
Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 129 ISSN 1472-763

OBJECT ORIENTED MODELLING OF TASK ORIENTED MACHINES

Y C Tan, D A Sanders, S Onuh and J Graham-Jones

Systems Engineering Research Group, Mechanical and Design Engineering Department,

Faculty of Technology, University of Portsmouth, Portsmouth, PO1 3DJ, UK.

Email: yong.tan@port.ac.uk

Abstract

New methods are presented for controlling,

programming and automating advanced production

machines. Object Oriented Programming is used to

model Task Machines. A brief review is provided of

machine, communication and machine programming

classifications. Task Machines are created from

Functional Machines and some benefits of using this

method are described through a comparison with

conventional Imperative and Functional Programming

methods. Using the new methods can improve

efficiency and flexibility of machine programming

systems.

Keywords: Object Oriented Programming, Control and

Automation, Robotics, CAD, Task Machine

Introduction

In this paper, several models of Task Machines are

presented and developed. Drilling, Threading, Milling

and Conveyor Task Machines are considered. These

are modeled using an Object Oriented approach.

A result is that control and programming of the

machines is simplified because jobs no longer need to

be expressed “explicitly” or by using step-by-step

teaching methods in order to instruct a machine to

perform a task.

The new methods mean that machine operators need

less programming skill or knowledge of the task to

operate a machine. Much research has been undertaken

to improve or simplify the control and programming of

a machine and some is included in [1, 2, 3 & 4].

In the work described in this paper, machines were

considered in two different categories based on how

they were used. Functional machines such as SCARA

Robots or Cartesian machines were built and designed

to be multi-functional for multiple purposes; structures

and kinematics were not designed for a specific product

or task.

With advances in technology, a machine may possess

functionality that is similar to some human abilities.

However, the multi-purpose functions a machine

possesses may not always be beneficial. Instead, it may

make a machine more expensive and more complex and

extensive training may be needed for machine

operators.

A Functional Machine does not possess knowledge of a

task it will perform. A machine operator of this

classification will need to be well versed, skilled and

knowledgeable in both the programming language used

to communicate with the machine and the task to be

performed.

Task Oriented Machines were first proposed by

Strickland to overcome some drawbacks of a

Functional Machine [5]. Strickland defined a Task

Oriented Machine as a machine that was constrained or

built specifically for a task and not product dependent.

A Task Machine is knowledgeable in the area of its

predefined task. The concept was later developed

further and described in more detail by Tewkesbury

[6]. Task Machines were classified into three different

categories: True Task Machine, Surrogate Task

Machine and Virtual Task Machine.

A True Task Machine is built specifically for a task.

Whereas, a Surrogate Task Machine is built from

modular parts specifically for a task and the controller

is replaced by a distributed controller. Lastly, a Virtual

Task Machine is a general-purpose machine that has

been constrained in software for a particular or specific

task.

Advantages of the Task Oriented approach are that

machine operators will not be burdened with low-level

functionality or programming of a machine. Instead,

mailto:yong.tan@port.ac.uk

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 130 ISSN 1472-763

they can concentrate and focus on improving the

production task rather than exploring the intricacies of

the machine.

In addition, operating a Task Machine on a specific

task does not require operators to be knowledgeable in

the task. Operating a machine is no longer restricted to

only a highly skilled operator; instead an operator

without any programming knowledge can operate it.

Human / Machine Interface

The machine and human interface can be classified into

two categories based on the type of instructions needed

by a machine in order to perform a task: Non-

Intelligent Communication for functional machines and

Intelligent Communication for Task Machines.

Interfacing with a Functional Machine using Non-

Intelligent Communication means that communication

is not possible in ways that a human would

communicate with another human. It needs to be given

with “How-to-do” instructions in order for it to perform

a task. In other words, a task such as a pick and place

task needs to be expressed “explicitly” or using step-

by-step teaching in terms of speeds, motions, directions

and positions etc. Non-Intelligent Task

Communication is Sequential Procedures + Data where

Data = Speeds + Motions + Directions + Positions +

etc…

In contrast, communication with a Task Machine is

Intelligent Communication. A Task Machine possesses

similar intelligence to that of a human operator in the

area of a predefined task. Hence, communication to

perform a task would be by using “What to Do”

instructions. A user operating this classification of

machine does not need to have programming skills or

knowledge of the task to be performed. An Intelligent

Task Communication = Final Output + Object

Description, where the Object Description = Parts

Geometry + Parts Location.

Benefits of Intelligent Communication are that

communication with a machine no longer needs to be

expressed “explicitly” and machines possess similar

levels of intelligence compared to a human in terms of

a specific bounded and predefined task.

