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Abstract

Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However,
standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven
high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse
lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by
applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of
training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting
that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs
showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much
higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a
significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility.
This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs
and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives
for comparative approaches in aging, personality, and evolutionary research.
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Introduction

In humans there is strong evidence for inter-individual

variability in the decline of cognitive ability with age. Normal

cognitive aging has been well described and decline is not

universal among the different cognitive domains but it is found in

specific domains such as processing speed and reasoning, memory,

and executive functions (for review see [1]). Sensitive and reliable

cognitive testing procedures may reveal such impairments. Simple

discrimination and reversal learning, for instance, have been used

to investigate learning and cognitive flexibility and revealed age-

related impairments in humans (e.g. [2], [3]), monkeys (e.g. [4–6]),

and rats (e.g. [7–10]).

Promising novel non-human primate models for aging and age-

associated diseases are mouse lemurs, the world’s smallest non-

human primates [11], [12]. Mouse lemurs are genetically more

closely related to humans than rodents. They are nocturnal,

solitary foragers while, during the day, they form sleeping groups

[13], [14]. In the wild, mouse lemurs have a maximum lifespan of

8 years [15]. However, the life expectancy of mouse lemurs is

higher in captivity: for our colony, the maximum recorded lifespan

is 15 years. Due to their mouse-like body size, the maintenance

and breeding of mouse lemurs is cost-efficient [11]. Therefore,

they represent a valuable exception among primates for conduct-

ing long-term research, offering an ideal opportunity for studying

their aging process not only cross-sectional, but also in longitudinal

studies using individuals with known life history in existing aging

colonies in captivity [11], [16]. Until now, studies on mouse

lemurs have shown that cerebral atrophy is found in most aged

animals [17], [18]. Brain pathologies similar to those of AD-

patients can be found in some aged individuals [19], [20]; for

review see [11], [12]. For example, Bons, Delacourte, and

colleagues described b-amyloid plaques and pathological tau

protein aggregation in M. murinus [19], [20]. Dhenain and

colleagues later demonstrated iron accumulations in the mouse

lemur brain as a process of non-pathological aging but with the

same topography as in humans [21]. Besides biological and

biochemical aspects of cerebral aging, studies on age-related

cognitive decline in mouse lemurs are more limited. However,

while no significant difference was observed between young adults

and aged animals in cognitive tasks involving odour [22] or visual

discrimination of light [23], some impairments were observed in

more complex tasks such as shift and spatial rule-guided
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discrimination tasks [23–25]. A recent study demonstrated that

mouse lemurs seem to be the only non-human primates

reproducing the link between regional cerebral atrophy and age-

associated cognitive alterations [23]. A decline in executive

functions in aged mouse lemurs was associated with an atrophy

of the septal region while impairment in spatial memory was

correlated with atrophied hippocampo-entorhinal regions [23].

Most of the above-described studies used non-automated behav-

ioural tasks, which impedes a direct comparison in translational

research. Developing sensitive, reliable, and translational tasks to

assess specific cognitive domains is, therefore, crucial to under-

stand underlying neural mechanisms during aging.

The touchscreen testing method is a common procedure to

assess cognitive abilities in humans and may help to easily detect

age-related impairments in specific domains (e.g. the Cambridge

Neuropsychological Test Automated Battery (CANTAB), a

renowned battery of neuropsychological tests, see e.g. [26], [27]).

The touchscreen testing method has several advantages such as

high stimulus control, minimized operator-subject interaction, and

a wide variety of cognitive tasks that can be performed using

standardized testing procedures. A further advantage relevant for

translational research is that touchscreen-based tests are adaptable

to a broad range of animal species: animals may easily give

responses to stimuli displayed on a screen by touching with the

nose or hand. During the last decades, batteries of tests using a

touchscreen testing method have been successfully used for

assessing cognitive skills in rodents [28–32] as well as New World

(marmoset: e.g. [33]) and Old World monkeys (rhesus monkey:

e.g. [34], baboon: e.g. [35]). Some studies showed that age effects

on executive functions can be reliably detected in both humans

[26] and monkeys [36] using an automated method. To date, a

computer-assisted translational approach that allows translating

human-comparable cognitive tasks to mouse lemurs is missing. On

the long run, such an approach would help to behaviorally and

reliably test the functionality of specific brain regions of interest

and to understand the mechanisms responsible for the great inter-

individual variability in performance, i.e. discriminating healthy

aging from neuropathological disorders.

