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Abstract. The Maximum Independent Set problem in d-box graphs, i.e., in intersection
graphs of axis-parallel rectangles in Rd, is known to be NP-hard for any fixed d ≥ 2. A challenging
open problem is, how close the solution can be approximated by a polynomial time algorithm. For
the restricted case of d-boxes with bounded aspect ratio a PTAS exists [12]. In general case no
polynomial time algorithm with approximation ratio o(logd−1 n) for a set of n d-boxes is known.

In this paper we prove APX-hardness of the Maximum Independent Set problem in d-box
graphs for any fixed d ≥ 3. We give an explicit lower bound 245

244
on efficient approximability for this

problem unless P = NP. Additionally, we provide a generic method how to prove APX-hardness for
other graph optimization problems in d-box graphs for any fixed d ≥ 3.
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1. Introduction. Many optimization problems like Maximum Clique, Maxi-
mum Independent Set, and Minimum (Vertex) Coloring are NP-hard in gen-
eral graphs, but solvable in polynomial time in interval graphs [15]. However, many of
the problems, e.g., Maximum Independent Set ([13], [17]) or Minimum Coloring
([22]), are known to be NP-hard already in 2-dimensional models of geometric intersec-
tion graphs as in unit disk graphs or in intersection graphs of axis-parallel rectangles
in Rd for any fixed d ≥ 2 (shortly, d-box intersection graphs or d-box graphs). Among
basic NP-hard graph optimization problems only Maximum Clique is known to be
solvable in polynomial time in d-box graphs ([4], [21], [26]). In most cases geometric
restrictions on input instances allow to obtain better approximation algorithms for
problems that are extremely hard to approximate in general graphs. On the other
hand, geometric restrictions make the task to achieve hardness results more difficult.

The most studied problem in d-box intersection graphs, Maximum Independent
Set (Max-IS), can be formulated as follows: for a given set R of n axis-parallel d-
dimensional boxes (shortly, d-boxes) find a maximum cardinality subset R∗ ⊆ R of
pairwise disjoint boxes. The problem has attracted attention of many researchers
(e.g., [1], [5], [6], [12], [16], [18], [25]) due to its applications in map labeling, data
mining, VLSI design, image processing, and point location in d-dimensional Euclidean
space. As the problem is NP-hard for any fixed d ≥ 2 ([13], [17]), attention is focused
on efficient approximation algorithms. Let us describe briefly known approximability
results for it; a more detailed overview of them can be found in [6]. The earliest
result was a shifting grid method based PTAS by Hochbaum and Maass [16] in case
of unit d-cubes. This method works for any collection of fat objects in Rd of roughly
the same size and it requires nO(kd−1) time to guarantee an approximation factor of
(1 + 1

k ). Moreover, this approach can be generalized to objects not necessarily fat,
but whose projections to the last (d− 1) coordinates are fat and of roughly the same
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size. This was essentially established by Agarwal et al. [1] in their work on unit-height
rectangles in R2. Generalizing in another direction, Erlebach et al. ([12]) and Chan
([6]) obtained a PTAS for fat objects of possibly varying sizes, such as arbitrary d-
cubes or bounded aspect ratio d-boxes. For arbitrary d-boxes, even for d = 2, the
existence of a PTAS or a constant factor approximation is an open problem. As it
has been observed in several papers ([1], [18]), a logarithmic approximation factor is
possible in this case. For example, the results of Agarwal et al. [1] imply O(n logd−1

2 n)-
time algorithm with factor at most dlog2 ned−1. Nielsen [25] independently described
an algorithm with optimum-sensitive approximation factor (1+log2(is(R)))d−1, where
is(R) is the maximum number of independent boxes of R. Currently, no polynomial
time algorithm is known with o(logd−1 n)-approximation factor, although Berman et
al. [5] have observed that a logd−1

2 n bound can be reduced by arbitrary multiplicative
constant. However, in spite of many efforts it remains open to understand the limits
on the approximability of the Maximum Independent Set problem in intersection
graphs of d-boxes.

