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Abstract

We study cooperative games with transferable utility and limited cooperation possibilities. The

focus is on communication structures where the set of players forms a circle, so that the possi-

bilities of cooperation are represented by the connected sets of nodes of an undirected circular

graph. Single-valued solutions are considered which are the average of specific marginal vectors.

A marginal vector is deduced from a permutation on the player set and assigns as payoff to a

player his marginal contribution when he joins his predecessors in the permutation. We compare

the collection of all marginal vectors that are deduced from the permutations in which every

player is connected to his immediate predecessor with the one deduced from the permutations

in which every player is connected to at least one of his predecessors. The average of the first

collection yields the average tree solution and the average of the second one is the Shapley value

for augmenting systems. Although the two collections of marginal vectors are different and the

second collection contains the first one, it turns out that both solutions coincide on the class of

circular graph games. Further, an axiomatization of the solution is given using efficiency, linear-

ity, some restricted dummy property, and some kind of symmetry.

Keywords: Cooperative game, transferable utility, graph structure, marginal vectors, Shapley

value, average tree solution

AMS subject classification: 90B18, 91A12, 91A43.

JEL code: C71.



1 Introduction

A cooperative game with transferable utility, or TU-game, consists of a finite set of players and

a characteristic function that assigns a worth to any subset of players. Players within such

a coalition can freely distribute the worth of the coalition as payoff among themselves. The

problem of a TU-game is how much payoff each player must receive. One of the most well-known

single-valued solutions is the Shapley value ([7]) being the average of all marginal vectors of the

game. A marginal vector is a payoff vector in which for some permutation on the player set

each player receives as payoff his marginal contribution when he joins his predecessors in the

permutation. The Shapley value is uniquely characterized by efficiency, the dummy property,

linearity, and symmetry.

In many economic situations there exist restrictions which prevent some coalitions from

cooperating. Myerson [6] introduces games with communication structure. Graph games arise

when the restriction is represented by a graph in which the nodes of the graph represent the

players and a link between two players indicates that they can communicate with each other.

Only connected subsets of agents, called networks, are assumed to be able to form a coalition and

attain their worth.

The average tree solution, introduced in [3] on the class of cycle-free graph games, is the

average of the marginal vectors deduced from all spanning trees on the graph. A characterization

using unanimity games on this class of graph games is given in [5]. In [4] the average tree solution

is generalized to the class of arbitrary graph games by taking the average of the marginal vectors

deduced from a specific subclass of spanning trees. On the class of non-cycle-free graph games

characterizations using standard axioms or unanimity games are not known in the literature.

In this paper we consider the class of circle graph games where the underlying graph is

assumed to be circular. Players could be firms or cities situated along a lake, around a mountain,

or on a circular pipeline, where players can only be connected to their direct neighbors, one located

on each side. In this setting a set of players is assumed only to be able to cooperate if they form

a segment of the circle. We consider two different natural collections of permutations and take

as solution concept the average of the deduced marginal vectors. The set of marginal vectors at

which players are only able to contribute if they are connected to their immediate predecessor

in the corresponding permutation appears to be the set of marginal vectors whose average is the

average tree solution on the class of circle graph games, while the other collection at which players

are only able to contribute if they are connected to one of their predecessors underlies the Shapley

value introduced in [1] on the class of games on augmenting systems, which includes the class of

circle graph games. Although the second set of marginal vectors contains the first set as a proper

subset we show that the two solutions give the same payoff vector on the class of circle graph

games. We further give for this class an axiomatization of the solution using standard axioms.

The solution doesn’t satisfy symmetry, but we show that it is fully characterized by efficiency,

linearity, a restricted form of the dummy property, and some weak form of symmetry.

This paper is organized as follows. In Section 2 the class of circle graph games is introduced.
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In Section 3 several solutions are discussed and it is shown that they coincide on this class of

games. In Section 4 an axiomatic characterization is given.

2 Circle graph games

Consider a finite set N = {1, . . . , n} of n, n ≥ 3, players or agents located on a circle. Without

loss of generality let L = {{i, i + 1}| i = 1, . . . , n} denote the set of links between the players,

where i + 1 = 1 when i = n. The pair (N,L) is an undirected circle graph with the player set

N as the set of nodes and the link set L as the set of edges. A coalition S ∈ 2N is connected, or

a network, if for any i, j ∈ S there is a sequence of different nodes (i1, i2, . . . , ik) in S such that

i1 = i, ik = j and {ih, ih+1} ∈ L for h = 1, . . . , k − 1. The collection of networks in (N,L) is

denoted CL(N).

