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Abstract. Recently Bansal and Sviridenko [4] proved that there is no
asymptotic PTAS for 2-dimensional Orthogonal Rectangle Bin
Packing without rotations allowed, unless P = NP. We show that sim-
ilar approximation hardness results hold for several rectangle packing
problems even if rotations by ninety degrees around the axes are allowed.
Moreover, for some of these problems we provide explicit lower bounds on
asymptotic approximation ratio of any polynomial time approximation
algorithm.

1 Introduction

We focus on orthogonal packing problems of rectangles into bins in 2 and 3-
dimensions, where ninety-degree rotations of rectangles around any of the axes
are allowed. These problems have many real-world applications in areas like job
scheduling, container loading, and cutting objects out of a strip of material in
such a way that the amount of material wasted is minimal.
Notation and terminology. Throughout this paper we only consider offline
versions of the problems. In all 2-dimensional variants of the problems, the in-
put consists of a list L = {R1, R2, . . . , Rn} of 2-dimensional rectangles in the
Euclidean space R2 and a 2-dimensional rectangular bin B = [0, b1]× [0, b2] (for
which the notation (b1, b2) is used as well). Each rectangle Ri is given with an
(initial) orientation related to the coordinate axes and side-lengths denoted as
(w(Ri), h(Ri)) and called width and height, respectively. The generalization to
the higher dimensions is straightforward. In the 3-dimensional strip version of
the problems we suppose that the last dimension of the bin B is unlimited and
we call such bin B = (b1, b2,∞) a strip. All rectangles of the list L need to be
packed into bins without overlap. The most interesting and well-studied version
of these problems is the so-called orthogonal version, where the edges of packed
rectangles and bins are always parallel to the coordinate axes. In problems with-
out rotations rectangles have to be placed into the bin with given orientation
and a feasible solution is called oriented packing. In problems with rotations al-
lowed rectangles to be placed may be rotated around any of the axes by 90◦
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and a feasible solution is referred to as r-packing. In the 3-dimensional case, if
only rotations around the z-axis (the last one) are allowed, a packing is called
z-oriented.

Given a list L of 2-dimensional rectangles and a 2-dimensional bin B =
(b1, b2). The goal of 2-dimensional Bin Packing (2-BP) and 2-dimensional
Bin Packing with Rotations (2-BPr) is to find an oriented packing and
an r-packing, respectively, of all rectangles of L into the minimum number
of copies of B. In 3-dimensional strip versions of the problems, a list L of 3-
dimensional rectangles and a 3-dimensional strip B = (b1, b2,∞) are given. In the
problems 3-dimensional Strip Packing (3-SP) and 3-Dimensional Strip
Packing with Rotations (3-SPr) we are looking for an oriented packing and
an r-packing, respectively, that minimizes h such that all rectangles of L are
packed into the bin (b1, b2, h). If only 90◦ rotations around the z-axis (the un-
limited direction of the strip B) are allowed, the problem is called z-oriented
3-dimensional Strip Packing.

The standard measure of algorithm quality for bin packing problems is the
asymptotic approximation ratio. For a minimization problem it is defined as
ρ∞A = limn→∞ supI

{
A(I)

OPT(I) : OPT(I) ≥ n
}

, where I ranges over the set of all
problem instances, and A(I) (resp. OPT(I)) denote the value of the solution
returned by A (resp. the optimum value) for an input instance I. For a maxi-
mization problem, A(I)

OPT(I) is replaced by OPT(I)
A(I) so that always ρ∞A ≥ 1. We say,

that a problem admits an asymptotic approximation scheme (shortly, APTAS),
if for any ε > 0 there is a polynomial time algorithm with an asymptotic ap-
proximation ratio less than 1 + ε. For other optimization terminology we refer
to Ausiello et al. [1].
Overview. For 1-BP, Fernandez de la Vega & Lueker [10] designed an APTAS.
More precisely, for any positive integer k they provided a polynomial time al-
gorithm Ak that uses at most (1 + 1