Programming Machines

Machine Programming Systems have been classified

based on levels of abstraction, syntax, generation of

machine program and generation of geometrical

information, [1, 2, 3, 4, 7, 8, 9, 10 & 11]. The most

popular way to classify a Machine Programming

System has been based on the level of abstraction. This

could be explained as the level of sophistication of

language used to program a machine (for example,

Machine Code; Assembly; High-Level or Object-

Oriented Languages) to accomplish a task [1, 2, 4 &

11]. Typical levels of abstraction are:

 Joint Level.

 Manipulator Level.

 Task / Object Level.

 Objective Level.

Programming at a Joint level was achieved by

specifying movements and actions in terms of joint

coordinates. A machine was programmed by manually

moving to each desired position and then recording the

internal joint coordinates. An advantage was the

simplicity of implementation. It did not require a

general-purpose computer. Disadvantages are that it is

impossible to program a task off-line, the system

cannot be integrated with sensors and it is difficult to

forecast a complete machine simulation when all the

drives are in motion.

Manipulator level programming was a level above the

Joint level. Programming in this level allowed

programmers to concentrate on the motions of a

machine end effectors (arm positions). A machine was

guided to a desired position using a teach-pendant. An

advantage of this level of programming was that it

allowed simple integration with on-line sensor

information. However, it still required a programmer

to “explicitly” specify every movement of a machine

instead of simply stating what actions have to be

performed in order to accomplish a task. Therefore

languages used in this level were also known as

“explicit languages”.

Task level or Object level systems were developed to

improve the problems faced during manipulator level

programming. The systems in this level operated in

virtual environments based on objects existing in a

workspace. A programmer only needed to inform the

system about objects to be transferred and a task to be

accomplished [10]. Languages used at this level were

defined as “implicit languages”. A problem with

programming at this higher level of abstraction was that

it sacrificed the simplicity of programming used by joint

or manipulator levels. Another problem was that the

programmer at this level still required the planning of the

order in which subtasks were performed.

Objective level is the highest level defined in the

Machine Programming System classifications. At this

level, a programmer only needed to describe the parts

to be used, their general layout and the final assembly.

The system plans and performs the subtasks needed to

accomplish the goal.

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 131 ISSN 1472-763

Machine Programming Languages can be classified as

NC Languages, languages with specific machine

syntax, (for example VAL), general-purpose languages

for machines (for example KAREL) and general-

purpose computer languages (for example VB, Java,

C++, Fortran).

Conventionally, Machine Programming Languages

were based on existing NC Languages. The advantage

of using NC Languages was their ease of integrating an

industrial machine into a NC-production cell.

However, NC Languages lacked program structure and

on-line sensing capabilities for assembly tasks. This

led to a limitation in their flexibility and expandability.

Languages with specific machine syntax were

specifically designed with easier syntax to adjust to

usual machine terminology. This was also the main

advantage of these languages (VAL was the first

commercially available language using this method). A

disadvantage of this category was that it also lacked

structuring capabilities when they would have been

useful in more complex applications. General-Purpose

Programming Languages for machines were developed

with additional machine-specific commands added that

provided an easier integration with Computer Aided

Manufacturing (CAM) systems, [4]. The advantage of

this category was that it was more capable compared to

languages with specific machine syntax, which tended

to have better logic testing capabilities (for example,

Fanuc’s KAREL language). Different machine

manufacturers developed different Machine

Programming Languages for their Machine

Programming Systems. The main reason for

developing different Machine Programming Languages

was to raise the level of abstraction of the machine

programming system, from “explicit Machine

Programming Languages” to “implicit Machine

Programming Languages” [1]. However, this led to

another problem for machine programmers when they

had to program machines from different manufacturers.

General-Purpose Computer Languages were Machine

Programming Languages created as extensions of

existing Computer Programming Languages such as

Basic and C. A library of procedures that handled the

interface with the machine and external sensor was

developed as a supplement to the General-Purpose

Computer Language. An advantage of this level was

that it provided structuring capabilities, an important

factor for programming efficiency. This category

gained favour in the machine research communities [8]

and led to a system that is less limited in flexibility and

expandability.

There were mainly four programming paradigms used

for expressing a computation: Imperative; Functional;

Logic and Object-Oriented Programming. Imperative

Languages include Pascal, Cobol and Fortran,

Functional Languages include LISP, Logic Languages

include Prolog and Object-Oriented Languages include

VB .NET, Java and C++.