In this study, we applied for the first time a touchscreen-based

procedure to the model mouse lemur and examined different

facets of cognition using two paradigms: a visual pairwise

discrimination (PD) task and reversal learning (PDR). Learning

the discrimination between two visual stimuli involves perceptual

learning and non-hippocampal, associative stimulus-reward learn-

ing [37]. Since the reversal learning requires inhibition of the

previously learned responses and the ability to learn the new

stimulus-reward contingencies, the task assesses cognitive flexibility

[37]. We hypothesized that, comparable to humans, monkeys, and

rodents, young and aged mouse lemurs can be trained successfully

to interact with a touch-sensitive screen and to respond for food

reinforcement. Furthermore, we postulated that, comparable to

humans, monkeys, and rodents, in computerized touchscreen-

based tasks, age will have a significant effect on performance in the

two cognitive tasks. We did not expect to find significant

differences in attention and motivation levels during the tasks

between the age groups.

Our study revealed that mouse lemurs can be trained

successfully to use a touch-screen to get a reward within an

average of 24 days. Individual performances in PD and PDR tasks

correlate significantly, suggesting that individual performance is

unrelated to the respective task. Compared to the young, aged

mouse lemurs showed strong impairments in both PD and PDR

tasks and high inter-individual variation. Attention and motivation

did not differ between age groups in the respective tasks. Thus, our

study provides the first touchscreen-based data on the cognitive

skills and age-related dysfunction in the novel primate aging model

mouse lemur. Findings open exciting perspectives for comparative

approaches in aging, personality, and evolutionary research.

Material and Methods

Ethical statement
Experiments are non-invasive and belong to basic research.

They may also be used to improve well-being under captive

conditions. Experiments were performed in accordance with the

NRC Guide for the Care and Use of Laboratory Animals, the

European Directive 2010/63/EU on the protection of animals

used for scientific purposes, and the German Animal Welfare Act.

Our non-invasive testing procedure was approved by the Animal

Welfare Committee of the University of Veterinary Medicine and

approved and licensed by the Animal Welfare Committee of the

Niedersächsisches Landesamt für Verbraucherschutz und Lebens-

mittelsicherheit (reference numbers: previously AZ 33.9-42502-05-

10A080, now AZ 33.12-42502-04-14/1454, 28.04.2014).

All information mentioned is in accordance with the recom-

mendations of the Weatherall report, ‘‘The use of non-human

primates in research’’.

We provided environmental enrichment to the mouse lemurs:

within the housing cages, the animals of our colony have branches

and hollow cylinders that allow them to climb and hide within

their home cages. In addition, each cage is equipped with several

sleeping boxes, to model the situation in nature, where mouse

lemurs sleep, rest, and rear their offspring in tree holes [38].

Subjects
Thirty adult grey mouse lemurs (Microcebus murinus, see

Fig. 1), 14 males and 16 females, were included in this study (see

Table 1). According to the age classification in previous studies

[39], [40], we formed two age cohorts: one group of 20 young

adults (10 males, 10 females; mean age = 2.6 years, range: 1.1–4.1,

see Table 1) and one group of 10 aged adults (4 males, 6 females;

mean age = 7.9 years, range: 6.9–9.5 years, see Table 1). Prior to

the study, a veterinarian had checked the health status of each

animal. An ophthalmologic examination was conducted, which

allowed us to discard any individual with ocular pathology

(approx. 1/3rd of the aged animals from our colony; for methods

see [41]).

All mouse lemurs used in this study were bred and kept in the

colony of the Institute of Zoology, University of Veterinary

Medicine Hannover [16], licensed for the maintenance and

breeding of mouse lemurs (Erlaubnis gemäß 111 Abs. 1 Satz 1 Nr.

1 Tierschutzgesetz in Verbindung mit 1 12 Tierschutz-Versuch-

stierverordnung, Landeshauptstadt Hannover, reference number

AZ 42500/1H, 15.01.2014). The Zimmermann’s mouse lemur

colony was founded more than two decades ago at the University

of Stuttgart-Hohenheim and it was the first colony in which the

Goodman’s mouse lemur (Microcebus lehilahytsara) has success-

fully been bred in captivity [16]. All subjects are registered in the

mouse lemur studbook. The mouse lemurs used in the described

study lived under a reversed, seasonally fluctuating light cycle (LD

14:10 during the long-day period of 8 months; LD 10:14 during

the short-day period of 4 months) and were housed in different

rooms where the dark phase, i.e. activity period, started either at

10:00 a.m., 12:00 a.m., or 2:00 p.m. In all rooms, the temperature

and relative humidity were controlled and set to 23–25uC and 50–

60%, respectively. Three times a week, the diet of the mouse

lemurs consisted of seasonally changing fresh fruits and vegetables,

dried fruits, nuts, as well as mealworms or locusts. Milk porridge
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enriched with vitamins, minerals, and albumin was offered the