k )OPT + 1 bins. Later, Karmarkar & Karp
[15] gave a single algorithm with asymptotic approximation ratio 1 that uses
OPT + O(1 + log2 OPT) bins. For the 2-BP problem Caprara [5] presented an
algorithm with currently the best asymptotic approximation ratio 1.691. On the
negative side, Bansal & Sviridenko [4] proved that there is no APTAS for 2-BP,
unless P = NP. Interestingly, they provided an APTAS for a restricted version
of d-BP in which the items and the bins are d-cubes; this result was indepen-
dently obtained by Correa & Kenyon [8]. For 3-BP, Li & Cheng [17] and Csizik
& van Vliet [9] designed algorithms with asymptotic ratio at most 4.84. This
asymptotic ratio was later improved to 4 + ε by Jansen & Solis-Oba [11]. The
algorithms from [17] and [9] generalize to the problem d-BP with asymptotic
approximation ratio at most 1.691d. For the problem 2-SP, the breakthrough
result was obtained by Kenyon & Rémila [16] who gave an APTAS. For 3-SP,
Miyazawa & Wakabayashi [19] presented an algorithm with asymptotic approx-
imation ratio at most 2.64, which was improved to 2 + ε by Jansen & Solis-Oba
[11]. On the other hand, it is easy to see that approximation hardness result for
2-BP implies that no APTAS for 3-SP can exist, unless P = NP (see Section 2.1
for more details).



When ninety-degree rotations are allowed, only weaker results are known.
Some algorithms for the versions without rotations provide upper bounds on
asymptotic approximation ratio for versions with rotations allowed as well. The
results by Miyazawa & Wakabayashi [18] were the first ones where rotations are
exploited in non-trivial way. Currently the best upper bounds on asymptotic
approximation ratio for the problems 2-BPr, 3-BPr, 3-SPr, and 3-SPz, are
2 + ε, 4.89, 2.76, and 2.64, respectively, see [19] and [12]. Moreover, Jansen &
Stee provided an APTAS for 2-SPr ([12]).
Rectangle Packing without and with Rotations. When dealing with pack-
ing problems without rotation, one can always assume that a bin B is a unit cube
(resp., a base of a strip B is a unit cube), as the problems are invariant under
heterogeneous scaling, i.e., the one which scales by different factors in different
coordinate directions. However, this is not true for problems with rotations al-
lowed. It is unclear if the problems with rotations allowed, where the bin B is a
unit cube, are easier to approximate than the general one. For some problems,
algorithms with better asymptotic approximation ratio were suggested in such
restricted case. For example, when a base of the strip in the problem 3-SPz is
a unit square, an algorithm with asymptotic approximation ratio at most 2.528
is known [18].

Using heterogeneous scaling one can show that 2-BP can be viewed as a
particular case of general 2-BPr with highly excentric instances. Let a list L =
(R1, R2, . . . , Rn) of rectangles with dimensions Ri = (ri

1, r
i
2), i = 1, 2, . . . , n, and

a bin B = (b1, b2) be an instance of 2-BP. One can find positive scaling factors
λ1, λ2, and use scaling (x1, x2) 7→ (λ1x1, λ2x2) to map any Ri to R̃i = (r̃i

1, r̃
i
2),

and the bin B to B̃ = (̃b1, b̃2), so that it holds that min{r̃i
1 : 1 ≤ i ≤ n} > b̃2.

It is easy to see that the only way a rectangle R̃i can fit into the bin B̃, even
if ninety-degree rotations are allowed, is that R̃i is not rotated. Similarly, 3-SP
can be handled as a particular case of 3-SPr or 3-SPz. Thus, for problems 2-
BPr, 3-SPr, and 3-SPz without any restriction on the bin B, non-existence of
an APTAS easily follows from results by Bansal & Sviridenko [4] for 2-BP (see
Sections 2 and 2.1 for more details). However, for the most interesting case of a
unit square bin B, one can hardly obtain hardness results in such a way.
Main results. In this paper we prove non-existence of an APTAS (unless P =
NP) for 2-dimensional Bin Packing with Rotations into unit square bins
(Section 2), 3-dimensional Strip Packing with Rotations and z-oriented
3-dimensional Strip Packing (Section 2.1) into a strip with unit square base.
The methods allow to give explicit lower bounds on asymptotic approximation
ratio of any polynomial time approximation algorithm (unless P = NP). For
example, we provide a lower bound 1 + 1

3792 for 2-Dimensional Bin Packing
with Rotations, and 1 + 1

2196 for the same problem without rotations.
We prove also non-existence of an APTAS for a related 3-dimensional packing

problem where the goal is to pack the maximum number of rectangles from a
given collection into a single cube bin (Section 3).
General technique. Recall, that for pairwise disjoint sets X, Y , Z, and a set
of ordered triples T ⊆ X × Y ×Z, a matching in T is a subset M ⊆ T in which



no two ordered triples in M agree in any coordinate. The goal of the Maximum
3-Dimensional Matching problem (shortly, Max-3DM) is to find a matching
in T of maximum cardinality. A k-bounded Max-3DM is restricted to instances,
in which each element of X ∪ Y ∪ Z occurs at most k times in T .

