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Abstract 

 

To achieve the flexibility required by the small amount 

of repeated work in some industries, automated 

systems should be capable of being reprogrammed 

quickly and efficiently.  One way of doing this is to 

create software dedicated to the task of generating the 

required code.  Using Object-Oriented Programming 

techniques, a software engineer can write efficient 

code for machines that is faster to implement and 

extendable.  This paper gives a brief overview of 

object-oriented programming and then goes on to 

discuss research into the use of that technique to create 

programs to generate code for a mobile welding robot 

in the shipbuilding industry. 

 

Keywords: Object Oriented Programming, Control and 

Automation, Robotics, CAD, Task Machine 

 

Introduction  

 

The programming of automated systems within any 

industry can be a complex matter.  In the naval ship 

industry it can become even more complex since a low 

quantity of repeated jobs can require automated 

equipment to be programmed frequently.  Research 

detailed within this paper has been conducted in 

conjunction with VT Shipbuilding (VTS) at their 

Portsmouth shipyard.  This software was created for a 

conceptual mobile arc welding robot but the techniques 

used are suitable for many industrial automation 

applications in shipbuilding. 

 

A programming technique that most programmers are 

familiar with is procedural programming.  This is 

where sets of instructions are sub-divided into 

procedures which can be used multiple times.  A 

problem with this methodology is that it can become 

complex to debug and/or alter when dealing with large 

programs.  An answer to this problem is Object 

Oriented Programming (OOP). 

 

The paper briefly explains the history, concepts and 

functionality of OOP.  It gives a number of examples 

and briefly introduces the subject.  The implementation 

of OOP within a welding environment is discussed and 

information regarding how the weld process was 

modelled and how the software framework was 

constructed is presented.  Robot code generated by the 

software systems created is then presented along with 

some of the assumptions made in order to improve the 

robustness of the code. 

 

Object oriented programming 

 

History:  The first time that objects as entities were 

used in a program was in Simula 67 during the 60’s.  

The two creators were working on ship simulations and 

noticed how the different attributes of different ships 

affected one another. 

 

In the 70’s the language Smalltalk was created at Xerox 

Park and the term Object-oriented programming (OOP) 

was introduced. 

 

OOP continued to rise in popularity due, in part, to its 

compatibility to graphical user interface creation and 

computer games development.  OOP features and 

functionality were added to existing languages such as 

BASIC, Fortran and Pascal.  The addition of these 

features sometimes led to compatibility and reliability 

issues.  Some modern object-oriented languages 

operate within programming frameworks.  Frameworks 

include Sun’s Java and Microsoft’s .NET platform [1].  

 

Concept:  OOP is based upon fundamental concepts 

that are akin to how humans see the world [2].  

However, these concepts are sometimes not how we 

may intuitively program a computer. This means that 

obtaining a firm grasp of the concepts behind OOP is 

important. 

 

OOP has been increasingly used in various engineering 

fields. Using OOP can make system design simpler, 

reduce time taken for software implementation and 

improve extensibility[3]. 
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Objects within OOP are used to contain not just data 

but also behaviour. This allows all elements within a 

program to be represented by objects of some kind. All 

objects have both data and behavioural characteristics; 

in this way they are similar to the real-world. 

 

The thought process of the programmer is important to 

the success of OOP.  In the initial stages of software 

creation the programmer must conceptualise a task into 

similar elements and then classify those elements into 

intuitive grouping structures called classes.  Take the 

example of a Class called BALL as seen in Figure 1.  

All balls (tennis balls, footballs etc.) are members of 

BALL Class.  BALL must contain the data and 

behavioural elements that are common to all balls.  

These classes form the building blocks for OOP and are 

used as templates when objects are instantiated from 

classes during runtime. 

 

 
Figure 1: A Ball Class with Data and Behaviour 

  

This object oriented approach means a programmer 

should not think in terms of program paths as in 

procedural programming.  Programs are thought of as 

collections of objects which co-operate and interact.  

These interactions are initiated by events or messages 

which are sent between objects. 