A permutation on the player set N is a bijection on N and represents an order in which

the players can join each other to form the grand coalition N of all players. Π(N) denotes the set

of all permutations on N . A permutation in Π(N) is admissible if every player is connected to its

immediate predecessor in the permutation. Let Πa(N) denote the set of admissible permutations

on N , then

Πa(N) = {σ ∈ Π(N) | {σ(i), σ(i+ 1)} ∈ L, i = 1, . . . , n− 1}.

For every i ∈ N there are two admissible permutations σ with σ(1) = i, denoted by σi
1 =

(i, i + 1, . . . , n, 1, . . . , i − 1) and σi
2 = (i, i − 1, . . . , 1, n, . . . , i + 1), and so |Πa(N)| = 2n and

Πa(N) = {σi
1 | i ∈ N} ∪ {σi

2 | i ∈ N}.
A permutation in Π(N) is compatible if every player is connected to at least one of its

predecessors, not necessarily the immediate predecessor in the permutation. Let Πc(N) denote

the set of compatible permutations on N , then

Πc(N) = {σ ∈ Π(N) | {σ(1), . . . , σ(k)} ∈ CL(N), k = 1, . . . , n− 1}.

For every i ∈ N there are two choices of σ(2) for being compatible with σ(1) = i, namely i − 1

and i+1, where i−1 = n if i = 1 and i+1 = 1 if i = n. In general, for k = 2, . . . , n−1, there are

two choices of σ(k) for being compatible with (σ(1), σ(2), . . . , σ(k − 1)). Since σ(n) is uniquely

determined, this leads to |Πc(N)| = 2n−2n. Notice that Πa(N) ⊂ Πc(N).

A characteristic function v : 2N → R, with v(∅) = 0, defines the worth of a coalition

S ∈ 2N . Following Myerson [6], only networks in (N,L) are able to distribute freely their worth

as payoff among its members. The triple (N, v, L) is called a circle graph game and the class of

circle graph games is denoted by Gc. The problem of a circle graph game is how much payoff each

player must receive. Given a circle graph game (N, v, L) ∈ Gc, to any permutation σ ∈ Π(N) a

marginal (contribution) vector mσ(N, v, L) corresponds, assigning to agent σ(k), k = 1, . . . , n, as

payoff

mσ
σ(k)(N, v, L) = v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)}).

2



3 Equivalent solutions

The average tree solution, introduced in [3] on the class of cycle-free graph games and generalized

in [4] to the class of arbitrary graph games, considers for circle graph games all n-tuples B =

(B1, . . . , Bn) of networks in (N,L) satisfying for every i ∈ N that i ∈ Bi and there is a unique

j ∈ N such that {i, j} ∈ L and Bj = Bi \ {i}. Let BL denote the collection of such admissible

n-tuples of networks in (N,L). Given a circle graph game (N, v, L) ∈ Gc, to any B ∈ BL a

marginal vector mB(N, v, L) corresponds with payoff

mB
i (N, v, L) = v(Bi)− v(Bi \ {i})

for agent i ∈ N . The average tree solution, AT , assigns on the class of circle graph games to any

game (N, v, L) ∈ Gc the average of the marginal vectors corresponding to all admissible n-tuples

of networks in (N,L), i.e.,

AT (N, v, L) =
1

|BL|
∑

B∈BL

mB(N, v, L).

First we show that on the class of circle graph games the average tree solution is the average of

the marginal vectors induced by all admissible permutations.

Theorem 3.1 For any circle graph game (N, v, L) ∈ Gc it holds that

AT (N, v, L) =
1

|Πa(N)|
∑

σ∈Πa(N)

mσ(N, v, L).