1.1. Our Results. In this paper we present the proof of APX-hardness for the
Maximum Independent Set problem in axis-parallel d-dimensional boxes for any
fixed d ≥ 3. It follows, in particular, that for any fixed d ≥ 3 the existence of a
PTAS for the problem restricted to d-boxes with bounded aspect ratio ([12]) cannot
be generalized to arbitrary axis-parallel d-boxes, unless P = NP.

The idea of our proof is based on the following two results:
(i) In Section 3 we observe that Maximum Independent Set, Minimum Ver-

tex Cover, and some other graph optimization problems are APX-hard
even in certain subdivisions of graphs with low maximum degree. For exam-
ple, for any fixed integer k ≥ 0 the Maximum Independent Set problem
is APX-hard in graphs obtained from 3-regular graphs by 2k subdivision of
each edge.

(ii) In Section 2 we prove that each graph obtained from another one by at least
2-subdivision of each edge is an intersection graph of axis-parallel d-boxes for
any fixed d ≥ 3. Moreover, a d-box intersection representation of such graphs
can be provided in polynomial time.

Both results (i) and (ii) are very general and can be of independent interest.
Using them we provide a method how to achieve approximation hardness results in
d-box graphs for other graph optimization problems, e.g., for covering and domination
problems. The method used allows to provide also explicit lower bounds on efficient
approximability. This is demonstrated on the problems Maximum Independent
Set and Minimum Vertex Cover in d-box graphs (for any fixed d ≥ 3) proving
NP-hardness to achieve an approximation factor of 1 + 1

244 and 1 + 1
249 , respectively.

One can notice that the best known approximation algorithms for graph optimization
problems in d-box graphs assume that an intersection representation of an input graph
by d-boxes is given. Therefore it should be emphasized that our hardness results apply
to this setting as well. Moreover, they hold for instances, in which no point of Rd is
simultaneously covered by more than two d-boxes and each d-box intersects at most
three others.

1.2. Definitions and Notations. Recall that a d-dimensional box (shortly, d-
box) is a subset of Rd that is a Cartesian product of d intervals in R. For convenience,
terms an interval and a rectangle are used for a 1-box and a 2-box, respectively.

Definition 1.1. The intersection graph of a family of sets Sv, v ∈ V , is a graph
with vertex set V such that for any u, v ∈ V a vertex u is adjacent to a vertex v if and
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only if Su ∩ Sv 6= ∅. The family {Sv, v ∈ V } is an intersection representation of the
intersection graph. The intersection graphs of families of axis-parallel d-dimensional
boxes are called d-box intersection graphs, or simply d-box graphs.

Definition 1.2. Let G be a simple graph with vertex set V and edge set E. If
G contains a cycle, then the girth of G is the length of its shortest cycle. A vertex
v ∈ V is said to cover itself, all edges incident with v, and all vertices adjacent to
v. An edge {u, v} ∈ E is said to cover itself, vertices u and v, and all edges incident
with u or v. Two elements of V ∪ E are independent if neither covers the other.

For a graph G, a vertex cover is a subset of V that covers all edges E, a domi-
nating set is a subset of V that covers all vertices V , and an edge dominating set is
a subset of E that covers all edges E.

The goal of the Maximum Independent Set problem is to find an independent
set of maximum cardinality in a graph G, let is(G) denote its cardinality. The Min-
imum Vertex Cover problem (Min-VC) asks to find a vertex cover of minimum
cardinality in G, let vc(G) denote its optimum value. The problems Minimum Dom-
inating Set (Min-DS), Minimum Independent Dominating Set (Min-IDS),
and Minimum Edge Dominating Set (Min-EDS), ask for a dominating set, an
independent dominating set, and an edge dominating set of minimum size in G, re-
spectively. Let ds(G), ids(G), and eds(G) stand, respectively, for the corresponding
minima.