Kann [14] showed that the 3-bounded Max-3DM problem is Max SNP-
complete (hence also APX-complete). Thus, using PCP-theorem, the existence
of a PTAS for it would imply that P = NP. Petrank [20] proved a refined
approximation hardness result that an NP-hard gap occurs also on instances
with perfect matching. Unfortunately, the estimates that are implicit in his proof
provide lower bound 1 + ε with extremely small ε > 0. To achieve explicit
inapproximability results it is more convenient to use the following NP-hard gap
type result for 2-bounded instances of Max-3DM.

Theorem A. [7] There are instances T ⊆ X × Y × Z of 2-bounded Max-
3DM with |X| = |Y | = |Z|(:= q) and every element of X ∪ Y ∪ Z occurring in
exactly 2 triples in T such that it is NP-hard to distinguish between instances
with OPT(T ) > 0.979338843q and OPT(T ) < 0.9690082645q.

Both mentioned approximation hardness results for bounded Max-3DM suit
well as a starting point to inapproximability results for various (multidimen-
sional) packing, covering, and scheduling problems, see e.g., [21], [6], and [4].

2 2-dimensional Bin Packing with Rotations

In this section we build on ideas from [4] and introduce a general parametrised
version of a gap preserving reduction from bounded Max-3DM to 2-Dimensional
Bin Packing. We show that with properly chosen parameters this reduction
can be used to obtain approximation hardness results for 2-dimensional Bin
Packing with Rotations into unit square bin.

The Bin Packing reduction. Let T be an infinite set of instances (ordered
triples) T of Max-3DM with the optimum value OPT(T ), with the property
that for some efficiently computable function α(T ) < β(T ) it is NP-hard to
decide of whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ). For a fixed instance
T ∈ T let X := Π1(T ), Y := Π2(T ), and Z := Π3(T ), where Πi(T ) = {pi :
(p1, p2, p3) ∈ T} for i = 1, 2, 3, and X, Y , Z are pairwise disjoint sets. The
objects in X, Y , Z, and T will be denoted as {xi : 1 ≤ i ≤ |X|}, {yj : 1 ≤ j ≤
|Y |}, {zk : 1 ≤ k ≤ |Z|}, and {tl : 1 ≤ l ≤ |T |}, respectively. (In fact, we will
use this general reduction for instances from Theorem A, where |X| = |Y | = |Z|
holds.) Of course, any tl ∈ T is of the form tl = (xi, yj , zk) ∈ X × Y × Z. Let
n = |X| + |Y | + |Z|, q = max{|X|, |Y |, |Z|}, and r = 32q. The reduction has
several parameters: a gap location β(T ), δ ∈ (

0, 1
500

]
, and p ∈ [

1
4 + 9δ, 1

2 − 20δ
]
.

We first define an integer for each object in X, Y , Z, and T as follows:
x′i = ir3 + i2r + 1, for 1 ≤ i ≤ |X|, y′j = jr6 + j2r4 + 2, for 1 ≤ j ≤ |Y |,
z′k = kr9 + k2r7 + 4, for 1 ≤ k ≤ |Z|. For each triple tl = (xi, yj , zk) ∈ T

we define an integer t′l = r10 − x′i − y′j − z′k + 15. Put c = r10+15
δ and observe



that 0 < x′i, y
′
j , z

′
k < δc

10 for all i, j, k, and t′l + x′i + y′j + z′k = cδ whenever
tl = (xi, yj , zk) ∈ T .