Imperative Programming Languages used stepwise or

sequential methods for data computation. The

algorithm for the computation was expressed explicitly

in terms of instructions such as assignments, tests,

branching and so on. The drawback of Imperative

Programming Languages was that a program written in

terms of “How To” carried out a task and its design

entailed every function accessing one another without

boundaries. Therefore, the programs written using

Imperative Programming Languages were difficult to

modify or reuse if the system needed to be upgraded.

Functional Programming Languages used mathematical

“lambda calculus” as a computation method. The

concept of a variable was not used. A user defined a

description of a problem and the language interpreter

applied logical reasoning to find an answer for the

problem.

Logic Programming Languages were similar to

Functional Programming and also took a mathematical

approach but through “formal logic”. Both Logic and

Functional Programming Languages could be classified

as Artificial Intelligence Languages. Artificial

Intelligence (AI) programming only required a

programmer to define the question and the program

would find out the answers for the question using logic

and functional reasoning methods.

Object-Oriented Programming was a programming

paradigm based on the idea of objects and classes. The

idea came from Ole Dahl and Kristen Nygaard in

Norway and dated back to the mid-1960s when they

created Simula Language for simulating physical

processes. It could be explained as an extension

developed from Imperative Languages and the

computation method used was similar; data was

manipulated in a stepwise or sequential method.

However, it could be distinguished from Imperative

Languages because of the object boundary idea.

Object-Oriented Design used the separation of data and

functionality into object classes. In summary, a system

was created from object instances. The advantages of

programming using Object-Oriented Programming

Languages were that design of the software is easier

compared to other paradigms because modelling is

based on real-world objects; hence it is more natural

and easier to understand, development risks for

complex systems can be reduced, maintenance and

upgrading is easier and Classes could be reused by

other software systems.

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 132 ISSN 1472-763

Functional Machine

Task Machine

- Constrained with software to perform only one task

Sub Task 1 Sub Task 2

Task Machine 1
- Constrained with software to perform only one task

Sub Task 1

Sub Task 3

Functional Machine
EMCO PC Turn 55-II

Threading Task Machine

- Constrained with software to perform only threading

tasks

Sub Task 1

Coolant Control
Sub Task 2

Select Tool
Sub Task 3

Define Path

Drilling Task Machine
- Constrained with software to perform only drilling tasks

Sub Task 1

Coolant Control

Sub Task 2

Select Tool

Sub Task 3

Drill Hole

Defining and Modelling Task Machines

In this paper, a machine is only considered as a Task

Machine when it is constrained to perform only a

specific task. A Functional Machine can be converted

into a Task Machine by constraining the multiple

functionalities to convert it into a Task Machine that

can only carry out a single type of operation.

Figure 1 – EMCO PC Turn 55-II Functional Machine

Figure 2 - Creation of a Task Machine from a

General-Purpose Functional Machine

An example is the Functional Machine - EMCO PC

Turn 55-II shown in Figure 1. It has multiple functions

needed to perform operations such as drilling,

threading, boring etc. In order for it to be converted

into a Drilling Task Machine, its functionality has to be

constrained to drilling operations only. The same

applied when it was converted into a Threading Task

Machine, its functionality had to be constrained to

perform only threading operations. Figure 3 shows the

creation of Drilling and Threading Task Machines.

Software is created to constrain the functionality of a

machine. When it was constrained to perform only

drilling task, it was then called “Drilling Task

Machine” after the constrained task. A Drilling Task

Machine only had the knowledge and rules required for

drilling operations. The knowledge and intelligence

needed were distributed among its sub tasks such as

coolant control, select tool, drill hole etc.

Figure 3 - Creation of a Drilling Task Machine and a

Threading Task Machine from a Specific Functional

Machine [Reproduced from Tan, Sanders &

Tewkesbury (2004a)]

To perform a drilling task using a Drilling Task

Machine, a machine operator only needed to input

information such as hole size (12 mm), work piece

material and the drilling position on the work piece.

The coolant control sub task had the intelligence to

determine for itself whether coolant was needed or not

by analyzing the material information provided. The

select tool sub task then determined a suitable (12 mm)

drill bit to be used. The drill hole sub task generated

the drilling sequence.

In the case where no suitable (12 mm) drill bit size was

available from its tools collection, the Task Machine

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 133 ISSN 1472-763

will then feedback to the machine operator that it was

unable to perform the task and a suggestion may be

given. A Drilling Task Machine will not have

intelligence beyond the knowledge and rules needed for

a drilling operation. For example, a Drilling Task

Machine tools library is constrained with only drilling

tools. It does not include threading tools in its library

and the define path sub task needed to generate a

threading path. Therefore, the intelligent

communication cannot be used to perform the threading

operation even though its physical structure has the

capability to perform a threading operation.