Definition 1.3. Let G = (V,E) be a given graph. For an integer k ≥ 0, a
k-subdivision of an edge e = {u, v} ∈ E in G is defined as a replacement of e by a
path with endvertices u and v, and with k new internal vertices. A k-subdivision of
G, denoted by divk(G), is a graph obtained from G by a k-subdivision of each edge e
from E. (All added paths are pairwise disjoint.)

We will consider also subdivisions of G = (V,E) that are not uniform, but edge
dependent. In such case an edge function s := sG from E to nonnegative integers will
be given and the resulting graph will be obtained by s(e)-subdivision of each edge
e ∈ E.

For the basic optimization terminology we refer the reader to Ausiello et al. [3].
For any NPO optimization problem Q, IQ is the set of instances of Q, solQ(x) is the
set of feasible solutions for x ∈ IQ, and for each pair (x, y) such that x ∈ IQ and
y ∈ solQ(x), mQ(x, y) is the value of a feasible solution y. The optimal value for an
instance x ∈ IQ is denoted by OPTQ(x).

Definition 1.4. Let Q and Q′ be two NPO problems and f be a polynomial
time computable function that maps instances of Q to instances of Q′. Then f is
said to be an L-reduction from Q to Q′, if there are constants α, β ∈ (0,∞) and a
polynomial time computable function g such that for every x ∈ IQ (i) OPTQ′(f(x)) ≤
αOPTQ(x), (ii) for every y′ ∈ solQ′(f(x)), g(x, y′) ∈ solQ(x) so that |OPTQ(x) −
mQ(x, g(x, y′))| ≤ β|OPTQ′(f(x))−mQ′(f(x), y′)|.

To show APX-completeness of a problem Q ∈ APX it is enough to show that
there is an L-reduction from some APX-complete problem to Q.

Remark 1.1. Let us recall that all problems Maximum Independent Set,
Minimum Vertex Cover, Minimum Dominating Set, Minimum Edge Domi-
nating Set, and Minimum Independent Dominating Set are APX-complete in
bounded degree graphs. Their inclusion in APX follows from easy counting arguments,
when restricted to graphs of degree at most B, B ≥ 3, is(G) ≥ ids(G) ≥ ds(G) ≥ |V |

B+1 ,

vc(G) ≥ |V |
B+1 , and eds(G) ≥ |V |

2B . (For some of these inequalities it is necessary to
confine ourself to graphs without isolated vertices.) Hence for any of the above min-
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imization problems in bounded degree graphs any feasible solution approximates the
optimal one within a constant. For Maximum Independent Set, the lower bounds
given above apply to any inclusionwise maximal independent set. This provides a
constant factor approximation in all cases. In most cases the proof of APX-hardness
even in 3-regular graphs is known (see [2], [14], [24], and reference therein).

2. Intersection Graphs of Axis-Parallel Boxes. Roberts [27] proved that
each graph can be realized as an intersection graph of axis-parallel d-dimensional
boxes for some d depending on the graph. For any fixed d ≥ 2, the recognition of d-box
graphs is NP-hard ([19], [28]), and hence the reconstruction of their representation by
d-boxes is NP-hard as well. In this section we prove that highly non-trivial subclasses
of general graphs are d-box graphs for any d ≥ 3. Namely, each graph obtained from
another one by at least 2-subdivision of each edge is an intersection graph of d-boxes
for any fixed d ≥ 3 and its intersection representation can be found in polynomial
time.

Theorem 2.1. Let G = (V,E) be a graph, and let an integer s(e) ≥ 2 be given
for each edge e ∈ E. Denote by G′ a graph obtained from G by a s(e)-subdivision
of each edge e. Then for any fixed integer d ≥ 3, the graph G′ can be realized as
an intersection graph of a set of axis-parallel d-dimensional boxes. Moreover, such
realization can be done in time polynomial in |V |+

∑
e s(e).

Proof. Let G = (V,E), s : E → {2, 3, . . . }, and G′ be given as above. First, we
describe the realization of G′ as an intersection graph of a set {R1, R2, . . . , RN} of
axis-parallel boxes in R3, where N = |V |+

∑
e s(e).