For each xi ∈ X (resp., yj ∈ Y and zk ∈ Z) we define a pair of rectangles
AX,i, A′X,i (resp., AY,j , A′Y,j and AZ,k, A′Z,k) with width about 1

4 and with
heights about 1

2 + p and 1
2 − p as follows:

AX,i=
(1

4
− 4δ +

x′i
c

,
1
2

+ p + 4δ − x′i
c

)
, A′X,i=

(1
4

+ 4δ − x′i
c

,
1
2
− p− 4δ +

x′i
c

)
,

AY,j=
(1

4
− 3δ +

y′j
c

,
1
2

+ p + 3δ − y′j
c

)
, A′Y,j=

(1
4

+ 3δ − y′j
c

,
1
2
− p− 3δ +

y′j
c

)
,

AZ,k=
(1

4
− 2δ +

z′k
c

,
1
2

+ p + 2δ − z′k
c

)
, A′Z,k=

(1
4

+ 2δ − z′k
c

,
1
2
− p− 2δ +

z′k
c

)
.

For each tl ∈ T we define two rectangles Bl and B′
l such that

Bl =
(1

4
+ 8δ +

t′l
c

,
1
2

+ p + δ − t′l
c

)
and B′

l =
(1

4
− 8δ − t′l

c
,
1
2
− p− δ +

t′l
c

)
.

Let AX = {AX,1, AX,2, . . . , AX,|X|}, A ′
X = {A′X,1, A

′
X,2, . . . , A

′
X,|X|} and define

sets of rectangles AY , A ′
Y , AZ , and A ′

Z analogously. Put A = AX ∪AY ∪AZ

and A ′ = A ′
X ∪ A ′

Y ∪ A ′
Z . Similarly, let B = {B1, B2, . . . , B|T |} and B ′ =

{B′
1, B

′
2, . . . , B

′
|T |}. We define also D to be a collection of |T |+n−4β(T ) dummy

rectangles, each of the size
(

3
4 − 10δ, 1

)
.

The collection of rectangles A∪A ′∪B∪B ′∪D, together with a unit square
bin is now viewed as an instance of the 2-BPr problem and denoted by f(T ).
Our aim is to relate the optimum value OPT′(f(T )) of 2-BPr for an instance
f(T ) to OPT(T ). Informally, the dimensions of rectangles and dummy rectangles
are chosen such that if OPT(T ) ≥ β(T ), the rectangles can be packed into bins
in such a way that their number is within a factor (1 + O(δ)) of the total area
of rectangles. On the other hand, if OPT(T ) < β(T )

γ for a constant γ > 1, then
the number of bins needed to pack all rectangles of f(T ) is larger than the total
area of rectangles by a constant factor γ′ > 1 independent of δ for δ > 0 small
enough.

The reduction given by Bansal & Sviridenko ([4]) can be viewed as a par-
ticular case of the Bin Packing reduction with δ = 1

500 , a set T of instances
T ⊆ X × Y × Z of 3-bounded Max-3DM with |X| = |Y | = |Z| = q, and a gap
location β(T ) = q (as it follows from the Petrank’s result [20]). The parameter
p is an important novelty of this paper. The crucial point is that for the proper
choice of the parameter p we can prove that even if rotations are allowed it is
not advantageous to use them.

Remark 1. Bansal & Sviridenko [4] (see also [3]) claim to prove not only non-
existence of APTAS (unless P = NP) for 2-dimensional Bin Packing (without
rotations), but also APX-hardness for it. However, such result does not follow
from their proof. The given reduction from 3-bounded Max-3DM to 2-BP is
not an L-reduction (or an approximation preserving reduction), but it is rather
a gap preserving reduction that preserves one but not all gaps.



We start with the following simple lemma valid for the choice of p ∈ [ 14 +
9δ, 1

2 − 20δ].

Lemma 1. (i) For every r-packing of f(T ) all rectangles from A∪B contained
in the same bin are either in their initial orientations or all are rotated by ninety
degrees.

(ii) For every r-packing of f(T ) if a bin contains exactly 4 rectangles from
A ∪B, then all rectangles from A ∪B ∪A ′ ∪B ′ packed in this bin are either
in their initial orientations or all are rotated by ninety degrees.

For oriented packings some properties of the Bansal’s and Sviridenko’s reduc-
tion [4] (that corresponds to p = 0) are preserved to our general situation with
the parameter p introduced. The proofs of Lemmas 3 and 4 given in [4] work in
this case as well, as widths of rectangles are the same in both reductions.

