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ORIGINAL ARTICLE1

2 Improving automatic robotic welding in shipbuilding through

3 the introduction of a corner-finding algorithm to help recognise

4 shipbuilding parts

5 David Sanders • Giles Tewkesbury •

6 David Ndzi • Alexander Gegov • Boris Gremont •

7 Andrew Little

8 Received: 21 June 2009 / Accepted: 29 June 2011
9 � JASNAOE 2011

10 Abstract A system that uses a combination of techniques

11 to suggest weld requirements for ships’ parts is proposed.

12 These suggestions are evaluated, decisions are made and

13 then weld parameters are sent to a program generator.

14 New image capture methods are being combined with a

15 decision-making system that uses multiple parallel artificial

16 intelligence (AI) techniques. A pattern recognition system

17 recognises shipbuilding parts using shape contour informa-

18 tion. Fourier descriptors provide information and neural

19 networks make decisions about shapes. The system has

20 distinguished between various parts, and programs have

21 been generated to validate the approaches used. The system

22 has recently been improved by pre-processing using a simple

23 and accurate corner finder in an edge-detected image.

24Keywords Robot � Welding � Shipbuilding � Pattern

25recognition � Locating corners � Image processing

261 Introduction

27Although some shipyards have used robots for welding

28steel for 20 years [1, 2], integration of robotic welding

29presents problems [3]. The low level of repeatable welds

30within some ships means that, although the quality and

31speed of robotic welding are acceptable, generation of

32programs capable of carrying out welding has proved dif-

33ficult. Many welding robots work primarily in ‘‘teach-and-

34playback’’ mode, but this further limits flexibility.

35Although the superstructure of a ship may be compli-

36cated, this may be a complexity of scale; i.e., a ship’s

37superstructure can be a complicated object made from a

38large number of simple objects, most of which are made

39from either metal bar (of varying sizes and shapes) or metal

40plate. Additional items are often cut from metal plate. A

41small metal crossbeam from a ship is shown in Fig. 1. It is

421 m long, although size is largely irrelevant within the

43camera’s field of vision.

44A new automated welding system that uses AI techniques

45to determine where to weld such parts is being created. New

46image capture methods are being combined with a decision-

47making system that usesmultiple parallel AI techniques. The

48proposal uses object-oriented programming techniques to

49create the framework for the system and uses imaging soft-

50ware to capture and process image data. The final systemwill

51use a combination of AI techniques to suggest weld

52requirements. Suggestions will be evaluated and decisions

53made regarding weld(s). These parameters will be sent to a

54program generator to produce a robot program for use on the

55shopfloor. The whole system is shown in Fig. 2.
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56 To date, the image capture and program generator sys-

57 tems are working, a camera has been mounted above the

58 assembly line at VT Shipbuilding in Portsmouth to capture

59 images (frames), and new image processing and object

60 recognition sub-systems have been successfully created to

61 operate on these images. The decision module is now under

62 construction. New sub-systems have successfully distin-

63 guished between various ships’ parts by processing shape

64 information so that Fourier descriptors [4] can be extracted

65 and formed into sets for association with training sets so

66 that decisions can be made. This work was described pre-

67 viously [2]. In that work, images were broken into equal

68 segments, which were then represented as complex num-

69 bers by referring coordinate points to a random starting

70 point. Fourier descriptors were extracted by transforming

71 object descriptions into the frequency domain. Since data

72 points around the contour were expressed as complex

73 values and not as complex functions of length, the usual

74 complex form of Fourier series was of little use. As con-

75 tours were sampled, discrete Fourier transforms (DFTs)

76 were considered but were replaced by more efficient fast

77 Fourier transforms (FFTs). Once transformed, the data

78were expressed as phase and magnitude. The modulus of

79this transformed data was considered in order to discard

80phase information and thereby operations that affected

81phase. Descriptors were then invariant (within a small

82error) under rotation, dilation and translation.

832 Proposed system

84This section explains the existing RinasWeld/Motoman

85system in place at VT Shipbuilding and discusses how

86additional systems may be integrated with them [5]. The

87proposed system is discussed, including software systems

88required, image processing systems and use of multiple

89artificial intelligence techniques to make decisions.