We can assume that V = {1, 2, . . . , |V |}, and assign each edge e ∈ E a number
ne using a bijection e ∈ E 7→ ne ∈ {1, 2, . . . , |E|} between E and {1, 2, . . . , |E|}. Each
vertex i ∈ {1, 2, . . . , |V |} will be represented by a 3-box Ri = [2i−1, 2i]× [2i−1, 2i]×
[1, 2|E|]} (see Fig. 2.1).

The graph G′ is obtained from G replacing each edge e = {i, j} ∈ E (assume
i < j) by a path with vertices i, A1

e, A2
e, . . . , A

s(e)
e , j. Now we define the boxes R1

e,
. . . , R

s(e)
e representing vertices A1

e, A2
e, . . . , A

s(e)
e , respectively. The projection on the

third coordinate axis is chosen to be [2ne − 1, 2ne] to ensure that no two boxes Ri
e

and Rj
e′ , which correspond to distinct edges e and e′, intersect. More precisely, define

R1
e := [2i − 1, 2j] × [2i − 1, 2i] × [2ne − 1, 2ne], and put further R′

e := [2j − 1, 2j] ×
[2i − 1, 2j] × [2ne − 1, 2ne] (see Fig. 2.1). If s(e) = 2, one can simply put R2

e := R′
e.

If s(e) ≥ 3, then boxes R2
e, R3

e, . . . , R
s(e)
e will be taken as subboxes of R′

e of the form
Rl

e := [2j−1, 2j]×[cl, dl]×[2ne−1, 2ne], for l = 2, 3, . . . , s(e), where cl, dl are rationals
such that c2 = 2i−1, ds(e) = 2j, 2i < c3 < d2, cs(e) < ds(e)−1 < 2j−1 and, if s(e) ≥ 4,
cl+1 < dl < cl+2 whenever 2 ≤ l ≤ s(e)− 2 (see Fig. 2.1). One can easily check that
the intersection graph of the set {R1, R2, . . . , R|V |}∪

⋃
e∈E{R1

e, R
2
e, . . . , R

s(e)
e } of axis-

parallel boxes in R3 is (isomorphic to) G′. Moreover, the time complexity of this
construction is polynomial in |V |+

∑
e s(e).

To obtain the corresponding realization in Rd for d > 3, one can take the set
{Ri × [0, 1]d−3 : i = 1, 2, . . . , N} of d-boxes.

Remark 2.1. The graph G′ from Theorem 2.1 is of girth at least 9. In any
realization of G′ by axis-parallel d-dimensional boxes no point of Rd is simultaneously
covered by more than two boxes. For the 2-dimensional case a 4K-approximation
algorithm is known for finding a maximum weighted independent set in a given set R
of weighted axis-parallel rectangles, where K is the maximum number of rectangles
in R that simultaneously cover a point in R2 [23].
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c2 d2c3 c4 d3 c5 d4 d5

R2
e

R3
e

R4
e

R5
e

R1

Ri

Rj

R1
e

R′
e

Fig. 2.1.

Theorem 2.1 shows that for every fixed d ≥ 3 the intersection graphs of sets
of d-boxes are from topological point of view as complex as general graphs. It is
far from being clear whether 2-box graphs have much simpler topological structure.
However, the complexity of intersection graphs of axis-parallel lines in dimensions 2
and 3 significantly differs one from another. In the following theorem we show that,
similarly as in case of axis-parallel boxes, highly nontrivial subclasses of general graphs
are already intersection graphs of sets of axis-parallel lines in Rd for any d ≥ 3. On
the other hand, for the 2-dimensional case intersection graphs of axis-parallel lines
are exactly complete bipartite graphs, for which classical optimization problems are
easily solvable.

Theorem 2.2. Let G = (V,E) be a given graph. Suppose that for each edge e ∈ E
an integer s(e) with s(e) ∈ {2, 3}∪{k : k ≥ 5} is given; denote by G′ a graph obtained
from G by a s(e)-subdivision of each edge e. Then the graph G′ can be realized as an
intersection graph of a set of axis-parallel lines in R3. Moreover, such realization can
be done in time polynomial in |V |+

∑
e s(e).