Proof. Take any σ ∈ Πa(N) and suppose σ = σi
1 for some i ∈ N . Let Bk = {i, . . . , k} for

k = i, . . . , n and Bk = {i, . . . , n, 1, . . . , k} for k = 1, . . . , i − 1. Then B = (B1, . . . , Bn) ∈ BL and

mB(N, v, L) = mσi
1(N, v, L). Similarly, when σ = σi

2 for some i ∈ N , let Bk = {k, . . . , i} for

k = 1, . . . , i and Bk = {k, . . . , n, 1, . . . , i} for k = i+1, . . . , n. Then again B = (B1, . . . , Bn) ∈ BL

and mB(N, v, L) = mσi
2(N, v, L).

Conversely, take any B = (B1, . . . , Bn) ∈ BL. There exists unique i ∈ N such that Bi = N .

Then either Bi \ {i} = Bi+1 (B1 if i = n) or Bi−1 (Bn if i = 1). Suppose Bi \ {i} = Bi+1. Then,

when i < n, i + 2 (1 if i = n − 1) is the only element of Bi+1 \ {i + 1} that is linked in L to

i + 1 and so Bi+1 \ {i + 1} = Bi+2, and, when i = n, 2 is the only element of B1 \ {1} that is

linked to 1. In general, for k = i + 1, . . . , n, 1, . . . , i only element k + 1 in Bk \ {k} is linked to

k and so Bk \ {k} = Bk+1. From this it follows that mB(N, v, L) = mσi−1
2 (N, v, L). Similarly, if

Bi \ {i} = Bi−1, it holds that mB(N, v, L) = mσi+1
1 (N, v, L). Thus every admissible n-tuple of

networks in (N,L) corresponds to a unique admissible permutation in Πa(N). W

As solution concept we may also consider the average of the marginal vectors corresponding

to all compatible permutations. On the class of circle graph games, this is equivalent to the

Shapley value introduced in Bilbao and Ordóñez [1] on the class of games with augmenting

systems, which contains the class of circle graph games. Given a circle graph game (N, v, L) ∈ Gc,

the Shapley value in [1] considers the collection of maximal chains of (N,L). A maximal chain is
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a collection of networks ordered with respect to set inclusion that is not contained in any larger

chain. It is easily seen that the length of each maximal chain is n and that each maximal chain

corresponds one-to-one to a compatible permutation.

For the average tree solution it is assumed that a player is able to contribute only if he

is connected to his immediate predecessor and for the Shapley value in [1] if he is connected to

at least one predecessor. Although the number of the marginal vectors differ and generically all

compatible marginal vectors are different and contain the admissible marginal vectors as a proper

subset, the two averages yield the same payoff vector on the class of circle graph games.1

Theorem 3.2 On the class of circle graph games the average tree solution and the Shapley value

in [1] coincide.

Proof. For any circle graph game (N, v, L) ∈ Gc it has to be shown that

1

|Πa(N)|
∑

σ∈Πa(N)

mσ(N, v, L) =
1

|Πc(N)|
∑

σ∈Πc(N)

mσ(N, v, L).

Take any S ∈ CL(N) and i /∈ S satisfying S ∪ {i} ∈ CL(N). Let Πa
S,i (Π

c
S,i) denote the subsets

of admissible (compatible) permutations σ satisfying mσ
i (N, v, L) = v(S ∪ {i}) − v(S). It is to

show that
|Πa

S,i|
|Πa(N)| =

|Πc
S,i|

|Πc(N)| . If S = ∅, then Πa
S,i = {σi

1, σ
i
2} and Πc

S,i consists of 2
n−2 compatible

permutations σ with σ(1) = i, and therefore
|Πa

S,i|
|Πa(N)| = 1

n =
|Πc

S,i|
|Πc(N)| . If S = N \ {i}, then

Πa
S,i = {σi+1

1 , σi−1
2 } and Πc

S,i consists of 2n−2 compatible permutations σ with σ(n) = i, and

therefore
|Πa

S,i|
|Πa(N)| = 1

n =
|Πc

S,i|
|Πc(N)| . Otherwise, |Πa

S,i| = 1 and |Πc
S,i| = 2|S|−1 · 2n−|S|−2 = 2n−3,

where the first term of the product is the number of ways to fill the first |S| positions and the

second term is the number of ways to fill the last n − |S| − 1 positions. Therefore it holds that
|Πa

S,i(N)|
|Πa(N)| = 1

2n =
|Πc

S,i|
|Πc(N)| for any such S, which completes the proof. W

4 Axiomatic characterization

In this section we axiomatize the average tree solution and therefore also the Shapley value in [1]

on the class of circle graph games. The first two axioms are standard.