90The RinasWeld/Motoman software systems at VTS

91work in series to construct viable robot programs. These

92systems existed before the start of the research. The first

93system, the computer-aided design (CAD) model inter-

94preter, accepts a CAD model and determines the welds

95required. This data is fed to the program generator, which

96re-orientates the weld requirements in line with the real-

97world orientation of the panel. The program generator then

98sends any programs sequentially to the robot (normally one

99program per weld line). Additional software systems could

100be incorporated into the existing system at the point where

101the robot programs are sent to the robot system. This is

102because the transmission protocol at this point is standard

103transmission control protocol/Internet protocol (TCP/IP)

104and any programs to be sent can be viewed as text files.

105The proposed system in Fig. 2 shows that data will be

106gathered from a post-processed image. The data will then

107be combined with the data contained within a CAD model.

108A multi-intelligent decision module will then use multiple

109AI techniques to suggest a required weld (Fig. 3). The

110decision module uses case-based reasoning (solving new

111problems based on the solutions of similar past problems),

112a rule-based system (using pre-defined rules to make

113deductions) and fuzzy logic (a form of multi-valued logic

114derived from fuzzy set theory to deal with reasoning that is

115approximate rather than precise). This weld requirement

116will then be displayed for the operator to check. If the

117operator rejects the suggestion, the system will learn from

118that rejection and suggest a different requirement.

119Assuming that the operator now accepts the requirement,

120the system will generate a compatible robot program by

121using the program generator and post-processing systems.

122The image processing systems involve detecting edges,

123line identification and geometric data generation. These

124data can then be used to identify the different objects

125within the image. A software package named ‘WiT 8.3’ by

126Dalsa Coreco was initially used to reduce the development

127time of the first prototype image processing systems. This

Fig. 1 Metal bar part of a ship (1 m long)
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Fig. 2 System flow diagram
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128 software had a graphical interface, which was used to

129 create and test prototype algorithms that were exported as

130 VB.net-compatible functions for inclusion within a .net

131 framework software package. In the early prototypes, the

132 image was read, converted to greyscale and then passed

133 through a low-pass filter. The low-pass filter removed some

134 of the noise in the image and reduced the occurrence of

135 small random edges. The image was then operated on by an

136 edge-tracing function which used a Prewitt edge-detection

137 algorithm, and then any edges were collated into a col-

138 lection of geometric lines. These lines were then overlaid

139 onto the filtered greyscale image for viewing. Later sys-

140 tems used Fourier descriptors [1, 2] and artificial neural

141 networks (ANNs) [6–8], and in the most recent systems

142 described herein new corner-finding algorithms to effec-

143 tively reduce noise were also introduced.

144 The many different methods of implementing AI each

145 have their own strengths and weaknesses [9–14]. Some

146 effort has been made in combining different methods to

147 produce hybrid techniques with more strengths and fewer

148 weaknesses. The neuro–fuzzy system which seeks to

149 combine the uncertainty handling of fuzzy systems with the

150 learning strength of ANNs is an example of this. This paper

151 proposes a system using multiple AI techniques to decide

152 on weld requirements for a job. The system will combine

153 real-world visual data captured through the image pro-

154 cessing algorithms with the data provided by the CAD

155 model by comparing the expected lines and corners with

156 those in the captured data. It will then use this combined

157 data to present differing AI systems with the same infor-

158 mation. These systems will then make weld requirement

159 suggestions to a multi-intelligent decision module (Fig. 3).

160This module will evaluate the suggestions and determine

161the optimum weld path. The suggestions will be passed to

162the existing robot program generator.

1633 Current progress

164The current state of the research is that the robot program

165generation systems have been created and tested. These

166systems have been used to produce consistent straight-

167line welds. A simple edge-detection system was created

168using the WiT software. Figure 1 shows the initial image.

169Figure 4 shows the edges as detected. The edge detection

170in this instance is good, as the object can be identified

171from its perimeter detail. The external perimeter detail is

172more defined than the internal detail. The work on the AI

173systems is in its early stages and will be taken further

174over the next 6 months. During this time the multi-

175intelligent decision module framework will be completed

176and combinations of AI techniques will be tested, for

177example different combinations of rule-based, case-based

178and fuzzy systems. Meanwhile, improvements have been

179made to the image processing systems as described

180herein.

1814 Image processing

182Information about shape or pattern is held within contours,

183so Fourier descriptors were applied to the contours of

184shapes being classified. The edge-detected image in Fig. 4

185was processed to produce closed line shapes so that no

186lines were left open and hanging. Contours were assumed

187to be closed curves in complex space. An arbitrary point

188moving around the contour generated a complex function

189f. If the point moved around the contour at constant

190velocity v, then at every time t a complex number c was

191defined such that c = f(t). t is not necessarily real time;

192rather, it represents a section of length around the contour.