6 M. CHLEBÍK AND J. CHLEBÍKOVÁ

|V |

|V |

(i, i)

(j, j)

L1

e

L2

e

(a)
|V |

|V |

(i, i)

(c, i)

(j, j)

L1

e

L3

e

L2

e

(b)
|V |

|V |

(i, i)

i+c′

i+2c′

(j, j)

L1

e

L3

e

L2

e

(c)
|V |

|V |

(i, i)

i+2c′

i+3c′

(j, j)
L7

e

L5

e

L6

e

(d)

Fig. 2.2. The realization of lines belonging to an edge e = {i, j} for different values of s(e).
The lines parallel to z-axes are displayed as a circle in the corresponding vertex. (a) s(e) = 2, the
cross-section with the plane z = ne. (b) s(3) = 3, the cross-section with the plane z = ne. (c) and
(d) s(3) = 7, the cross-section with the planes z = ne and z = ne + c′, respectively.

Proof. Let a graph G = (V,E), s : E → {2, 3, 5, 6, . . . }, and G′ be given as above.
In what follow we describe the realization of G′ as an intersection graph of a set of N
axis-parallel lines in R3, where N = |V |+

∑
e s(e). Assume that V = {1, 2, . . . , |V |},

and number the edges from E by a bijection e 7→ ne between E and {1, 2, . . . , |E|}.
Each vertex i ∈ {1, 2, . . . , |V |} will be represented as the line Li = (i, i, ·) parallel to
z-axis.

The graph G′ is obtained from G replacing each edge e = {i, j} ∈ E (assume
i < j) by a path with vertices i, A1

e, A2
e, . . . , A

s(e)
e , j. Keeping one such e fixed, we

define lines L1
e, L2

e, . . . , L
s(e)
e representing vertices A1

e, A2
e, . . . , A

s(e)
e , respectively.

(a) Assume first that s(e) ∈ {2, 3, 7}. In all these three cases, we take as L1
e the

line (·, i, ne). If s(e) = 2, we put L2
e := (j, ·, ne) (see Fig. 2.2(a)). If s(e) = 3, then

we take L2
e = (c, ·, ne) and L3

e = (·, j, ne) for some i < c < i + 1 (see Fig. 2.2(b)).
In case s(e) = 7, let L2

e = (i + c′, ·, ne), L3
e = (·, i + 2c′, ne), L4

e = (i + 2c′, i + 2c′, ·),
L5

e = (·, i+2c′, ne +c′), L6
e = (i+3c′, ·, ne +c′), L7

e = (·, j, ne +c′) for some 0 < c′ < 1
4

(see Fig. 2.2(c)-(d)).
(b) Assume now that s(e) = a + 3m for some a ∈ {2, 3, 7} and m ≥ 1. We will

proceed in two steps. In the first one we realize 3m subdivision of e, which reduces the
task to the above case of a-subdivision, where a ∈ {2, 3, 7}. Choose i(1) < i(2) < · · · <
i(m) from (i, i + 1) (we can ensure that for distinct edges e, e′ these sets are disjoint),
and ne < n(1) < n(2) < · · · < n(m) < ne + 1. Take L1

e := (·, i, ne), L2
e := (i(1), ·, ne),

L3
e := (i(1), i(1), ·), L4

e := (·, i(1), n(1)), L5
e := (i(2), ·, n(1)), L6

e := (i(2), i(2), ·), . . . ,
L3m−2

e := (·, i(m−1), n(m−1)), L3m−1
e := (i(m), ·, n(m−1)), L3m

e := (i(m), i(m), ·). Now,
in the second step, it suffices to insert a lines, where a ∈ {2, 3, 7}. The construction
is the same as in (i), but the role of (i, i, ·) and ne is now played by (i(m), i(m), ·)
and n(m), respectively. It is also easy to see that parameters can be chosen in such
way that the intersection graph of set {L1, L2, . . . , L|V |} ∪

⋃
e∈E{L1

e, L
2
e, . . . , L

s(e)
e }

is (isomorphic to) G′. Moreover, time complexity of the construction is polynomial
in |V |+

∑
e s(e).