other 4 days of the week. During the study period, the tested

mouse lemurs were maintained either alone or in pairs in cages of

at least 0.75 m3 per animal. Animal weight was controlled every

day and, on average, was 6364 g during the testing period, with

no significant differences between young and aged animals (Mann-

Whitney U-test, Nyoung = 20, Naged = 10, U = 85.0, p = 0.53). The

weight at which mouse lemurs could be trained successfully

corresponds to the weight under natural conditions (compare [16],

[42], [43]). Adipose mouse lemurs had to be under a restricted diet

to reach the normal weight before testing.

For this study, each mouse lemur was tested alone and on a

daily basis ( = 1 session/day). Wild mouse lemurs are solitary

foragers and separation from their sleeping partners during their

activity phase corresponds to their natural behaviour [13], [14],

[44]. Prior to the study, all animals were naı̈ve to touch-sensitive

screen devices.

Test chamber
Experiments were performed in a separate testing room,

containing a test chamber with a touch-sensitive screen (see

Fig. 2). The test chamber was a customized version of the setup

used by Bussey and colleagues [28] for rats (89540R-PD Task for

rat Touch Screen System, Campden Instruments). The touch-

sensitive screen could display visual stimuli in the front of the

trapezoidal chamber (width: front = 245 mm, back = 130 mm;

length = 330 mm; height = 95 mm), a reward tray delivering

apple juice was in the rear wall of the chamber. The chamber was

equipped with infrared photocells allowing the recording of entries

in the reward tray. Each chamber output (touch on the screen and

break of a photocell beam) was simultaneously recorded and

analysed by a computer. A video camera and a video recorder

were used to film and record each experiment for later offline

analysis. A black Perspex mask with 2 response windows

(46 mm646 mm) allowed the mouse lemurs to give a response

on one of 2 screen areas. Since mouse lemurs are nocturnal, both

training and testing sessions were performed in the dark, i.e. all the

visible lights that come with the basic version of the touchscreen

setup (house and tray light) had permanently been deactivated.

Training Protocol
The training and test protocols for rodents [28], [30], [31] were

adapted to mouse lemurs. Mouse lemurs were trained and tested

once a day ( = 1 session), 7 days a week, and within the first

2 hours of their nocturnal activity. The training stimuli were

randomly drawn from a pool of 38 pictures (for a list see Fig. S1A).

Each picture could only be drawn once per session. The training

protocol was divided into the following 5 steps:

# Step 1 - Habituation to the chamber: the animal was

allowed to explore the chamber for 20 minutes. The reward

tray was filled with 1 ml apple juice. This step lasted 1

session.

# Step 2 – Initial training with images: two identical images

were displayed on the screen for 30 seconds ( = one trial).

The mouse lemur was rewarded as soon as it touched one

image (75 ml apple juice), which made both images

disappear, or after the two images disappeared automati-

cally (25 ml apple juice). A reward was accompanied by the

noise of the activated juice delivery pump. This noise was

clearly perceived by the mouse lemurs (when first heard, all

subjects showed ear movements and looked into the

direction of the pump). A new trial started after a 10-

second inter-trial interval (ITI). The maximal duration of a

session was set to 30 minutes. We observed that mouse

lemurs can adopt two different strategies in this step: either

they actively interact with the screen within the 30 s and get

a reward or they stay close to the reward tray to collect a

reward after 30 s and wait there for the next trial/reward.

We, therefore, defined two different criteria for this training

step. For the first one, a given subject had to complete 30

trials in 20 minutes. This criterion could only be reached,

when the subject interacted correctly with the touchscreen

(1st strategy). For those animals that adopted the second

strategy, to simply collect the automatic reward without

touchscreen interaction, the subject had to complete 30

trials in 30 minutes in 3 consecutive sessions. The

interaction with the touchscreen then had to be learned in

training step 3 (see below) by the latter animals.

# Step 3 – Must touch one image: only 1 image was

displayed at a pseudo-randomly chosen position (156on the

left side; 156 on the right side; never more than three

consecutive trials on the same side), the other response

window contained no image ( = blank). The subject was

rewarded with 25 ml apple juice as soon as it touched the

image ( = correct response). A new trial started when the

mouse lemur collected the reward. A response to the blank

screen was not rewarded ( = incorrect response). A trial

ended when the image was touched. Two consecutive trials

were separated by a 10-s ITI. To reach the criterion for this

step, the mouse lemur had to perform 30 trials in less than

30 minutes.