Definition 4.1 A solution ξ : Gc → Rn satisfies efficiency if for any (N, v, L) ∈ Gc it holds that∑
i∈N ξi(N, v, L) = v(N).

Definition 4.2 A solution ξ : Gc → Rn satisfies linearity if for any (N, v, L), (N,w,L) ∈ Gc and

a, b ∈ R it holds that ξ(N, av + bw, L) = aξ(N, v, L) + bξ(N,w,L).

A player i ∈ N is a restricted dummy player in a circle graph game (N, v, L) ∈ Gc if this

player never contributes whenever he joins a network to form a new network, i.e., v(S ∪ {i}) −
v(S) = 0 for all S ∈ CL(N) satisfying i �∈ S and S ∪ {i} ∈ CL(N). This player must get zero

payoff.

1For graph games in which the graph is complete both solutions are equal to the Shapley value of the game.

For other graph games the average tree solution and the Shapley value in [1] will differ.
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Definition 4.3 A solution ξ : Gc → Rn satisfies the restricted dummy property if for any

(N, v, L) ∈ Gc and restricted dummy player i ∈ N in (N, v, L) it holds that ξi(N, v, L) = 0.

The next two axioms together are a weak form of symmetry.

Definition 4.4 A solution ξ : Gc → Rn satisfies symmetry among players if for any admissible

permutation π ∈ Πa(N) it holds that ξi(N, v′, L) = ξπ(i)(N, v, L), where v′(S) = v(π(S)) for all

S ∈ CL(N).

Symmetry among players means that if two circle graph games differ only by a shift or reversed

shift of the players along the circle, then the solution also differs only by this shift.

Definition 4.5 A solution ξ : Gc → Rn satisfies symmetry between games if for any v, v′ ∈ Gc

and i ∈ N it holds that ξi(N, v, L) = ξi(N, v′, L) when v(S) = v′(S) and v(S ∪ {i}) = v′(S ∪ {i})
for all S ∈ CL(N) satisfying i �∈ S and S ∪ {i} ∈ CL(N).

Symmetry between games implies that in two different circle graph games a player gets the same

payoff if in both games the worth of any network to which this player is connected is the same

and also the worth of such a network together with this player is the same.

To prove that on the class of circle graph games the axioms above uniquely define the

average tree solution, we need unanimity games. For T ∈ CL(N), the unanimity game uT is given

by uT (S) = 1 if T ⊆ S and 0 otherwise. A player j ∈ T is an end player of network T if T \ {j} ∈
CL(N). Let E(T ) denote the set of end players of network T . For the unanimity circle graph

game (N, uT , L), T ∈ CL(N), it holds that ATj(N, uT , L) = 1 if T = {j}, ATj(N, uT , L) =
1
n if

j ∈ T \E(T ), ATj(N, uT , L) = (n+2−|T |)/(2n) if j ∈ E(T ) and |T | > 1, and ATj(N, uT , L) = 0

if j �∈ T .

Theorem 4.6 On the class of circle graph games the average tree solution is the unique solu-

tion satisfying efficiency, linearity, the restricted dummy property, symmetry among players, and

symmetry between games.

Proof First, we show that the average tree solution satisfies all properties. Efficiency

follows from the fact that all marginal vectors are efficient by construction. Since all admissible

marginal vectors of a circle graph game are linear in the worths of the networks and the average

tree solution is the average of these vectors, the average tree solution satisfies linearity. If a player

is a restricted dummy player, this player has marginal contribution equal to zero at any admissible

permutation and therefore the average is also zero. If players are shifted or reversely shifted along

the circle the marginal vectors corresponding to admissible permutations shift accordingly and

therefore also their average. Finally, if in two different games a player has the same marginal

contribution to any network he is connected to, the average tree solution assigns to that player

the same payoff in both games.

Second, let ξ be a solution which satisfies all five axioms. The proof is first done for the

class of unanimity circle graph games. Consider the unanimity game uN . Take π = σk
1 for any
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k �= 1. Then π ∈ Πa(N) and uN (π(S)) = uN (S) for all S ∈ CL(N). By symmetry among players

it follows that ξ1(N, uN , L) = ξk(N, uN , L), which implies that in the game uN all players receive

the same payoff. By efficiency, this yields

ξk(N, uN , L) =
1

n
= ATk(N, uN , L) ∀ k ∈ N.