3. Approximation Hardness Results in Subdivisions of Graphs. Let C
denote the collection of the following problems: Maximum Independent Set, Min-
imum Vertex Cover, Minimum Dominating Set, Minimum Edge Dominating
Set, and Minimum Independent Dominating Set. Each problem from C is well
known to be APX-complete when restricted to graphs of degree at most 3 or even to
3-regular graphs (see Remark 1.1). Moreover, explicit NP-hard gap type results and
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explicit lower bounds on their efficient approximability are known for several of them
([10], [7], [8]). In this section we show APX-completeness for each problem from C
even when restricted to certain subdivisions of low-degree graphs.

First we prove that for Maximum Independent Set and Minimum Vertex
Cover the optimum value for a graph and for its certain subdivisions are in a simple
relation.

Lemma 3.1. Let G = (V,E) be a graph, and let e ∈ E be a given edge. Denote by
G′ a graph obtained from G by a 2-subdivision of the edge e. Then vc(G′) = vc(G)+1
and is(G′) = is(G) + 1.

Proof. Suppose that the edge e = {u, v} is replaced by a path u, u′, v′, and v
with new vertices u′ and v′. For every vertex cover C in G either C ∪{u′} or C ∪{v′}
is the vertex cover in G′, hence vc(G′) ≤ vc(G) + 1.

Now we prove the opposite inequality vc(G) ≤ vc(G′) − 1. Let C ′ be a vertex
cover in G′. We can modify it to a vertex cover C in G with |C| ≤ |C ′| − 1 as follows.
If C ′ ∩ {u, v} 6= ∅, we take C := C ′ \ {u′, v′}. If C ′ ∩ {u, v} = ∅, then clearly both
u′, v′ ∈ C ′ and we take C := {u} ∪ C ′ \ {u′, v′}.

The claim for independent sets follows in a straightforward way.
It is easy to see that the proof of Lemma 3.1 is constructive and that the cor-

responding algorithm applies to all feasible solutions and not only to optimal ones.
Applying iteratively its steps we can obtain the following theorem.

Theorem 3.2. Let G = (V,E) be a graph, and let for each edge e ∈ E an integer
s(e) ≥ 0 be given. Denote by G′ a graph obtained from G by a 2s(e)-subdivision of each
edge e ∈ E. Let Q be either the problem Minimum Vertex Cover, or Maximum
Independent Set. Then

(A) OPTQ(G′) = OPTQ(G) +
∑

e s(e);
(B) every y ∈ solQ(G) can be transformed in polynomial time (in size of G and∑

e s(e)) to y′ ∈ solQ(G′) such that |y′| = |y|+
∑

e s(e);
(C) every y′ ∈ solQ(G′) can be transformed in polynomial time to y ∈ solQ(G)

such that |y′| −
∑

e s(e) ≤ |y| if Q is maximization problem; respectively
|y| ≤ |y′| −

∑
e s(e) if Q is minimization problem.

Proof. We can assume that Q is the Minimum Vertex Cover problem (for
Maximum Independent Set we can argue analogously).

Let K :=
∑

e s(e) and assume that K > 0. We can find a sequence of graphs
G0 := G, G1, . . . , G′ := GK such that for each i = 1, 2, . . . ,K the graph Gi is created
from Gi−1 as in Lemma 3.1 (by a 2-subdivision of one of its edge). To prove the
property (B), consider a vertex cover C in G. Put C0 := C and as in the proof of
Lemma 3.1 find, for each i = 1, 2, . . . , K, a vertex cover Ci in Gi with |Ci| = |Ci−1|+1.
Then C ′ := CK is a vertex cover in G′ with |C ′| = |C| + K. This also shows that
vc(G′) ≤ vc(G) + K. To prove the property (C), consider a vertex cover C ′ in G′.
Now as in the proof of Lemma 3.1 find, for each i = K, K − 1, . . . , 2, 1, a vertex
cover Ci−1 in Gi−1 with |Ci−1| ≤ |Ci| − 1. Then C := C0 is a vertex cover in G with
|C| ≤ |C ′| −K and hence vc(G) ≤ vc(G′) −K. Consequently, vc(G′) = vc(G) + K,
and the property (A) is proved as well.