# Step 4 – Must initiate a trial: as in step 3, only 1 image

was shown at a pseudo-random position. To display the

image (i.e. initiate the trial), the mouse lemur had to

introduce its head into the empty reward tray. The mouse

lemur was rewarded with 25 ml apple juice as soon as it gave

a correct response. A trial ended when the image was

touched. Two trials were separated by a 10-s ITI. To reach

the criterion for this step, the mouse lemur had to perform

30 trials in less than 30 minutes.

# Step 5 – Incorrect responses signalled by a tone: similar to

step 4, but incorrect responses additionally were signalled by

Figure 1. The grey mouse lemur (Microcebus murinus) repre-
sents the smallest primate aging model. Photograph taken by Dr.
Christian Schopf.
doi:10.1371/journal.pone.0109393.g001
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a 500-ms long 2000 Hz tone. In the case of incorrect

responses, the trial was immediately stopped and the ITI

was set to 15 s. To reach the criterion for this step, the

mouse lemur had to complete 30 trials in 30 minutes with at

least 80% correct responses on 2 consecutive days.

Testing Protocol
Once the training was accomplished, mouse lemurs were tested

in the Pairwise Discrimination (PD) task. The aim of this task is to

evaluate the ability to discriminate two unknown images (white

shapes on a black background). For all individuals of M. murinus
trained in the pairwise discrimination and its reversal task, we used

the ‘‘marble-fan’’ pair of visual stimuli that was also used in many

studies investigating visual discrimination in mice ([30]; Fig. S1B).

One image was arbitrarily used as the positive stimulus, the other

one as the negative stimulus. The arbitrary choice was counter-

balanced between individuals. The mouse lemur was rewarded

with 25 ml apple juice as soon as it touched the positive stimulus. A

touch on the negative stimulus was signalled by the same tone as in

training step 5 and the increased ITI of 15 s. The ITI after correct

choices was 10 s. A mouse lemur was considered discriminating

both stimuli when it reached at least 80% correct responses in 2

consecutive sessions (maximum 30 trials per session). Within a

session, both images were pseudo-randomly presented 15 times on

the left and 15 times on the right side. The rewarded stimulus

could not appear more than three consecutive trials on the same

side. Once the mouse lemurs reached the PD task criterion (for a

brief example video, see Movie S1), they were tested in the reversal

task (PDR). The former positive stimulus was now the negative one

and vice-versa. In the PDR, the criterion was identical to that in

the PD task (i.e. at least 80% correct responses in 2 consecutive

daily sessions).

Data analysis
Training. The number of sessions required to complete each

training step and the whole training phase were recorded for each

mouse lemur. We then compared these numbers of sessions

between young and aged adults using a Mann-Whitney U test. In

general, we used the non-parametric Mann-Whitney U test for the

comparisons made in this study, since our data has not uniformly

been normally distributed (Shapiro-Wilk test).

PD task. Since visual stimulus bias may affect the data

analysis and interpretation in PD [30], we assessed for each mouse

lemur, whether it showed a preference or an aversion for the

positive stimulus in the first session using a binomial test. Six

mouse lemurs (3 young males, 2 young females and 1 aged male)

showed such a stimulus bias in the first session (see Table 1). Most

of them showed a positive bias for the ‘‘marble’’ image (3 young

males, 1 young female and 1 aged male), 1 for the ‘‘fan’’ image (1

young female). The performance data for these animals were

discarded from the performance analysis in the PD task.

The performance of a mouse lemur was assessed using a

learning curve with the percentage accuracy for each session and

by counting the number of sessions and trials as well as errors an

animal needed to reach the task criterion. The performance of

both age groups was compared using a Mann-Whitney U test.

Within the group of young animals, we also tested for an influence

of sex (male vs. female) using a Mann-Whitney U test.

Lastly, we controlled for differences in attention and motivation

during the task between both age groups [30]. For that purpose,

the average latency to respond after the stimuli display and the

average latency to collect the reward after giving a correct answer

was calculated for each mouse lemur and over all sessions. We

compared these measurements between young and aged adults

using a Mann-Whitney U test. Within the young subjects, we

again tested for an influence of sex (male vs. female) using a Mann-

Whitney U test.