193Because contours were closed, this implies that there exists

194a value T such that f(t ? nT) = f(t), where nT is the con-

195tour length. So, f can be expressed as a complex Fourier

196series, yielding
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Fig. 3 Multi-intelligent decision module diagram

Fig. 4 Image output from edge-detection algorithm after post-

processing
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f ðtÞ ¼
X

infinity

�infinity

An exp
jn2pt

T

� �

ð1Þ

198198 And Fourier coefficients become : An

¼
1

T

Z

T

0

f ðtÞ exp
�jn2pt

T

� �

dt: ð2Þ

200200 For simplicity, the velocity can be such that T = 2p, and

201
1
T

R T

0
f ðtÞ exp½�jnt�dt: These Fourier coefficients depend on

202 the starting point and differ with respect to the parameter s

203 along the contour, so that for each s there is a set of Fourier

204 coefficients of the function f(t) = f(t ? s). If f(t) = f
(0)(t),

205 then other functions around the contour will be f(t) = f(0)

206 (t ? s).

207 The index ‘‘(0)’’ refers to a specific contour function, so

208 the resulting Fourier coefficients become

yðtÞ ¼
X

2p

0

An exp½jnt�; ð3Þ

210210

An ¼
1

2p

Z

2p

0

f ð0Þðt þ sÞ exp½�jnt�dt

¼ exp½jns�
1

2p

Z

2p

0

f ð0ÞðtÞ exp½�jnt�dt

¼ exp½jns�að0Þn : ð4Þ

212212 Translations, rotations and dilations can be considered

213 as follows:

214 Translation: If An
(0) is a set of Fourier coefficients of a

215 contour function, then translation by a complex vector

216 Z results in a contour function expressed in the inverse

217 Fourier series as

f ðtÞ ¼ f ð0ÞðtÞ þ Z ¼
X

infinity

�infinity

Að0Þ
n exp½jnt� þ Z: ð5Þ

219219 Therefore, the Fourier coefficients of the translated

220 contour are An = An
(0)for n (where not equal to zero) and

221 An
(0)
? Z for n = 0. All coefficients except A0 are invariant

222 under translation. A0 is the complex vector indicating the

223 position of the centre of gravity.

224 Rotation: If the centre of gravity is at the origin, then

225 rotation of the contour function f(t) about the origin by an

226 angle u produces another function f(t), where f(t) =

227 exp[ju]f(0)(t). With f(t) expressed as the inverse Fourier

228 transform, the coefficients of the rotated contour will be

229 An = exp[ju]An
(0).

230 Dilation: Similarly, dilation of the contour by scale

231 factor R creates Fourier coefficients of the form An = RAn
(0).

2325 Extracting Fourier descriptors

233The general form of the Fourier coefficients of a contour

234after translation, rotation and dilation is An = exp[jns]-

235Rexp[ju]An
(0), where An

(0) are the coefficients of the original

236contour. They are not useful in this form because they

237contain information on orientation, whereas only shape

238information is needed. Considering Bn = A1?n?1�A1-n/A1
2

239and applying rotation, translation and dilation results in an

240expression that does not contain s, R or u. If the coefficient

241A0 is not used, then these Bn coefficients are invariant under

242translation, rotation and dilation. Thus, the coefficients Bn

243represent the shape (or form). These Fourier coefficients

244are invariant under translation, rotation and dilation and

245just represent the shape [2]. ANNs were trained using back-

246propagation algorithms. Back-propagation is a common

247method for teaching ANNs to perform a given task, dating

248back to the late 1960s. Nets were considered to be trained

249when the error became zero (within pre-set ranges). A

250number of teaching runs were required before outputs

251converged.

2526 Testing

253It is most difficult to differentiate between shapes that are

254similar. For testing in this part of the work, four metal bar

255parts were selected as a worst case. The parts were of the

256type shown in Fig. 1 but of different lengths: 1, 1.25, 1.5

257and 2 m. A teaching net was created to take two sets of

258inputs and two sets of demand vectors. The layout of the

259ANN was a 5–38–4 pattern, i.e. a layout with five input

260neurons, 38 hidden neurons and four output neurons. Errors

261were used to update weights within the ANN. A number of

262teaching runs were required before outputs converged.