Also the optimum of several other graph optimization problems behaves well un-
der certain subdivision operations, similarly as for Maximum Independent Set and
Minimum Vertex Cover. We will demonstrate that for Minimum Dominating
Set and Minimum Edge Dominating Set.

Lemma 3.3. Let G = (V,E) be a given graph. Denote by G′ a graph obtained
from G by a 3-subdivision of an edge e ∈ E. Then (i) ds(G′) = ds(G) + 1, and (ii)
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eds(G′) = eds(G) + 1.
Proof. Let G′ be a graph obtained from G by a 3-subdivision of the edge e =

{u, v}, i.e., replacing e by a path u, u′, w, v′, v with new vertices u′, w, and v′.
(i) To prove ds(G′) ≤ ds(G) + 1, consider a dominating set D in G. Adding one

of vertices u′, w, v′ to D we can obtain a dominating set D′ in G′ with |D′| = |D|+1
as follows: (I) If (u ∈ D & v ∈ D) or (u /∈ D & v /∈ D) we take D′ := D ∪ {w}.
(II) If (u ∈ D & v /∈ D) we take D′ := D ∪ {v′}. (III) If (v ∈ D & u /∈ D) we take
D′ := D ∪ {u′}.

Notice that D ⊂ D′ and that the restriction of D′ to the path u, u′, w, v′, v is
an independent set. This observation will be used later in the proof of Theorem 3.4.

To prove ds(G′) ≥ ds(G)+1, consider a dominating set D′ in G′. We can modify
it to a dominating set D in G with |D| ≤ |D′|−1 as follows. If D′∩V is a dominating
set in G, we take D := D′ ∩ V . If D′ ∩ V is not dominating set in G then clearly
u, v /∈ D′, |D′ ∩ {u′, w, v′}| ≥ 2, and we take D := {u} ∪D′ ∩ V .

(ii) To prove eds(G′) ≤ eds(G) + 1, consider an edge dominating set M in G
and denote V (M) the set of end vertices of edges in M . We modify M to an edge
dominating set M ′ in G′ with |M ′| = |M | + 1 as follows: (I) If u /∈ V (M) we take
M ′ := M ∪ {{u′, w}}. (II) If v /∈ V (M) and u ∈ V (M) we take M ′ := M ∪ {{v′, w}}.
(III) If u, v ∈ V (M) and e /∈ M we take M ′ := M ∪ {{u′, w}}. (IV) If e ∈ M we take
M ′ := M \ {e} ∪ {{u, u′}, {v, v′}}.

To prove eds(G′) ≥ eds(G) + 1, consider an edge dominating set M ′ in G′ and
put M0 := M ′ ∩ {{u, u′}, {u′, w}, {v′, w}, {v, v′}}. Clearly M0 6= ∅ and if |M0| = 1
then either {u′, w} ∈ M ′ or {v′, w} ∈ M ′. We can modify M ′ to an edge dominating
set M in G with |M | ≤ |M ′| − 1 as follows. If |M0| ≥ 2 we take M := M ′ \M0 ∪ {e}.
If |M0| = 1 we take M := M ′ \M0.

Using steps of the proof of the previous lemma we can obtain the following theo-
rem.

Theorem 3.4. Let G = (V,E) be a graph, and let for each edge e ∈ E an integer
s(e) ≥ 0 be given. Denote by G′ a graph obtained from G by a 3s(e)-subdivision of
each edge e ∈ E. Then the properties (A)–(C) from Theorem 3.2 are fulfilled for both
problems Minimum Dominating Set and Minimum Edge Dominating Set.

