely determine each other, v is an
oligarchical power distribution that induces �.
We now give a few examples of !�oligarchical SSWFs:

� A dictatorial SSWF is !�oligarchical with some d 2 N such that
!(K) = 1 for all K 2 2N with d 2 K. Remark that � is the range
of dictatorial SSWFs which consequently are social welfare functions
as de�ned by Arrow (1951). In fact, dictatorial SSWFs are the only
!�oligarchical SSWFs which coincide with this standard Arrovian de-
�nition - a matter which we discuss in the proof of Theorem 3.4.

� A Gibbard � oligarchical SSWF is !�oligarchical with some O 2
2Nnf?g such that !(K) = 1 for all K 2 2N with O � K, !(K) = 1

2

for all K 2 2N with K \ O 6= ? but O * K, and !(K) = 0 for
all K 2 2N with K \ O = ?. Remark that in case #O > 1, the
range of a Gibbard � oligarchical SSWF is Q = f� 2 � such that
� : A� A! f0; 1

2
; 1gg which is indeed the set of connected, irre�exive

and quasi-transitive binary relations over A.17 It is straightforward to
check that what we call Gibbard� oligarchical SSWFs are oligarchical
social welfare functions as de�ned by Gibbard (1969).

� The equal power !�oligarchical SSWF is de�ned by setting !(K) =
#K
#N

for all K 2 2N .

Remark that the equal power !�oligarchical SSWF as well as theGibbard�
oligarchical SSWF where N is set as the oligarchy are anonymous SSWFs.18

In fact, anonymous !�oligarchical SSWFs can be characterized in terms of
the following anonymity condition we impose over power distributions: We
say that a power distribution ! : 2N ! [0; 1] is anonymous i¤ given any
K;L 2 2N with #K = #L we have !(K) = !(L).

Proposition 3.4 An !�oligarchical SSWF � : �N ! � is anonymous if
and only if ! is an anonymous power distribution.

17We say this by interpreting �(x; y) = 1 as x being preferred to y and �(x; y) = 1
2

as indi¤erence between x and y, both terms carrying their usual meanings. Write x � y
whenever �(x; y) � 1

2 and x �
� y whenever �(x; y) = 1. In this case, for any � 2 Q and

any distinct x; y 2 A, we have x � y or y � x while x � x holds for no x in A. Moreover x
�� y and y �� z implies x �� z for all x; y; z 2 A.
18As usual, we say that a SSWF � : �N ! � is anonymous i¤ given any (�1; :::; �#N ) 2

�N and any bijection  : N  ! N , we have � (�1; :::; �#N ) = �(� (1); :::; � (#N)).
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Proof. The �if�part is left to the reader. To show the �only if�part, let !
be such that !(K) 6= !(L) for some K;L 2 2N with #K = #L. Take any
distinct x; y 2 A and consider a pro�le � 2 �N where �i 2 �(x; y) for all
i 2 K and �j 2 �(y; x) for all j 2 NnK. So ��(x; y) = !(K). Now take
any bijection  : N  ! N with f (i)gi2K = L. Let �0 =

�
� (1); :::; � (#N)

�
.

So fi 2 N : �0i 2 �(x; y)g = L, thus ��0(x; y) = !(L), contradicting the
anonymity of �.
Theorem 3.2 and Proposition 3.4 lead to the following corollary:

Theorem 3.3 A SSWF � : �N ! � is PO, IIA and anonymous if and only
if � is !�oligarchical for some oligarchical and anonymous power distribution
!.19

We now show how our results lead to the impossibility theorem of Arrow
(1951, 1963) and the oligarchy theorem of Gibbard (1969). We start with
the former. In fact, the following theorem is a restatement of the Arrovian
impossibility.

Theorem 3.4 A SSWF � : �N ! � is PO and IIA if and only if � is
!�oligarchical for some oligarchical power distribution ! inducing an oli-
garchy O with #O = 1.

Proof. The �if� part is left to the reader. To show the �only if� part,
take any PO and IIA SSWF � : �N ! �. We know by Theorem 3.2
that � is !�oligarchical for some oligarchical power distribution !. Let
O be the oligarchy that ! induces. Suppose, for a contradiction, that 9
distinct i; j 2 O. Fix distinct x; y 2 A and consider a pro�le � 2 �N where
�i 2 �(x; y) and �j 2 �(y; x). By de�nition of a !�oligarchical SSWF, we
have ��(x; y) > 0 and ��(y; x) > 0, contradicting that the range of � is �.