Definition 1. ([4]) We say that two rectangles A and A′ from A∪A ′∪B∪B ′

are buddies if {A,A′} corresponds to a pair of rectangles for a single element
from X, Y , Z or T , e.g., {A,A′} = {AX,i, A

′
X,i} for some xi ∈ X and similarly

for the other sets Y , Z, and T .

Observation 1 For any rectangle, A ∈ A implies w(A)+h(A) = 3
4 +p, A′ ∈ A ′

implies w(A′) + h(A′) = 3
4 − p, B ∈ B implies w(B) + h(B) = 3

4 + p + 9δ, and
B′ ∈ B ′ implies w(B′) + h(B′) = 3

4 − p− 9δ.

Observation 2 For any two rectangles A, A′ in A∪A ′∪B∪B ′, h(A)+h(A′) =
1 if and only if A and A′ are buddies.

In the following lemma we observe some basic properties for oriented packing
of rectangles from A ∪B ∪A ′ ∪B ′ into unit square bin.

Lemma 2. Consider a unit square bin containing exactly 4 rectangles from A∪
B for an oriented packing of f(T ). Then the bin contains at most 8 rectangles
from A ∪ B ∪ A ′ ∪ B ′ and if it contains exactly 8 rectangles then, for any
h ∈ [

4δ, 1
2 − p − 4δ

]
, each rectangle intersects exactly one of the lines L1 =

{(x, y) : y = h} and L2 = {(x, y) : y = 1− h}.

Lemma 3. For any rectangles A1, A2, A3 ∈ A and B ∈ B, w(A1) + w(A2) +
w(A3) + w(B) = 1 if and only if {A1, A2, A3, B} = {AX,i, AY,j , AZ,k, Bl} for
some integers i, j, k, and l such that tl = (xi, yj , zk) ∈ T . A similar statement
holds also for rectangles A′1, A′2, A′3 ∈ A ′, B′ ∈ B ′.

Lemma 4. Let A1, A2, A3, A4 ∈ A ∪ A ′ be such that no two of them are
buddies. Then

∑4
i=1 w(Ai) 6= 1.

Definition 2. Given an r-packing of a bin by some rectangles from f(T ). The
bin is called well-packed, if it contains exactly 4 rectangles from A ∪ B and 4
rectangles from A ′ ∪B ′.



Now the crucial fact is, that for any choice of the parameter p from the
interval

[
1
4 + 9δ, 1

2 − 20δ
]
, we can characterize the structure of well-packed bins

similarly as it has been done in [4] for oriented packings.

Lemma 5. A bin is well-packed if and only if it contains the rectangles AX,i,
AY,j, AZ,k, Bl, A′X,i, A′Y,j, A′Z,k, B′

l, for some tl = (xi, yj , zk) ∈ T .

Proof. The 8-tuple of rectangles corresponding to a triple as above can be packed
in a square bin B = [0, 1]2 even without using rotations. Starting from the
bottom left corner of the bin B and moving to the right, each of rectangles AX,i,
AY,j , AZ,k, and Bl is placed such that it touches the bottom of the bin B. As
w(AX,i) + w(AY,j) + w(AZ,k) + w(Bl) = 1 (Lemma 3), the rectangles can be
packed in this way. The rectangles A′X,i, A′Y,j , A′Z,k, and B′

l can be placed in
the remaining gaps starting from the top left corner of the bin B and moving
towards the right touching the top of the bin. Clearly, such packing is possible
due to the size properties of rectangles.

Now we show that any well-packed bin contains rectangles that correspond
to a triple in T . Due to Lemma 1(ii), all rectangles are either in their initial
orientations or all are rotated by ninety degrees. We can assume that they are
all in the initial orientation in a well-packed bin; the case when all are rotated
by 90◦ can be discussed similarly. Fix h ∈ [

4δ, 1
2 − p− 4δ

]
and consider the lines

L1 = {(x, y) : y = h} and L2 = {(x, y) : y = 1 − h}. Due to Lemma 2, each
rectangle must intersect exactly one of the lines L1 and L2. Moreover, as any
rectangle has width larger than 1

5 , each of lines L1 and L2 intersects exactly
4 rectangles. Let {A1, A2, A3, A4} denote the rectangles that intersect L1 such
that Ai is to the left of Aj for i < j. Similarly, let {A5, A6, A7, A8} denote the
rectangles that intersect L2 in the left to right order. Thus, we have that

4∑

i=1

w(Ai) ≤ 1, (1)