 

Collections of these objects are inherently data stores 

meaning that the program becomes data-driven as 

opposed to process-driven.  

 

Functionality: Although OOP is a programming 

concept or technique, it is widely accepted that a true 

OOP language has certain functionality.  The following 

functionalities are considered to be requisite for a true 

OOP language.  [4,5] 

 

Class: A class is the abstracted definition of an object. 

It contains both characteristic data and behavioural 

methods.  These data and methods are traits that exist 

within all possible objects of that class.  Classes 

provide the framework for object oriented programs 

with modularity and structure. 

 

Object:  An object is a particular sort of Class.  The 

BALL Class in Figure 1 has data fields entitled 

diameter, mass etc. but these fields have no values as a 

Class is an abstracted definition of an object.  An 

object of Class BALL, for example, a tennis ball, will 

have the same data fields and methods as the Class 

BALL.  These fields will now have values as a tennis 

ball is a real object and not an abstraction. 

 

Inheritance: Inheritance is a process by which Classes 

can pass their data and methods to sub-Classes.  This 

means that sub-Classes can retain the description and 

functionality of their parents but can also have further 

functionality or description added. For example, 

consider a Class called HUMAN.  Some of the 

members of the Class HUMAN may be: 

 

 Number of Legs 

 Hair 

 Walk 

 

All objects of Class HUMAN will have these attributes, 

to some extent.  Now we may want to create a Class 

called ENGINEER and rather than defining every 

abstracted detail of ENGINEER, a programmer can use 

inheritance.  An ENGINEER is a HUMAN and 

therefore inherits all the members of the HUMAN 

Class.  The ENGINEER Class can then have additional 

members added to better define ENGINEER and give 

added functionality. 

 

Polymorphism: Polymorphism allows a programmer 

to use child class members in the same way as their 

parent’s class members. 

 

There are two types; Overriding Polymorphism and 

Overloading Polymorphism. 

 

Consider two classes that both inherit from a single 

parent class.  The parent class is called ANIMAL and 

the two child classes are DOG and HUMAN.  The 

ANIMAL class has a member called SPEAK() and 

both the child classes therefore inherit this member.  A 

dog and a human do not speak in the same way; 

Overriding Polymorphism allows the programmer to 

individually code the child class HUMAN to talk and 

the class DOG to bark.  However, both these members 

are called with the same command, SPEAK(). 

 

Overloading Polymorphism is when a single method 

signature is used to allow multiple functions depending 

upon the situation. 

 

A member such as Add could need to add a pair of 

integers or concatenate a pair of strings.  By defining 

one method as, perhaps, Add(int,int) and one as 

Add(string,string) the programmer can specify the two 

different methods by which the addition will take place. 

 

This improves code readability since the same 

command is used in both instances and the actual 

routine is determined at either compile or run time. 

BALL CLASS 

DATA 
 Diameter 

 Mass 

 Bounce 

Factor 

 Name 

 Colour 

BEHAVIOUR 
 Kick 

 Throw 

 Bounce 
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Weld implementation 

 

Any software written using OOP techniques must be 

carefully planned to provide clear abstracted models to 

design any required classes.  The conceptualisation of 

welding as a task allowed the creation of a weld model. 

  

The software hierarchy that was created is described 

and this software hierarchy integrated with the weld 

model.  

 

After the process had been modelled and the software 

hierarchy had been determined, the next stage in the 

system creation was to produce a method by which the 

various elements worked together to produce a 

compatible program. 

 

Weld modelling:  A model was developed to describe 

a weld in object related terms.  This was to allow any 

programming solution to integrate with the real world 

weld required.  Figure 2 shows the objectified model of 

a weld beginning with a whole panel and working down 

to individual points.  