PDR task. In the first session, using a binomial test, we

checked whether mouse lemurs showed a bias for the former PD

positive stimulus, as it would be expected. As for the PD task, the

performance of each mouse lemur was then assessed using a

learning curve with the percentage accuracy for each session and

the number of sessions and trials an animal needed to reach the

Figure 2. Test chamber (PD+ PDR task, top view). TS = touchscreen device; RW1, RW2 = response windows; RT = reward tray.
doi:10.1371/journal.pone.0109393.g002
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task criterion. Furthermore, we analysed the perseveration phase

as defined by Mar and colleagues [31]. For this purpose, using a

binomial test, we determined for each session, whether a mouse

lemur persevered and responded significantly more to the formerly

positive stimulus. The perseverative phase, therefore, included all

sessions in which the mouse lemurs showed a response bias for the

formerly positive stimulus. Within the perseverative phase, the

number of errors, so-called perseverative errors, was counted for

each animal. As a second measure for the cognitive flexibility/

perseverance of the subjects during reversal learning, we counted

the individual number of trials needed and errors made until

reaching a criterion of 50% correct trials (chance level) in two

complete, consecutive sessions. This criterion was taken to define

the definite end of perseverance and the starting point of the new

learning phase.

The performance and the number of perseverative errors of

both age groups were compared using a Mann-Whitney U test.

Within the young animals, we also tested for sex differences (male

vs. female) using a Mann-Whitney U test.

Lastly, we controlled for differences in attention and motivation

during the task between both age groups [31]. For that purpose,

the average latency to respond after the stimuli display and the

average latency to collect the reward after giving a correct answer

over all sessions were calculated for each mouse lemur. We

compared these measurements between young and aged adults

using a Mann-Whitney U test. Within the group of the young

subjects, we also tested for an influence of sex (male vs. female)

using a Mann-Whitney U test.

When not indicated, results are given in Mean 6SEM. The

level of statistical significance was set at p = 0.05. A trend was

considered when 0.05,p#0.1. All statistical tests were exact and

calculated using STATISTICA 10 (StatSoft, Hamburg, Ger-

many).

Results

Training
All mouse lemurs were successfully trained to interact with the

touch-sensitive screen. They mostly used their snout but also both

snout and one hand or only one hand to touch the screen. They

needed an average of 24.262.9 days of training before entering

the PD task (see Table 1). Training step 2 was completed in

4.160.7 days, step 3 in 6.061.4, step 4 in 2.960.6, and step 5 in

10.261.5 days. No significant differences in the total number of

training days, nor in the number of days needed to complete each

different training step was found between young and aged mouse

lemurs (Mann-Whitney U test, U$87, Nyoung = 20, Naged = 10,

p$0.588). Great inter-individual variability in the number of days

required for training was found in both age groups (young range:

6–71; aged range: 6–63; see Table 1).

PD task
All tested mouse lemurs succeeded in acquiring the visual

discrimination (see Table 1; for examples of learning curves see

Fig. 3A). Among the 24 mouse lemurs that showed no spontaneous

preference for an image, we found a significant difference in the

number of sessions and trials required to reach the criterion between

young and aged adults (Mann-Whitney U test, Nyoung = 15, Naged = 9,

U#24, p#0.009). Young mouse lemurs needed fewer trials (median

= 210) than aged ones (median = 420) to reach the criterion (Fig. 4).

Great inter-individual variability in the number of trials to reach the

criterion was found: the performance of young adults ranged from 120

to 570, while it was even wider (range: 191–780) for the aged ones

(Fig. 4). Among young adults, we found that females tended to require

fewer trials to reach the criterion than males (Mann-Whitney U test,

Nmales = 7, Nfemales = 8, U = 11, p = 0.054; Fig. 5A). Due to the

smaller sample size, aged adults could not reliably be statistically

compared for sex differences in the median number of trials needed to

reach the PD-criterion. Nevertheless, aged females also showed better

values than aged males (Fig. 5B).

Control for attention to the task
Young and aged mouse lemurs did not differ significantly in their

latency to respond after the stimuli display (medianyoung = 4.7 s,

range: 2.5–9.9 s; medianaged = 5.8 s, range: 2.8–56.7 s; Mann-

Whitney U test, Nyoung = 15, Naged = 9, U = 46, p = 0.215). Among

young adults, we found no significant differences in the latency to

respond between the sexes (Mann-Whitney test, Nmales = 7,

Nfemales = 8, U = 22, p = 0.536). Among aged adults, females

showed a shorter median latency to respond than males

(medianfemales = 5.2 s, range: 2.8–10.9 s; medianmales = 19.2 s,

range: 6.2–56.7 s). However, the sample of the aged males was too

small to statistically verify this effect.