4∑

i=1

w(Ai+4) ≤ 1. (2)

Observe that for each i = 1, 2, 3, 4 the rectangle Ai must overlap with Ai+4 in
the x-coordinate. Thus, we have that

h(Ai) + h(Ai+4) ≤ 1 for i = 1, 2, 3, 4. (3)

From (3) it follows that, for each i = 1, 2, 3, 4, at most one of Ai, Ai+4 belongs
to A ∪ B. Consequently, for each i = 1, 2, 3, 4 exactly one of Ai, Ai+4 is from
A∪B and another one is from A ′ ∪B ′. Using these facts, we can use the same
arguments as in [4]:
(i) First observe that at most 1 from rectangles {A1, . . . , A8} belongs to B.

Indeed, if k ≥ 2 of them belong to B and 4−k belong to A, then the sum of
widths of these rectangles from A∪B would be > 1, a contradiction with the
fact that any line in y-direction intersects at most 1 rectangle from A ∪B.



(ii) If no rectangle from {A1, . . . , A8} belongs to B, than the same is true for
B ′. The height of any rectangle in B ′ is larger then 1

2 − p − δ so such a
rectangle cannot form a pair {Ai, Ai+4} with a rectangle from A. Thus, in
this case four rectangles belong to A and four to A ′. Using Observation 1 we
get

∑8
i=1(w(Ai) + h(Ai)) = 6, thus it must be the case that each of (1), (2)

and (3) must hold with equality. By Observation 2, Ai and Ai+4 are buddies
for each i = 1, 2, 3, 4. In particular, no two rectangles among A1, A2, A3,
and A4 are buddies. Now Lemma 4 contradicts with

∑4
i=1 w(Ai) = 1 that

has been observed earlier. Thus this case is impossible.
So, necessarily exactly one of rectangles {A1, A2, . . . , A8} belongs to B, say Bl.
(iii)As, due to (3), no pair {Ai, Ai+4} can contain a rectangle from B ′ and a

rectangle from A, there can be at most one rectangle from B ′. But if there
are no rectangles from B ′, then the sum of widths of all 8 rectangles would
be > 2, a contradiction.

Consequently, there is exactly 1 rectangle from B ′, 1 from B, 3 from A, and
3 from A ′. Using Observation 1 we get

∑8
i=1(w(Ai) + h(Ai)) = 6, thus each

of (1), (2), and (3) holds with equality. In particular, for each i = 1, 2, 3, 4, Ai

and Ai+4 are buddies due to Observation 2. Let m ∈ {1, 2} be such that Bl

intersects the line Lm. Let Am1 , Am2 , Am3 denote the other three rectangles
(from A ∪A ′) which are also intersected by Lm. Thus we have that w(Am1) +
w(Am2) + w(Am3) + w(Bl) = 1. None of Am1 , Am2 , Am3 can lie in A ′ because
otherwise w(Am1)+w(Am2)+w(Am3)+w(Bl) > ( 1

4 +8δ)+( 1
4 +δ)+2( 1

4−4δ) =
1 + δ, a contradiction. Hence {Am1 , Am2 , Am3} ⊆ A, and using Lemma 3 we
get that {Am1 , Am2 , Am3} = {AX,i, AY,j , AZ,k} for integers i, j, k such that
tl = (xi, yj , zk), where tl is the corresponding triple for the rectangle Bl. This
completes the proof.

Now we can prove the main theorem of this section

Theorem 1. There is a constant ρ > 1 such that it is NP-hard to approximate
2-dimensional Bin Packing with Rotations into unit square bins with an
asymptotic approximation ratio less than ρ.

Proof. Recall that the Bin Packing reduction f started from a set T of instances
of Max-3DM such that for T ∈ T it is NP-hard to decide of whether OPT(T ) ≥
β(T ), or OPT(T ) < α(T ).

(a) Assume first that T ∈ T is such that OPT(T ) ≥ β(T ). We will show
that the corresponding instance f(T ) of the 2-BPr problem has its optimum
OPT′(f(T )) of size at most |T | + n − 3β(T ). Consider a matching M in T
consisting of β(T ) triples. For each triple tl = (xi, yj , zk) ∈ M we create a well-
packed bin with rectangles {AX,i, AY,j , AZ,k, Bl, A

′
X,i, A

′
Y,j , A

′
Z,k, B′

l} packed.
For each tl ∈ T \M we can put Bl and B′

l along with a dummy rectangle
into a bin; in this way we use |T | − β(T ) dummy rectangles.