For the unanimity game uT with T = {i} it follows from efficiency and the restricted dummy

property that player i receives 1 and all other players 0 as in the average tree solution. Now,

take any T ∈ CL(N) with 1 < |T | < n. Then each i �∈ T is a restricted dummy player in

(N, uT , L) and therefore this player receives zero payoff as in the average tree solution. Next,

let i ∈ T \ E(T ), then for all S ∈ CL(N) such that i �∈ S and S ∪ {i} ∈ CL(N) it holds that

uT (S ∪ {i}) = uN (S ∪ {i}). From symmetry between games it follows that

ξi(N, uT , L) = ξi(N, uN , L) =
1

n
= ATi(N, uT , L).

Finally, let i ∈ E(T ). Because of symmetry among players and since 1 < |T | < n, we may assume

that i = 1 and T = {1, . . . , j} for some 1 < j < n. Let π = σj
2, then π ∈ Πa(N), π(1) = j, and

π(T ) = T . Define the game v′ by v′(S) = uT (π(S)) for all S ∈ 2N . Because of symmetry among

players and since π(1) = j, it holds that ξj(N, v′, L) = ξ1(N, uT , L). Moreover, v′(S ∪ {j}) = 1 =

uT (S ∪ {j}) if S ∈ CL(N) and S ⊇ T \ {j}, and v′(S ∪ {j}) = 0 = uT (S ∪ {j}) for all other

S ∈ CL(N). From symmetry between games it then follows that ξj(N, v′, L) = ξj(N, uT , L).

Together this implies ξj(N, uT , L) = ξ1(N, uT , L), and so the two end players of T receive the

same payoff in the unanimity circle graph game (N, uT , L). From efficiency and the facts that

all other players in T receive payoff 1
n and all players outside T receive payoff zero, the two end

players 1 and j of network T receive both payoff equal to

ξ1(N, uT , L) = ξj(N, uT , L) =
1

2

(
1− |T | − 2

n

)
=

n+ 2− |T |
2n

,

which is the same as both players receive at the average tree solution. Thus ξ(N, uT , L) =

AT (N, uT , L) for any T ∈ CL(N). The proof is concluded since on the collection of networks any

circle graph game can be expressed as a linear combination of unanimity circle graph games. W

To show the independence of the five axioms, consider the linear solution ξ(N, v, L) =∑
T∈CL(N) cT f(N, uT , L) where v =

∑
T∈CL(N) cTuT and f(N, uT , L) allocates 1

|T | to players

in T and 0 to players not in T . It only fails symmetry between games because the non-end

players of some proper network T with |T | > 2 receive different payoffs in the unanimity cir-

cle graph games (N, uT , L) and (N, uN , L). Next, consider the linear solution π(N, v, L) =∑
T∈CL(N) cT f(N, uT , L) where v =

∑
T∈CL(N) cTuT and f(N, uT , L) allocates 1 to the end player

who has the smallest index and 0 to any other player. If |T | > 1, symmetry among players fails

to hold, while the other axioms hold. Next, let D(v) be the set of restricted dummy players of a

circle graph game (N, v, L) ∈ Gc and consider the solution that allocates to a circle graph game

(N, v, L) ∈ Gc the payoff vector ξ(N, v, L) as follows. If there is i ∈ N for which there exists

T ∈ CL(N) satisfying v(S) = uT (S) and v(S ∪ {i}) = uT (S ∪ {i}) for all S ∈ CL(N) such that
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i �∈ S and S∪{i} ∈ CL(N), then for all such i we take ξi(N, v, L) = ATi(N, uT , L), each player in

D(v) receives payoff 0, and all other players equally share the remaining payoff. If for all i ∈ N

such T does not exist, then we take ξj(N, v, L) = 0 if j ∈ D(v) and ξj(N, v, L) = v(N)/(n−|D(v)|)
if j �∈ D(v). This solution satisfies all axioms except linearity. The equal sharing solution, where

each agent receives v(N)/n, satisfies every axiom except the restricted dummy property. Finally,

the solution where each agent receives zero payoff only fails efficiency.
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