Control for motivation to collect the reward
Young mouse lemurs tended to collect the reward quicker than the

aged ones (medianyoung = 1.6 s, range: 0.9–3.0 s; medianaged = 2.5 s,

range: 1.2–15.1 s; Mann-Whitney test, Nyoung = 15, Naged = 9,

U = 39, p = 0.096), but this statistical trend was mainly caused by the

contribution of one of the old males (ULI).

PDR task
All 30 tested mouse lemurs succeeded in the reversal learning (see

Table 1; for examples of learning curves see Fig. 3B). In the first

session, the average accuracy was 20.361.8%. We found a

statistical trend for a difference in the number of sessions

(p = 0.061) and a significant difference in the number of trials

required to reach the criterion between young and aged adults

(Mann-Whitney U test, Nyoung = 20, Naged = 10, U = 54.5,

p = 0.044; Fig. 6). Young mouse lemurs needed fewer trials (median

= 390) than aged ones (median = 617) to reach the criterion (Fig. 6).

Again, great inter-individual variability in the number of trials to

reach the criterion was found: the performance of young adults

ranged from 208 to 960, while it was much wider (range: 300–1800)

for the aged ones. Among the young adults, we found that females

tended to require fewer trials (median = 302) to reach the criterion

than males (median = 426; Mann-Whitney U test, Nmales =

Nfemales = 10, U = 27.5, p = 0.089; Fig. 7A; for the results of the

aged animals, see Fig. 7B). Aged mouse lemurs tended to make

more perseverative errors (binomial criterion) than young ones

(medianyoung = 72, range: 27–216; medianaged = 123, range: 14–

797; Mann-Whitney U test, Nyoung = 20, Naged = 10, U = 60,

p = 0.082). Using the 50% criterion to measure perseverance

revealed that aged and young adults differed significantly in both the

total number of perseverative errors (medianyoung = 153.5, range:

84–367; medianaged = 251.5, range: 91–1001; Mann-Whitney U

test, Nyoung = 20, Naged = 10, U = 47, p = 0.019; Fig. 8A) and the

number of trials (medianyoung = 245.5, range: 148–600; medianaged

= 355, range: 150–1680; Mann-Whitney U test, Nyoung = 20, Naged

= 10, U = 43, p = 0.011; Fig. 8B). On the group level, aged adults

needed more trials to quit following the former rule and,

accordingly, made more wrong decisions before ultimately re-

reaching chance performance.

Within the group of the young animals, no significant sex

differences in the number of perseverative errors were found for

any of the criteria (Mann-Whitney U test, Nmales = Nfemales = 10,

U$40, p$0.481).

Age-Related Cognitive Impairments in Mouse Lemurs
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Correlation between PD and PDR performance
We found a highly significant, positive correlation (Spearman’s

rank correlation, r = 0.72, p = 0.00007) between the individual

performances in the PD and PDR tasks, i.e. subjects that needed a

high number of trials to reach the criterion in the visual

discrimination task also needed a high number of trials to reach

the criterion in the reversal task (Fig. 9).

Control for attention to the task
Young and aged mouse lemurs did not differ significantly in their

latency to respond after the stimuli were displayed (medianyoung =

6.3 s, range: 2.0–44.0 s; medianaged = 6.2 s, range: 4.0–12.6 s;

Mann-Whitney U test, Nyoung = 20, Naged = 10, U = 88,

p = 0.619). We did not find any significant sex differences in this

variable within the young animals (Mann-Whitney U test, Nmales =

Nfemales = 10, U = 35, p = 0.280).

Control for motivation to collect the reward
Young and aged mouse lemurs did not significantly differ in

their latency to collect the reward (medianyoung = 1.5 s, range:

0.9–60.0 s; medianaged = 1.6 s, range: 1.2–2.9 s; Mann-Whitney

U test, Nyoung = 20, Naged = 10, U = 81, p = 0.422). No

significant sex differences in the median reward latency were

Figure 3. Representative learning curves of young and old mouse lemurs in the visual pair-wise discrimination task (PD) and its
reversal (PDR). A Learning curves of a good (POP, UND) and a bad (PEA, WIL) PD learner from each age category (red = young subjects; blue = old
subjects). B Learning curves of a good (PEG, URS) and a bad (PAU, WIL) PDR learner from each age category (red = young subjects; blue = old
subjects).
doi:10.1371/journal.pone.0109393.g003
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found within the young animals (Mann-Whitney U test, Nmales =

Nfemales = 10, U = 44, p = 0.684).

Discussion

Our findings revealed for the first time that young and aged

mouse lemurs could be successfully trained on a visual pair-wise

discrimination task and its reversal using a touchscreen standard-

ized automated system. We found age-associated cognitive decline

in the acquisition of the visual discrimination as well as in the

reversal learning. We, thus, demonstrated for the first time the

successful use of a standardized touchscreen method and cross-

species comparative approach to assess age-related cognitive

impairments in mouse lemurs.