 

 
Figure 2: Hierarchy of a Ship Panel 

 

In the same way that the construction of the 

superstructure of a ship is broken down into smaller 

elements such as sections, units and panels; the weld 

requirements were sub-divided.  Figure 2 shows that a 

PANEL was considered the largest practical part.  This 

was intuitive as a factory system can be such that 

PANELS have specific documentation.  It was then 

proposed that each PANEL could be made up of 

collections of one or more JOBS.  The inclusion of this 

layer allowed collections of WELDS (the next layer) to 

be logical grouped together in order to improve 

production efficiencies.  The final layer was that 

WELDS are collections of POINTS.  This was where 

the anatomy concept fell back into line with the Real-

world.  Robot programs that perform most welding 

were made from collections of POINTS.  These 

POINTS described where the robot was to go. 

 

Software hierarchy: After the hierarchical object 

model of a weld had been created, the software object 

hierarchy model was created.  This was to provide a 

framework within which the software was created.  

Each layer of the model represented a different level of 

abstraction from the Real-world.  Figure 3 shows the 

hierarchy of the created system when compared to 

Rock’s Level Categorisation model [6]; it can be seen 

that a WELD required a robot PROGRAM.  That 

PROGRAM was then constructed from a number of 

ACTIONS.  These ACTIONS are determined by sub-

dividing a PROGRAM into multiple tasks.  A 

PROGRAM generated to perform a linear WELD 

could contain the following stages: 
 

 Cut electrode wire to length. 

 Orientate robot to weld posture. 

 Move to touch sense position. 

 Touch sense part to be welded. 

 Recalculate start of weld. 

 Weld line with positional feedback on. 

 Move to safe exit position. 
 

Each of these tasks were performed by a combination 

of COMMANDS.  These combinations of 

COMMANDS were termed collections.  These 

COMMANDS included Weld (turned the weld on) or 

LinearMove (moved the end effector in a linear 

movement).  Each COMMAND was modelled using 

OOP techniques; this meant that to create a new 

COMMAND was simplified by using inheritance.  

When used, COMMANDS were linked to one or more 

INSTRUCTIONS.  

 

An INSTRUCTION was defined as being in the 

Primitive Motion Layer; this was because basic code to 

operate the robot was emitted when called.  All the 

documented robot instructions were modelled within 

the created system.  This meant that, theoretically, there 

was no limitation to operation due to software.    

 
Figure 3: Software Hierarchy for Software System 

 

Weld objects 

 

The object-oriented elements of the code can be 

separated into two levels; the COMMAND objects 

which inhabit the Object-Oriented Layer of Figure 3 

and the INSTRUCTION objects which are positioned 

in the Primitive Motion Layer of the Software 

WELD 

PROGRAM 

ACTION 

COMMAND 

INSTRUCTION 

HUMAN INTELLIGENCE LAYER 

TASK LAYER 

SYSTEM LAYER 

OBJECT-ORIENTED LAYER 

PRIMITIVE MOTION LAYER 

PANEL 

JOB 

WELD 

JOB JOB 
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Hierarchy (Figure 3). 

  

Command Objects: COMMAND object functionality 

was inherited into three different child classes.  These 

classes were WeldCommand, MoveCommand and 

ProgramCommand as displayed in Figure 4.  The 

primary role of these classes was to separate any sub-

classes into logical groupings. 

 

 
Figure 4: Objects inheriting from Command 

 

The WeldCommand class was then inherited by two 

more classes called ComArcWeld and Weld, (Figure 

5).  The purpose of these classes was to contain all the 

required information needed to enable the welding 

process.  Neither class contained any movement 

instructions and would always need to be used in 

conjunction with one of the MoveCommands in Figure 

6 to perform a weld. 

 

The mobile robot was considered to be able to perform 

four different types of movement.  These types of 

movement formed the child classes of the parent class 

MoveCommand. 

 

 
Figure 5: Objects inheriting from WeldCommand 

 

These four child commands had many similarities 

which could be inherited from the parent 

MoveCommand. It was theoretically possible to weld 

with all the child commands, however, JointCommand 

was likely to prove difficult to control accurately.  

JointCommand was used only for weld posture 

movements which will be discussed later in the paper. 