263After 150 teaching runs, the network gave some suitable

264outputs. Weights were saved. The application net was

265combined with the description program and set up to

266analyze two shapes in different orientations. Tests then

267involved presenting images (video frames) to the system

268until a decision was made. In 100 tests using the taught

269system, the program classified 98 shapes correctly after

270three frames of video. When presented with two input sets,

271the system showed a 98% classification rate within three

272frames.

273The training net was then modified to take 3 sets of

274inputs; the most recent results are presented here. Weights

275were frozen after 500 test runs, and the outputs are pre-

276sented in Table 1. The desired outputs for each part are a

277certainty value of 1 that the part was recognised and two

278values of 0 to show that the other two parts are rejected as

279solutions. For each part, the higher the certainty value for
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280 that part the better, and the lower the other two values the

281 better.

282 Programs were tested with 3 different parts of a ship in

283 different orientations. In 100 tests the program classified 97

284 shapes correctly after three frames. The 3-pattern recogn-

285 iser achieved 97% classification. Programs were then

286 modified to take 4 training sets and demand vectors. This

287 ran for 2 h, and the outputs observed after 6219 test runs

288 are presented in Table 2.

289 Over 50 tests, the program classified 44 shapes correctly

290 after three frames. The 4-pattern recogniser worked with

291 88% classification.

292 The results were good compared with other systems, but

293 attempts were made to improve the results further by car-

294 rying out some post-processing on the edge-detected

295 image. The various sets of outputs are those recorded after

296 teaching.

297 7 Improving the system

298 After processing the edge-detected image (Fig. 4) to obtain

299 a clear image using geometrical rules, the edge was sam-

300 pled. A method published as a short note in the Proceed-

301 ings of the IMechE was used to convert continuous lines

302 into equally spaced line segments and then to polylines by

303 specifying endpoints for each segment [1]. This is shown in

304Fig. 5. The new sub-systems successfully distinguished

305between various ships’ parts by:

306• Edge-detecting the image (Figs. 1, 4)

307• Sampling points around the edge-detected image

308(Fig. 5)

309• Calculating distance between endpoints of windows

310around sampled points

311• Taking points with minimum distance to be corners (the

312shorter bold lines in Fig. 5)

313• Using corners and connecting lines to extract Fourier

314descriptors

315• Associating sets of descriptors with training sets

316• Deciding.

317Points were sampled and corners were detected based on

318the diagonal length of a segment’s bounding box. Inter-

319spacing distance was equal to the diagonal of the bounding

320box divided by a constant M (set to 50). M was determined

321empirically in this early work by testing a range of values

322and finding the value that produced the best accuracy;

323increasing M increased noise, while decreasing M created

324smoother edges so that some corners were removed.

325Points could be sampled once an interspacing distance,

326S, had been calculated. An empty set was created to store

327sampled points. Each point was then appended to that set.

328The distance holder D was initially set to zero. The new

329algorithm was as follows:

3301. The Euclidean distance d between two consecutive

331points was added to D.

3322. If D was less than the interspacing distance S, then

333i was increment by 1 and step (1) was repeated.

334Otherwise

335(a) A new point, q, was created, at approximately

336distance S away from the last sampled point. qx and

337qy were calculated to achieve a distance (S - D)/

338d between point i - 1 and point i.

339(b) q was inserted into the set of sampled points before

340point i.

341(c) Repeat from step (1) without incrementing i until

342i[ |points|.

343The new algorithm found corners from this primitive

344information and from higher-level patterns that determined

345possible insertions or corner deletions. Firstly, corners were

Table 1 Output from three sets of inputs

Input

set

Output Desired

output

Input set Output Desired

output

1 1 1 3 9.87 9 10-8 0

1.2 9 10-6 0 4.6 9 10-7 0

7.5 9 10-7 0 0.99999 1

2 3.86 9 10-6 0

0.9998 1

5.69 9 10-7 0

Table 2 Output from four sets of inputs

Input

set

Output Desired

output

Input

set

Output Desired

output

1 1 1 3 1.2 9 10-8 0

0 0 -1.9 9 10-8 0

-3.71 9 10-9 0 1 1

-4.48 9 10-8 0 -9.32 9 10-8 0

2 -1.92 9 10-7 0 4 0 0

1 1 -2.22 9 10-8 0

-7.46 9 10-9 0 -3.14 9 10-8 0

-1.11 9 10-7 0 0.9999 1

Fig. 5 Sampling points around the edge-detected image
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346 found based on the distance between the beginning of a line