The next theorem is a restatement of the oligarchy therorem of Gibbard
(1969):

Theorem 3.5 A SSWF � : �N ! Q is PO and IIA if and only if � is
Gibbard� oligarchical.

Proof. The �if� part is left to the reader. To show the �only if� part,
take any PO and IIA SSWF � : �N ! Q. We know by Theorem 3.2 that
� is !�oligarchical for some oligarchical power distribution !. Let O be
the oligarchy that ! induces. By the de�nition of an oligarchy, we have

19A power distribution is oligarchical and anonymous only if the oligarchy is N .
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!(K) = 1 for all K 2 2N with O � K and !(K) = 0 for all K 2 2N with
K \ O = ?. Now take any K 2 2N with K \ O 6= ? but O * K. Fix
distinct x; y 2 A and consider a pro�le � 2 �N where �i 2 �(x; y) for all
i 2 K and �j 2 �(y; x) for all j 2 NnK. By de�nition of an oligarchy, we
have ��(x; y) > 0 and ��(y; x) > 0. As the range of � is Q, it must be the
case that ��(x; y) = 1

2
and ��(y; x) = 1

2
, thus leading to !(K) = 1

2
, showing

that � is Gibbard� oligarchical.
We close the section by discussing the e¤ects of strengthening transitivity.

We say that a sophisticated preference � is strongly transitive i¤ �(x; y) = 1
and �(y; z) > 0 =) �(x; z) = 1 8 x; y; z 2 A. We write �� for the set of
strongly transitive sophisticated preferences. The positive result announced
by Theorem 3.2 vanishes under this strengthening.

Theorem 3.6 A SSWF � : �N ! �� is PO and IIA if and only if � is
!�oligarchical for some oligarchical power distribution ! inducing an oli-
garchy O with #O = 1.

Proof. The �if� part is left to the reader. To show the �only if� part,
take any PO and IIA SSWF � : �N ! ��. We know by Theorem 3.2
that � is !�oligarchical for some oligarchical power distribution !. Let
O be the oligarchy that ! induces. Suppose, for a contradiction, that 9
distinct i; j 2 O. Fix distinct x; y; z 2 A and consider a pro�le � 2 �N
where �i 2 �(x; y) \ �(y; z), �j 2 �(z; x) \ �(x; y) and �k 2 �(x; y) for all
k 2 Onfi; jg. By de�nition of an oligarchy, we ��(x; y) = 1, ��(y; z) > 0
and ��(z; x) > 0, thus ��(x; z) 6= 1, contradicting that the range of � is ��.

Remark that Q� = f� 2 �� such that � : A�A! f0; 1
2
; 1gg is indeed the

set of connected, irre�exive and transitive (non-sophisticated) preferences
over A. In other words, strong transitivity of sophisticated preferences is
re�ected to non-sophisticated preferences as the standard transitivity condi-
tion. On the other hand, we must not be tempted to think that the pos-
itive result announced by Theorem 3.2 is merely due to the use of a rela-
tively weaker transitivity. For, there exists other strengthenings of transitiv-
ity which are again re�ected to non-sophisticated preferences as transitivity
while they still allow for non-dictatorial SSWFs. As a case in point, con-
sider the following condition T� to be imposed over sophisticated preferences:
�(x; y) = �(y; z) = 1

2
=) �(x; z) = 1

2
8 x; y; z 2 A. Let �� = f� 2 � : �

satis�es T�g be the set of transitive sophisticated preferences that satisfy
T�. In spite of the fact that �� and �� are not subsets of each other, we
have Q� = f� 2 �� such that � : A � A ! f0; 1

2
; 1gg which is also the set

of connected, irre�exive and transitive binary relations over A. Nevertheless,
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the positive result announced by Theorem 3.2 essentialy prevails over ��, as
the following theorem states:

Theorem 3.7 A SSWF � : �N ! �� is PO and IIA if and only if � is
!�oligarchical for some oligarchical power distribution ! with !(K) 6= 1

2

8K 2 2N .