 

Some of the child classes of ProgramCommand are 

shown in Figure 7.  These classes were required to 

provide any functionality within the robot program that 

was not either welding or moving.  Examples of these 

functions were ConditionalJump, Shift and Search.   

 

 

 
Figure 6: Objects inheriting from MoveCommand 

 

ConditionalJump allowed a condition to be evaluated 

and a depending on the outcome a set of instructions 

would be run.  This necessitated a list of commands 

(containing the instructions to be run) to be contained 

within the object.  These commands were then nested 

in the correct place within the finalised robot code.  

The Search class provided an element of functionality 

required to be used in conjunction with a LinearMove 

class to achieve the touch sensing positional check. 

 

 Figure 7: Objects inheriting from Program Command 

 

Instruction Objects: This was the lowest level of the 

programming and generated script that the robot 

controller understood.  When the EmitProgram() 

method of any descendant of Command class was run 

then the program emitted was a predetermined list of 

instructions that had been tried and tested.  

 

Figure 10 shows some of the different positions that the 

end effector needed to move through to successfully 

weld.   

 

The touch sense points allowed the mobile robot to 

determine the precise location of the part to be welded 

in relation to the end effector.  This was important as 

the end effector must be positioned within 2mm of the 

correct weld start point to achieve a satisfactory weld 

quality. 

ProgramCommand 

 
+GetNextFlag() 

+EmitProgram() 

ConditionalJump 

-VariableAddress 

-JumpData 

-LabelType 

-UserFrameNumber 

-CommandList 

-FileName 

-Conditions 

 
+AllocJumpLoc() 

Shift 

-CommandList 

-Name 

 

 

Search 

-LinearMove 

-RefPointID 

-RefPointPosition 

 

 

MoveCommand 

-Velocity 

-StartPoint 

-EndPoint 

 +ReversePath() 

+ToString() 

 

LinearCommand 

-OptionalVelocity 

-TouchsenseOn 

 

JointCommand 

-JointStartPoint 

-JointEndPoint 

 

 

CircularCommand 

-OptionalVelocity 

-MidPoint 

 

 

SplineCommand 

-OptionalVelocity 

-MidPoint 

 

 

WeldCommand 

-ArcConditions 

+EmitProgram() Weld 

-WeldOn 

 

ComArcWeld 

-ComArcData 

 

Command 

 
+EmitProgram() 

WeldCommand 

 
 

MoveCommand 

 
 

ProgramCommand 

 
+GetNextFlag() 
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Program generation 

 

Once the hierarchy of the software and the required 

objects had been created, it was then necessary to 

create a framework that could combine the elements to 

generate a compatible program.  The program needed 

to be syntactically correct in order for the robot 

controller to understand it. 

 

This was achieved by the creation of a program object 

that modelled the requirements of a compatible robot 

program.  This meant that all the instructional rules 

were extracted from knowledge of the existing system 

and then modelled.  Some of the syntax was modelled 

within the instruction layer and some could only be 

modelled within the program object. 

 

The program object became a collection of actions 

entered in order of processing.  As stated earlier, 

actions were collections of commands, made up of 

instructions.  The program object contained all the 

instructions that were required to perform the objective. 

 The program object then generated other areas of the 

code that were required to maintain compatibility, such 

as adding positional points. 

 
Figure 8: Program Object ‘XRCProgram’ 

 

Generated robot code 

 

Previous Sections dealt with the concepts of OOP and 

the implementation of those concepts into the welding 

environment.  This Section details the actual robot code 

methodology used by the created system to perform a 

weld.  The robot was considered as two separate sub-

systems, a welding arm and a mobile robot.  The arm 

was considered to be a standard robotic arm and was 

considered to be mounted on the mobile robot.  The 

purpose of this was to allow the welding arm to reach 

as much of the ship as possible.  The mobile robot had 

an operational area of approximately 15m by 10m.   

 

Robot Code Methodology 

 

Figure 9 shows the operational flowchart of the robot 

programs generated by the created systems.  The code 

was kept as simple as possible to make the system more 

robust.  The arm was used to obtain the correct posture 

for welding and the mobile robot was used to navigate 

into, along and out of the weld. 