Figure 4 - NC Programming Approach Flowchart
[Reproduced from Tan, Sanders & Tewkesbury (2004a)].

The same principle is used to create a Threading Task

Machine by constraining the same Functional Machine

using software to perform only threading tasks. A

Threading Task Machine only has the intelligence and

functionality for threading operations.

A machine operator did not need to tell the Threading

Task Machine what threading tool size or threading

sequence was needed. The only information needed

was work piece information (material and geometry)

and final output (threading pitch size, location and

length). The define path sub task automatically

generated the appropriate path needed for the threading

operation. This approach simplified and improved the

efficiency of controlling and programming the machine

during a particular task.

Programming

An example of system modeling using Imperative

Programming and a Functional Oriented approach is

described and compared with the new method.

As an example, a NC Programming modelling using

EMCO PC Mill 55-II Functional Machine is described.

 The NC Programming Language used imperative

methods for data computation. The algorithm for the

computation was expressed explicitly in terms of

instructions such as assignments, tests, branching and

so on. Figure 4 shows a NC Programming modelling

flowchart for an operation of drilling 4 holes, 2 pockets

and a surface milling. Tools selection, coolant and

drilling sequences all needed to be explicitly

programmed by a machine operator.

A drawback of NC Language Programming was that a

program written in terms of “How to do” carried out a

task or operation and its design entailed every function

accessing one another without boundaries. Programs

written using NC Programming Languages were

difficult to modify or reuse if the operations needed to

be rearranged.

In Imperative Programming modelling, a programmer

would need to explicitly describe procedures in detail.

The drawback of using Imperative Programming is that

program length is proportional to the number of

workstations.

The program will be long when modelling a complex

system with many workstations and thus difficult for

programmer if any debugging is necessary.

Another drawback of Imperative Programming was that

once the system was created, it was difficult to make any

modifications as this design method entailed every

function accessing one another without boundaries. For

example, if a Conveyor System needed to be

Start Point

 Start Spindle

 Set spindle speed

 Set coolant ON

 Change tool

 Set moving speed

 Move to drilling position

 Tool down (2mm each

time)

 Tool up

No
Reached hole

depth?

Yes Drill Hole 1

Drill Hole 2

Drill Hole 3

Drill Hole 4

 Mill

Pocket 1

 Mill

Pocket 2

 Mill

Surface 1

End Point

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 134 ISSN 1472-763

reconstructed with sensors or workstations reallocated.

Often programmers would choose to rewrite a whole

program rather than modifying the old program for the

new system.

Modelling using Object-Oriented techniques

A Conveyor System shown in Figure 5 is used to

describe modelling using Object Oriented techniques.

Figure 5 – Conveyor System

Figure 6 - Object Oriented Approach Diagram
[Reproduced from Tan, Sanders & Tewkesbury (2004b)]

Figure 6 shows the modelling of a Conveyor System

using Object Oriented Programming and a Task

Oriented approach. Objects within the system were

identified in the first stage of Object Oriented Design.

Objects identified from the real-world system consisted

of tangible or intangible objects such as sensor, group

of sensors, pallet stopper, group of pallet stoppers,

conveyor station, group of conveyor stations, pallet and

conveyor system. Classes of objects were then created

and their relationships were defined. A system

computation was based on object interaction. Every

object was an instance of a class. A class simply

represented a template for a group of similar objects.

The relationship between each of the objects is shown

with the arrows.

The idea of an object boundary is shown by defining

individual attributes, operations and properties for each

object. This is the reason why a system could be

modified easily using an Object Oriented approach. An

example of the details of an object’s properties is

described using Universal Modelling Language (UML).

The Conveyor Machine was converted into a Conveyor

Task Machine using both Object Oriented

Programming and a Task approach. An object instance

was easily created from its template class so that the

length of a program modelling a complex system was

kept short and simple. Debugging and modifying in the

future is easier and more efficient compared to

Imperative Programming. Even if the system needed to

be modified in the future, a programmer would no

longer need to rewrite the whole program but could

reuse classes to create a new system.

When a Conveyor Machine was converted to a

Conveyor Task Machine, it possessed the knowledge

and intelligence required for a specific conveyor task.

The knowledge and intelligence needed were

distributed among its sub tasks such as Assembly

Workstation Sub Task, QC Workstation Sub Task and

Reject Workstation Sub Task etc.