For each of n−3β(T ) elements in X∪Y ∪Z that are not covered by M , we put
in a bin the corresponding buddies A and A′ along with one dummy rectangle.
The rest of the dummy rectangles is used in this way and all rectangles from
f(T ) are packed into |T |+ n− 3β(T ) bins.



(b) Assume now that T ∈ T satisfies OPT(T ) < α(T ). Our aim is to estimate
OPT′(f(T )) from below. Consider for an instance f(T ) any feasible solution of
2-BPr. There will be exactly Nd = |T |+n−4β(T ) bins with dummy rectangles,
each of them can contain at most one rectangle from A ∪ B. Let us consider
now bins without dummy rectangles. If such bin is not well-packed then it either
contains at most 3 rectangles from A∪B or else it contains at most 3 rectangles
from A ′ ∪B ′. Let Ng denote the number of well-packed bins. Among the bins
without dummy rectangles which are not well-packed, let Nb2 denote the number
of bins with at most 3 rectangles from A∪B, and let Nb1 denote the number of
the rest rectangles (i.e., Nb1 is the number of bins with 4 rectangles from A∪B,
but with at most 3 rectangles from A ′ ∪B ′).

Since all |T | + n rectangles from A ∪ B have to be packed, we have the
constraint that

4Ng + 4Nb1 + 3Nb2 + Nd ≥ |T |+ n,

or equivalently
4Ng + 4Nb1 + 3Nb2 ≥ 4β(T ). (4)

With the choice of parameter p = 1
4 +9δ and assuming δ ∈ (0, 1

500 ] as small as we
need, rectangles from A∪B are roughly ( 1

4 , 3
4 ) each, and those from A ′∪B ′ are

roughly ( 1
4 , 1

4 ) each. In what follows we will count rectangles from A ∪B with
weight 3, and those from A ′∪B ′ with weight 1 each. Easy area’s estimate shows
that the total weight of rectangles packed to a unit square bin cannot exceed
16. Further, any bin containing a dummy rectangle can contain rectangles from
A ∪B ∪ A ′ ∪B ′ of weight at most 4. Observe that each of Nb1 bins contains
rectangles of weight at most 15. Hence the second constraint derived from the
fact that all rectangles have to be packed reads as follows:

16Ng + 15Nb1 + 16Nb2 + 4Nd ≥ 4(|T |+ n).

Using Nd = |T |+n− 4β(T ) and adding the constraint (4) to the last one we get

20Ng + 19Nb1 + 19Nb2 ≥ 20β(T ).

Since the set of well-packed bins corresponds to a feasible solution for a matching
(by Lemma 5), Ng < α(T ). Thus, assuming OPT(T ) < α(T ) we get

OPT′(f(T )) > Ng + Nb1 + Nb2 + Nd ≥ 20
19

β(T )− 1
19

Ng + Nd

> |T |+ n− 3β(T ) +
1
19

(β(T )− α(T )).

It easily follows that our reduction f is a gap preserving reduction assuming that
we started from (α(T ), β(T ))-gap version of the bounded Max-3DM problem
for which β(T )−α(T )

|T |+n−3β(T ) is bounded below by a positive constant.

Now suppose that for a fixed constant ρ, 1 < ρ < 1 + 1
19

β(T )−α(T )
|T |+n−3β(T ) , there

exists a polynomial time algorithm Aρ and a constant C such that for instances
f(T ) if OPT′(f(T )) > C, then Aρ ≤ ρOPT′(f(T )). Thus, for any corresponding



instance T of Max-3DM we could distinguish whether OPT(T ) ≥ β(T ), or
OPT(T ) < α(T ), which is an NP-hard problem. Hence, it is NP-hard to achieve
an asymptotic approximation ratio ≤ ρ for the problem 2-dimensional Bin
Packing with Rotations into unit square bins.

Using the NP-hard gap result from Theorem A we can obtain an explicit
lower bound 1+ 1

3792 on asymptotic approximation ratio of any polynomial time
approximation algorithm (unless P = NP) for 2-dimensional Bin Packing
with Rotations into unit square bins. For the same problem without rotations
our method provides a lower bound 1 + 1

2196 .