Interestingly, we found that aged mouse lemurs, as a group,

were impaired in the acquisition of a visual discrimination between

two images. This result supports comparable findings in humans

Figure 4. Performance of young and aged mouse lemurs in the
visual discrimination task (PD). ** Indicates a significant difference
with p,0.01. Nyoung = 15, Naged = 9. The box represents the lower
quartile, median, and upper quartile, the whiskers represent the
minimum and maximum values.
doi:10.1371/journal.pone.0109393.g004

Figure 5. Performance of males and females in the visual discrimination task (PD). A Results for the young mouse lemurs and B results for
the aged mouse lemurs. + Indicates a trend with 0.05,p,0.1. Nyoung males = 7, Nyoung females = 8, Naged males = 3, Naged females = 6. The box represents
the lower quartile, median, and upper quartile, the whiskers represent the minimum and maximum values.
doi:10.1371/journal.pone.0109393.g005

Figure 6. Performance of young and aged mouse lemurs in the
reversal learning task (PDR). * Indicates a significant difference with
p,0.05. Nyoung = 20, Naged = 10. The box represents the lower quartile,
median, and upper quartile, the whiskers represent the minimum and
maximum values.
doi:10.1371/journal.pone.0109393.g006
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[3] and monkeys [36] but contrasts with previous findings on

mouse lemurs in a visual discrimination task [23]. While the

procedures used in the human and monkey studies were

comparable to our mouse lemur study (i.e. touchscreen-based

testing method using discrimination between images [3], [36]), the

visual discrimination task of Picq and colleagues [23] differed in

two details: firstly, in the study of Picq and co-workers, mouse

lemurs were placed in a work chamber where they had to choose

between two corridors leading to a reinforcement chamber. The

visual discrimination had to be made on the basis of the

illumination of the corridors (S+ = illuminated corridor; S- =

dark corridor). In the visual discrimination task used for our study,

mouse lemurs were required to (1) learn to perceptually

discriminate two white shapes on a black background and to (2)

learn which of the two shapes was associated with the reward.

Thus, differences in the difficulty of the visual discrimination may

have led to the diverging results. Secondly, the main motivation

for the subjects in the study of Picq and colleagues was to reach the

Figure 7. Performance of males and females in the reversal learning task (PDR). A Results for the young mouse lemurs and B results for the
aged mouse lemurs. + Indicates a trend with 0.05,p,0.1. Nyoung males = 10, Nyoung females = 10, Naged males = 4, Naged females = 6. The box represents
the lower quartile, median, and upper quartile, the whiskers represent the minimum and maximum values.
doi:10.1371/journal.pone.0109393.g007

Figure 8. Perseverance of young and aged mouse lemurs in the reversal learning task (PDR). A Number of trials needed to reach the 50%
criterion in the PDR. B Number of perseverative errors made until reaching the 50% criterion in the PDR. * Indicates a significant difference with p,
0.05. Nyoung = 20, Naged = 10. The box represents the lower quartile, median, and upper quartile, the whiskers represent the minimum and maximum
values.
doi:10.1371/journal.pone.0109393.g008
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safety of a nest box. By choosing a food reward for our study, the

conditioning paradigm in our case was clearly appetitive and

differences in the conditioning procedure might also have

contributed to the differing observations.

The fact that all our mouse lemurs succeeded in the visual

discrimination task, shows that they were able to perceptually

discriminate both images. Thus, using a standardized and

automated testing procedure, our results revealed for the first

time that aged mouse lemurs show cognitive impairments that

have so far only been found in aged humans and monkeys. Since

all mouse lemurs were checked for eye diseases, corneal

consistence, integrity of retina, and intraocular pressure of each

eye prior to the study, we can exclude differences in the perceptual

abilities between the age groups in our study [41]. We found a

strong inter-individual variability in the learning performance.

The oldest animal (WIL, 9.5 years old) had the worst learning

performance while other aged mouse lemurs (e.g. VAN, 8.4 years

old) performed just as good as young ones. This task based on a

touchscreen testing method has been proven to be sensitive to

dysfunctions in the perirhinal cortex of the medial temporal lobe of

rats [45]. The temporal lobe, including the secondary visual area,

is actually one of the regions that are the most affected by age-

dependent atrophies in mouse lemurs [23]. A magnetic resonance

imaging study is underway to explore whether a link between

brain morphology and cognition can be confirmed in our subjects.