347 segment around a point and the end of that line segment;

348 for example, considering a point at pi

SEGMENTi ¼ jpi�W ; piþW j; ð½6�Þ

350350 where W is a constant window and |pi - W, pi ? W| is the

351 Euclidean distance between points pi - W and pi ? W.

352 As the edge of a shape bends at a corner, the SEGMENT

353 of points shortens, and a local minimum SEGMENT is a

354 likely corner. To find an initial corner set, all SEGMENTs

355 were first computed. The median SEGMENT length was

356 found, and a threshold t was set at the median 9 0.9. For

357 each SEGMENT, if the SEGMENT was a local minimum

358 below the threshold t, then the SEGMENT was considered

359 a corner. Line segments around a part all had a window of

360 ±10 points either side of the point being considered

361 (although ±5 were used in practice). Shorter SEGMENTs

362 were found around some points at corners, and those points

363 were considered corners. Points on straighter sections had

364 SEGMENTs that were close to the median SEGMENT

365 length and were not considered to be corner candidates.

366 After this set of corners was found, some higher-level

367 processing found missed corners and removed false posi-

368 tives. The system checked to see if each consecutive pair of

369 corners passed a line test. This similarity was represented

370 through the ratio of distance(points; a; b) to path - dis-

371 tance(points; a; b). If this ratio was above a set threshold,

372 the segment between points a and b was considered a line.

373 If the part segment between any two consecutive corners

374 did not form a line, then there were additional corners in

375 between. Missing corners were assumed to be approxi-

376 mately halfway between corners. Since these potential

377 corners were below the original threshold t, the threshold

378 was relaxed and the new corner was taken to be the point

379 with minimum SEGMENT. This process of adding corners

380 was repeated until all segments between pairs of consec-

381 utive corners were lines.

382 A check was then conducted on subsets of triplet, con-

383 secutive corners. If three corners were collinear, then the

384 middle corner was removed. This process checked and

385 removed false positives. Three consecutive corners were

386 considered collinear if the part segment between the outer

387 corners passed a line test.

388 Two hundred thirty images of nine different parts of

389 ships that were to be welded were initially used to test the

390 corner finder. A Douglas–Peucker algorithm was imple-

391 mented along with a simple differentiation algorithm [5].

392 The algorithms had filters to remove close or overlapping

393 corners. Two measures were used to determine the accu-

394 racy of the corner finders: correct number of corners found

395 and an all-or-nothing measure. The first was calculated by

396 dividing the number of correct corners found by the total

397 number of correct corners perceived by observation of each

398processed image. The second measure checked that only

399the minimum number of corners to segment a boundary

400was found (in other words, that the part shape had no false

401positives or negatives). This was calculated by dividing the

402number of correctly segmented parts by the total number of

403parts; it was either correct or incorrect. Results are pre-

404sented in Table 3.

405The corner-finding system improved on other corner

406finders that were considered. Although the new method

407was slightly slower than the Douglas–Peucker algorithm,

408the new method found more corners correctly in the ima-

409ges, and wrongly identified fewer points as corners; it gave

410improved accuracy with all-or-nothing accuracy that was

41120% better than that of the Douglas–Peucker implemen-

412tation. Once corners were identified, the shapes were

413redrawn so that lines went directly from corner to corner.

414This removed noise. Fourier descriptors were then extrac-

415ted from the contours of the shapes being classified.

4168 Testing and results for the improved system

417The 5–38–4 pattern used in Sect. 6 was reused to compare

418results. The training net was reset to take 3 sets of inputs

419and demand vectors. Weights were frozen after 500 test

420runs, and the outputs are presented in Table 4.

421Programs were tested with 3 different shapes in different

422orientations. In 100 tests the program classified 98 shapes

423correctly after just one frame, and better than 99 after three

424frames. Programs were then modified to take 4 training sets

425and demand vectors. This ran for 6112 test runs. The

426observed outputs are shown in Table 5. Over 50 tests, the

427program classified 48 shapes correctly after just one frame

428and 49 after three frames.

429These results were compared with those achieved by the

430most recently published system for identifying ships’ parts

431[2], using the same shapes for the comparison. The most

432recently published system used Fourier descriptors on edge-

433detected shapes without considering corner identification.