2.1 3-dimensional Strip Packing problems

Let a list of 2-dimensional rectangles L = {(r1
1, r

1
2), (r

2
1, r

2
2), . . . , (r

n
1 , rn

2 )} with a
bin B = (b1, b2) be an instance of the 2-dimensional Bin Packing problem.
For a fixed t > 0 we define an instance of the 3-dimensional Strip Packing
problem as a list of 3-dimensional rectangles Lt = {(ri

1, r
i
2, t) : 1 ≤ i ≤ n} with

a strip (b1, b2,∞). It is easy to prove, that if OPT(L) denote the optimum of an
instance L for 2-BP (resp., 2-BPr) then t ·OPT(L) denote the optimum of the
corresponding 3-dimensional instance Lt for 3-SP (resp., for 3-SPz and 3-SPr

provided t > max{b1, b2}).
Hence, non-existence of APTAS for 2-BP ([4]) implies non-existence of AP-

TAS for the 3-SP problem, unless P = NP. Moreover, using a heterogeneous
scaling one can obtain some inapproximability results also for 3-SPz and 3-SPr

already from hardness results for 2-BP, e.g., for instances of 3-SPz and 3-SPr

with a strip (b, 1,∞) for any fixed b ∈ (0, 1
2 ). However, for a strip with square

base we have to use Theorem 1 instead.

Theorem 2. There is no APTAS for any of 3-dimensional strip packing prob-
lems 3-SP, 3-SPz, and 3-SPr on instances with a strip (1, 1,∞), unless P = NP.

3 Maximum Rectangle Packing Problem

Another rectangle bin packing problem well studied in the literature (e.g., [13],
[2]) is the following:

Definition 3. Given a collection of d-dimensional rectangles together with a
d-dimensional rectangular bin B. The goal of the Maximum d-dimensional
Rectangle Packing problem is to pack the maximum number of rectangles
from the collection into a single bin B.

Other variants of this problem are studied as well, e.g., each of the rectangles
can be associated with weight, and the goal is to maximize the total weight
of packed rectangles. In some variants ninety-degree rotations of rectangles are
allowed. But even in the simplest case, namely the 2-dimensional unweighted
case without rotations, only a (2+ε)-approximation algorithm is known [13]. The
question of whether there is an APTAS is open. However, in the 3-dimensional
case the problem can be settled in the negative.



Theorem 3. Unless P = NP, there is no APTAS for the Maximum 3-dimen-
sional Rectangle Packing problem with unit cube bin. The same result holds
also for z-oriented packings and for r-packings, in both cases with a bin (1, 1, b),
where b ∈ (

0, 1
4

)
.

Proof. We can use the hardness result of Theorem 2 for 3-SP with the strip
(1, 1,∞). Namely, there is a constant ρ > 1 and an infinite family F of in-
stances of the 3-SP problem with the strip (1, 1,∞), such that for a certain
computable function α : F → N it is NP-hard to distinguish for L ∈ F whether
OPT(L) ≤ α(L), or OPT(L) > ρ · α(L). Moreover, each rectangle in L is a
small perturbation of either

(
1
4 , 1

2 , 1
)

or
(

3
4 , 1, 1

)
.

For oriented packings (i.e., without rotations) and for any L ∈ F denote by
L ′ a rescaled copy of L by a factor 1/α(L) in the direction of the z-axis. Then
clearly, it is NP-hard to decide whether OPT(L ′) ≤ 1, or OPT(L ′) > ρ for an
instance L of the 3-SP problem with the strip (1, 1,∞). In the former case all
rectangles of L ′ can be packed into the unit cube bin. In the latter one we easily
obtain that less than |L ′| − b(ρ− 1)α(L)c can be packed into this bin.

For z-oriented packings we can use the same arguments starting instead from
the NP-hard gap derived for the problem 2-BPr with unit square bin [0, 1]2 (the
proof of Theorem 1).

For r-packings we rescale L by a factor b/α(L), b ∈ (0, 1
4 ), in the direction

of z-axis. Then it is NP-hard to decide whether all, or only a fraction strictly
less than 1 of the rectangles of L can be packed into the bin (1, 1, b). The special
uniform structure of instances in our hardness result for 2-BPr implies that all
r-packings for such rescaled instances are, in fact, z-oriented packings. Thus the
results follow as above.
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