OOP Length  No. of Workstation (1..n)

A Conveyor Task Machine only had the knowledge and

rules required for the specific predefined conveyor

task.

To perform a conveyor task, for example to transfer a

part from a start point (Assembly Workstation) to an

end point (Reject Workstation), a machine operator

only needed to input information such as number of

parts to be transfer and its final destination. The

Assembly Workstation Sub Task had the intelligence to

move a pallet to Assembly Workstation and determine

when to release the pallet automatically. Then QC

Workstation Sub Task would move a pallet to QC

Workstation and release it when the job is done. Reject

Workstation Sub Task determines if a part assembly

Pallet

Stopper

Class

Pallet Class

1..∞

1..1

Sensor

Collection

Class

1..∞

Pallet

Stopper

Collection

Class

1..1

1..1

Motor Class Sensor Class

1..∞

1..1

Conveyor

System

Class

1..∞

1..1

Pallet

Collection

Class

Conveyor

Station

Class

Conveyor

Station

Collection

Class

Country Code 21.

Journal of Intelligent Mobility, Volume 9, 2006 135 ISSN 1472-763

completed successfully or if not completed then should

be rejected.

Discussions and Conclusions

An Objective Level was defined as the highest level to

be achieved among all the Machine Programming

System classifications. This level of Machine

Programming System could be achieved using the Task

Oriented approach so that machine operators would not

be burdened by low-level functionality of a machine.

They no longer need to be well versed in the

programming language used by a machine or be

knowledgeable in the task to be performed. Instead

they could concentrate and focus on improving the

production task. This approach suggested that

operating a machine on a specific task could be easier

and more efficient [12].

Object Oriented Programming Languages provided a

better design paradigm to model a Task Machine

compared to other Computer Language classifications

because the whole Conveyor Task Machine System

could be described as a main task made up from many

other sub tasks. All these tasks were easier to model

when treated as individual objects. The Conveyor Task

Machine System shown in Figure 6 is an example of a

system suited to a description using objects and classes.

 The system created using this programming paradigm

could be easily modified, upgraded and debugged.

The Object Oriented approach provides an easy and

efficient solution for program modification and

debugging. Programs created could be reused even if

the system needed to be modified in the future [13].

There are still issues for future work, such as

integration of Task Machines with CAD systems to

provide information and advice to designers and the

use of intelligent agents.

References

[1] Aken, L.V.; & Brussel H.V. 1988. Robot

programming languages: the statement of a

problem. Robotica Volume 6: 141-148.

[2] Bonner, S. & Shin, K.G. 1982. A comparative

study of robot languages. Computer 15(12): 82-96.

[3] Lapham, J. 1999. RobotScriptTM: the

introduction of a universal robot programming

language. Industrial Robot 26(1): 17-25.

[4] Zielinski, C. 1995. Robot programming methods.

Warsaw.: Publishing House of Warsaw University

of Technology, ISSN 0137-2319.

[5] Strickland, P. 1992. Task Orientated Robotics.

Ph.D. diss., University of Portsmouth.

[6] Tewkesbury, G. 1994. Design using Distribution

Intelligenge within Advanced Production

Machinery. Ph.D. diss., University of Portsmouth.

[7] Gruver, W.A., Soroka, B.I., Craig, J.J., & Turner,

T.L. (1984). Industrial robot programming

languages: A comparative evaluation. IEEE

Transactions on Systems, Man and Cybernetics,

SMC-14(4), 565-570.

[8]Latombe, J.C. (1983). Survey of advanced general-

purpose software for robot manipulators.

Computerss in industry , 4(3), 227-242.

[9] Tewkesbury, G.E. & Sanders, D.A. (1999a). A

new robot command library which includes

simulation. Industrial Robot, 26(1), 39-48.

[10] Tewkesbury, G.E. & Sanders, D.A. (1999b). A

new simulation based robot command library

applied to three robots. Journal of Robotics

System, 16(8), 461-469.

[11] Zielinski, C. (1997). Object-oriented robot

programming. Robotica, 15, 41-48.

[12] Tan, Y.C., Sanders, D.A., & Tewkesbury, G.E.

2004a. Control, programming and automation of

intelligent production machines using a task

oriented approach. Proceedings of the 2
nd

 Int’

Conf’ on AI in Engineering and Technology, Vo 2,

162-166. ISBN: 9832643384.

[13] Tan, Y.C., Sanders, D.A., & Tewkesbury, G.E.

2004b. Creating a new smart workplace using

intelligent task machines. Proc’ 7
th

 Int Conf - Work

with Computing Syst, 120-125. ISBN: 9834174209.