Table 3 Results for the new system and two other corner finders for

comparison

New

system

Douglas–

Peucker

Simple

differentiation

Corners found correctly 1799 1669 1017

Points wrongly identified as

corners

43 115 295

Accuracy 0.98 0.96 0.85

Percentage of lines without any

points wrongly identified as

corners (%)

87 71 34

Average time per part (ms) 0.8 0.32 1.03
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434With the 2-pattern program, that system only achieved a

43598% classification rate within three frames, whereas the

436current system achieved close to a 100% classification rate

437with three frames.

438The 3-pattern recogniser achieved 97% classification

439after three frames, but the new system achieved 99%

440classification.

441The 4-pattern recogniser achieved 88% classification

442after three frames in the most recently published system,

443while the new system achieved 98% classification after

444three frames. The new system was significantly better after

4453 frames but was radically better after being shown only

446one picture of a part. Graphs showing percentage accuracy

447compared with number of frames for distinguishing

448between three or four different shapes are shown in Fig. 6;

449lines with squares correspond to the previous prototype

450system, while circles correspond to the new system.

451The graphs in Fig. 6 compare the increase in percentage

452accuracy as the number of frames considered is increased,

453for the most recently published system and for the system

454described here. The vertical axis indicates the percentage

455accuracy and the vertical axis represents the number of

456frames. Figure 6a shows the results when trying to iden-

457tify three different parts, and Fig. 6b shows the results

458when trying to identify four different parts. Substantial

Table 4 Output from three sets of inputs

Input

set

Output Desired

output

Input

set

Output Desired

output

1 1 1 3 0.87 9 10-8 0

0.1 9 10-6 0 0 0

0 0 0.998 1

2 2.7 9 10-6 0

0.998 1

4.7 9 10-7 0

Table 5 Output from four sets of inputs

Input

set

Output Desired

output

Input

set

Output Desired

output

1 1 1 3 0.2 9 10-8 0

0 0 0 0

-2.61 9 10-9 0 1 1

0 0 -9.54 9 10-8 0

2 -2.12 9 10-7 0 4 0 0

1 1 0 0

-4.46 9 10-9 0 -3.31 9 10-8 0

-1.3 9 10-7 0 0.9998 1
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Fig. 6 Comparison of the

prototype system with the new

system incorporating the corner

finder
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459 improvement was demonstrated when the new corner fin-

460 der was added. Tables 4 and 5 show that the improvement

461 was especially significant when more parts needed to be

462 differentiated and when a part needed to be identified

463 quickly (after only one frame).

464 9 Discussion and conclusions

465 A proposed system that uses image processing techniques

466 in combination with a CAD model to provide information

467 to a multi-intelligent decision module has been presented.

468 This module will use different criteria to determine a best

469 weld path. Once the weld path has been determined, the

470 program generator and post-processor can be used to send a

471 compatible program to the robot controller. Progress so far

472 has been described.

473 Different shapes have been successfully identified using a

474 simple pattern recognition system that used an ANN, and

475 that system was improved by using a corner identifier. The

476 system provided shape contour information that was

477 invariant under size, translation and rotation. Since acquir-

478 ing and processing new images is an expensive task, it is

479 desirable to take a minimal number of additional views, and

480 the new methods quickly and successfully identified parts

481 after only one frame.

482 The testing used four similar metal bar parts, as differ-

483 entiating between such similar shapes is a worst case for

484 such testing. If a variety of different types of structural

485 members of a ship had been selected, for example flat

486 metal plates and metal bars joined at corners etc., then they

487 would have been easier to differentiate.

488 The new system used a rudimentary curvature metric

489 that measures Euclidean distance between two points in a

490 window. These corners were then processed to ensure that

491 every segment between corners was a line and that any

492 extraneous points in the middle of a line segment were

493 removed. The improved accuracy and ease of implemen-

494 tation of this approach can benefit other applications

495 requiring curve approximation, node tracing and image

496 processing, but especially in identifying images of manu-

497 factured parts with distinct corners.

498 The initial results from the whole work suggest that a

499 combination of systems (case-based and rule-based rea-

500 soning, fuzzy logic and artificial neural network) could

501 offer the ability to handle the necessary uncertainty whilst

502still returning a correct weld path (when all/enough factors

503are known).

504
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