We found that aged mouse lemurs, as a group, were also

impaired when faced with the reversed reward contingency (PDR

task). Reversal learning procedures are widely used to assess

flexibility or behavioral adjustment to changing rules [31]. In this

task, mouse lemurs not only had to learn to extinguish the

previously rewarded response but also to choose the previously

unrewarded image. We found significant differences in persever-

ance measures in the PDR between the two age cohorts, indicating

that aged subjects persevere more in their errors, i.e. they had

difficulties to ignore the previously rewarded response and to

flexibly adapt to the reversed stimulus-reward contingency. This

result is in line with previous findings in aged mouse lemurs [23],

[24], aged rats [10], aged monkeys [6], and aged humans [3] and,

thus, may reflect a common pattern in brain aging across

mammals. The PDR task has proven to be sensitive to the

integrity and functionality of the orbitofrontal cortex in rats and

monkeys [9], [46]. Orbitofrontal lesions in rats and monkeys and

lesions of the dorsolateral striatum in mice significantly slow down

visual reversal learning [9], [46], [47]. Lesions of the medial

prefrontal cortex in rodents may also impair the reversal learning,

but only when visual stimuli are difficult to discriminate [47].

Again, our current magnetic resonance imaging study in mouse

lemurs will help to illuminate potential links between atrophies in

these brain regions and cognition in the same subjects.

Within young mouse lemurs, we reported that females seemed

to perform better than males in acquisition of the visual

discrimination and reversal learning. Although the sample size

was small, aged females also tended to be better than males of

comparable age (see Fig. 5B). A larger sample will help to confirm

sex differences in cognitive functions and to explore the potential

influence of sex hormones on learning abilities (see for instance the

effect of hormonal status on spatial memory in female chimpan-

zees [48]) in future studies.

Lastly, we provide future prospects for the study of visual acuity

in nocturnal small-brained primates using the same behavioural

tasks as in rodents, non-human, and human primates. We showed

that mouse lemurs could solve a visual discrimination of shapes.

Through the visual discrimination of white shapes on a black

background, we gained behavioural insight into the visual acuity of

mouse lemurs, since they were clearly able to make their choice

from the rear end of the chamber. Mouse lemurs, thus, can

visually discriminate white shapes of less than 4 cm2 from a

distance of more than 20 cm. To our best knowledge, there is only

one study that has previously reported data on visual acuity in the

grey mouse lemurs: Dkhissi-Benyahya and colleagues estimated

visual acuity anatomically [49], using peak retinal ganglion cell

density and spacing, and found an acuity value of 4.2 cycles/

Figure 9. Correlation between individual PD and PDR performances. Number of trials needed to reach criterion in the reversal learning task
(PDR) plotted against the number of trials needed to reach criterion in the visual discrimination task (PD) (Ntotal = 24). The solid black line represents
the regression line, the dashed red lines represent the 95% confidence interval as estimated from the linear regression model. The individual
performances in PD and PDR are highly significantly correlated (Spearman’s rank correlation, r = 0.72, p = 0.00007).
doi:10.1371/journal.pone.0109393.g009
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degree, which is higher than for rats (about 1 cycle/degree see

[50]). It confirms that visual acuity of nocturnal mammals, usually

considered as poor, actually shows a great variability between

species. The computer-assisted standardized method described

here may also be used to conduct further behavioural investiga-

tions on the visual acuity of mouse lemurs that might provide

valuable information concerning the evolution of the visual system

in nocturnal mammals.

To conclude, we successfully adapted a touchscreen based

testing method for the assessment of age-related impairments in

non-hippocampal, associative learning and cognitive flexibility (a

component of executive functions) to the use in the grey mouse

lemur, M. murinus, a novel primate model for aging. Based on

that, the development and adaptation of further cross-taxa

touchscreen-based automated attention, learning, and memory

tasks for mouse lemurs will help to assess further facets of cognition

and its disorders and to embed the learning and memory capacity

of these early primates into the evolution of primate intelligence.

Supporting Information

Figure S1 List of visual stimuli used. A 38 different stimuli

have been used during the training procedure. B Pair of stimuli

(‘‘marbles’’ = left; ‘‘fan’’ = right) used for the actual visual

discrimination task and its reversal.

(TIF)

Movie S1 Example video of a young subject in the visual
discrimination task (PD). The video starts in the middle of a

session and shows how the animal completes 4 trials of the 30 trial

session. The touchscreen and the two response windows can be

seen at the upper end of the field of view (FOV), whereas the

reward tray is located outside the FOV at the opposite side of the

chamber.

(WMV)
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