Proof. To see the �if� part, take any oligarchical power distribution !
with !(K) 6= 1

2
8K 2 2N . We know by Theorem 3.2 that ! induces an

!�oligarchical SSWF � : �N ! �. Moreover, as !(K) 6= 1
2
8K 2 2N , ��

trivially satis�es condition T� at each � 2 �N , thus restricting the range of
� to ��. To see the �only if�, take any PO and IIA SSWF � : �N ! ��.
By Theorem 3.2, � is !�oligarchical for some oligarchical power distribution
!. Suppose !(K) = 1

2
for some K 2 2N . Fix distinct x; y; z 2 A and

consider a pro�le � 2 �N where �i 2 �(x; y) \ �(y; z) for all i 2 K and
�i 2 �(z; x)\�(x; y) for all i 2 NnK. As � is induced by ! and !(K) = 1

2
,

we have ��(x; z) = 1
2
and ��(y; z) =

1
2
while ��(x; y) = 1 by PO, thus

contradicting that �� is the range of �.

4 Concluding Remarks

We show that the class of Pareto optimal and IIA SSWFs coincides with the
family of weighted oligarchies, with dictatorial rules at one end and anony-
mous rules at the other. Thus, it is possible to aggregate pro�les of rankings
into a sophisticated preference by distributing power equally in the society.
Whether this is desirable or not is another matter which depends on the
interpretation of the model. Anonymity is certainly defendable under the
social choice interpretation where preferences of distinct individuals are ag-
gregated into a social preference. On the other hand, viewing the model as in
individual decision making problem where an individual aggregates vectors of
rankings according to various criteria into an overall preference, it may make
sense to propose an unequal power distribution among criteria - such as a
job market candidate who may weigh the salary more than the location of
the university. In any case, our �ndings announce the possibility of designing
anonymous aggregation rules while staying within the class Pareto optimal
and IIA aggregation rules.20 This is in contrast to the generally negative �nd-
ings on aggregating fuzzy preferences, such as Barrett et al. (1986), Dutta
(1987) and Banerjee (1994) who establish various fuzzy counterparts of the

20Whether this possibility prevails when individual preferences are also allowed to be
sophisticated is an open question to pursue.
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Arrovian impossibility. In particular Banerjee (1994) shows that aggregation
rules that map non-fuzzy preferences into a fuzzy preference admit a dictator
whose power depends on the strength of the transitivity condition. Although
our positive results are also a¤ected by the choice of the transitivity condi-
tion, they do not merely depend on this. As discussed at the end of Section
3, we owe our permissive �ndings to the ambiguity that the social preference
is allowed to exhibit combined with the relatively weak transitivity condition
we use.21

Our model not only generalizes the framework and results of Arrow
(1951) and Gibbard (1969) but also the probabilistic social welfare func-
tions (PSWFs) of Barberà and Sonnenschein (1978) which assign a prob-
ability distribution over (non-sophisticated) preferences to each pro�le of
(non-sophisticated) preferences. As every probability distribution over non-
sophisticated preferences induces a sophisticated preference but the converse
is not true, SSWFs are more general objects than PSWFs. As a result,
with the natural adaptation of the de�nitions, the fact that every PO and
IIA PSWF is !�oligarchical follows from our Theorem 3.2. On the other
hand, concluding that every !�oligarchical PSWF is PO and IIA requires a
(sub)additivity condition imposed over the power distribution (see Barberà
and Sonnenschein (1978), McLennan (1980), Bandyopadhyay et al. (1982)
and Nandeibam (2003)).
On the other hand, the literature admits an environment which is more

general than ours: SSWFs are generalized by the probabilistic collective
judgement model of Barberà and Valenciano (1983). In fact, all of their
results on probabilistic collective judgement functions can be restricted to
our framework so as to be stated for SSWFs. Nevertheless our central re-
sult -Theorem 3.2- cannot be deduced from Barberà and Valenciano (1983).
Moreover, when Theorems 1 and 4 of Barberà and Valenciano (1983) are
restricted to our framework, they are implied by our Theorem 3.2. Thus,
comparing our �ndings with those of Barberà and Valenciano (1983), we can
pretend to have established a stronger result in a narrower environment.
We close by noting the lack of obvious connection between a sophisticated

preference and the choice it induces. While this imposes a barrier in using our
positive �ndings in resolving social choice problems, it also gives an incentive
to propose a rational choice theory with sophisticated preferences.

21In the introduction, we discuss the appropriateness of our transitivity condition to our
interpretations of the model.
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