The positional offset calculation was required to allow 

for any inaccuracies in the position of the work piece 

and also in the robot system itself.  

 

The trajectory of the end effector is shown in Figure 

10.  This path was determined by the requirements of 

the robot system and shows the necessary positional 

points for the corner tracking sub-system (ComArc) 

within the robot controller. 

 

Robot Code Discussion 

 

The discussion presented in this sub-Section relates to 

some of the assumptions made and also to some of the 

real-world findings of the research. 

 

Constraining Arm Movements: The posture for 

welding is critical to the standard of weld quality.  This 

posture is the same relative to any weld within the same 

plane.  The arm system was considered to be a 6 DOF 

articulated model using three pivot joints and three 

hinge joints mounted on a mobile platform.   

 

The calculation of the relative joint positions to achieve 

the correct weld posture for any weld in the horizontal 

plane was a complex task.  To simplify this, a joint 

configuration was found which placed the end effector 

on the centre line of the main pivot joint (joint S) when 

in the correct weld posture.  This meant that for a 

horizontal weld the end effector could be correctly 

aligned to the weld line by rotating the arm about the 

main pivot joint.  A disadvantage was that the S joint 

could not revolve through 360
o
, so an additional joint 

configuration was found.  With these two 

configurations the end effector could be positioned 

correctly for any horizontal weld and only one joint 

(joint S) position needed to be calculated.  

 

End Effector Path 

 

The existing RinasWeld system used a method that 

produced a complex path to the start of the weld.  The 

need for this was not understood and in this research 

that complex path has been replaced by a path which 

obtains the correct weld posture (as discussed earlier in 

the paper), then moves the end effector almost 

vertically above the start point of the weld line and then 

drops the end effector down to the touch sense point as 

seen in Figure 10.  This is based upon the assumption 

that the robot could move freely even when the arm 

was in the weld posture position.  This was not 

unreasonable as the end effector (the lowest point) is 

still over 500mm from the weld deck.  Another 

assumption was that the end effector had a clear 

vertical path.  In the case of large T-bar this may not 

always be the case. 

XRCProgram 

-ArmPointsList 

-ArmVariablesList 

-CommandsList 

-GantryPointsList 

-GantryVariablesList 

-InstructionsList 

-CurrentIndex 

+AddInstruction() 

+EmitHeader() 

+EmitInstructions() 

+EmitInstrHeader() 

+EmitPosHeader() 

+EmitRConf() 

+EmitRFrame() 
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Figure 9: Flowchart showing Robot Code Operation 

 

 
Figure 10: Welding path 

 

This method has reduced the number of positional 

points to move to the start of the weld from around 

thirty to eight.  The main benefit is not in processing 

time but in reliability as the calculation of those eight 

points is simple and highly repeatable.  

 

Results 

 

The system was tested by performing a straight line 

horizontal weld just using the welding arm.  A test 

piece was placed in the robot welder’s workspace.  The 

start and end coordinates of the required weld were 

measured and the data entered into the program 

generation system.  The generated program was then 

sent to the robot controller and run. 

 

The robotic welder performed the weld in the required 

position on the test piece.  The quality of the weld was 

of a satisfactory standard.    

 

Conclusions 

 

This paper began by giving a brief overview of the 

history, concepts and functionality of OOP.  It stated 

that any software written using OOP techniques must 

be carefully planned to provide clear abstracted models 

to design any required classes. 

 

Discussion then switched to the practical application of 

OOP techniques to write software capable of 

programming a mobile welding robot within the 

shipbuilding industry and the hierarchy of welding and 

how requirements may be achieved within a software 

framework.   

 

The specific weld application robot code was 

introduced and that included a description of the robot 

code methodology and a discussion of some of the 

assumptions made to simplify the process. 

 

The program was used to generate a system to perform 

a straight line horizontal weld.  Further development of 

the system could include adding vertical weld or curved 

weld functionality. 
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