Moreover, if s(e) > 0 for each e ∈ E, then ids(G′) = ds(G′) and every dominating
set D in G can be transformed in polynomial time to an independent dominating set
D′ in G′ with |D′| = |D|+

∑
e s(e).

Proof. We provide the proof for the Minimum Dominating Set problem, the
proof for the second problem is analogous using the corresponding part of the proof
of Lemma 3.3. Let G′ be a graph obtained from G by a 3s(e)-subdivision of each edge
e, i.e., replacing the edge e = {u, v} by a path with endvertices u, v, and 3s(e) new
vertices (the paths are pairwise disjoint). Let K :=

∑
e s(e). We can assume that

K > 0, and find G0 := G, G1, . . . , GK := G′ as in the proof of Theorem 3.2.
To prove the property (B), consider a dominating set D in G. Put D0 := D and

as in the proof of Lemma 3.3 find, for each i = 1, 2, . . . ,K, a dominating set Di in Gi

such that |Di| = |Di−1| + 1, Di−1 ⊂ Di, and the restriction of Di to the path used
to create Gi from Gi−1 is an independent set. Then D′ := DK is a dominating set
in G′ with |D′| = |D| + K. This also shows that ds(G′) = ds(G) + K. Moreover, if
s(e) > 0 for every e ∈ E, then the set D′ is an independent dominating set in G′,
and ds(G′) = ids(G′) ≤ ds(G) + K in this case. To prove the property (C), consider
a dominating set D′ in G′ and put DK := D′. As in the proof of Lemma 3.3 find, for
each i = K, K − 1, . . . , 2, 1, a dominating set Di−1 in Gi−1 with |Di−1| ≤ |Di| − 1.
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Then D := D0 is a dominating set in G with |D| ≤ |D′| −K. This also shows that
ds(G) ≤ ds(G′)−K. Consequently, ds(G′) = ds(G)+K. If s(e) > 0 for every e ∈ E,
then as it follows from the proof, there is a minimum dominating set in G′, which is
also independent, hence ids(G′) = ds(G′).

Remark 3.1. In Theorem 3.4, if s(e) is an odd integer for each edge e then the
graph G′ is bipartite.

Now using Theorems 3.2 and 3.4 we can easily prove APX-completeness of each of
the basic optimization problems Maximum Independent Set, Minimum Vertex
Cover, Minimum Dominating Set, Minimum Edge Dominating Set, and Min-
imum Independent Dominating Set even when restricted to certain subdivisions
of graphs degree at most 3.

Theorem 3.5. (i) The problems Maximum Independent Set and Minimum
Vertex Cover are APX-complete when restricted to 2k-subdivisions of 3-regular
graphs for any fixed integer k ≥ 0.

(ii) The problems Minimum Dominating Set, Minimum Edge Dominating
Set, and Minimum Independent Dominating Set are APX-complete when re-
stricted to 3k-subdivisions of degree at most 3 graphs for any fixed integer k ≥ 0.

Proof. Let k ≥ 0 be a fixed integer. Without loss of generality we can consider only
graphs without isolated vertices. As it was mentioned in Remark 1.1 all considered
problems are in APX when restricted to graphs of degree at most 3. Hence, to prove
APX-completeness of each of the problems Maximum Independent Set, Minimum
Vertex Cover, Minimum Dominating Set, Minimum Edge Dominating Set,
and Minimum Independent Dominating Set restricted to certain subdivisions
of low-degree graphs, it is enough to show that such subdivision operations are in
bounded degree graphs in fact L-reductions to the same problems.

(i) Let us start with Max-IS and a 2k-subdivision operation. To verify the first
condition of an L-reduction we have to check that there is a constant c such that
is(div2k(G)) ≤ c · is(G) for every graph G of maximum degree B, B ≥ 3. As follows
from Theorem 3.2,

is(div2k(G)) = is(G) + |E|k. (3.1)

Recall that for a graph G = (V,E) of maximum degree B the following inequalities
hold: |E| ≤ |V |

2 B and is(G) ≥ |V |
B+1 . Now one can see that the choice α := 1 +

B(B+1)k
2 will do. The second condition from the definition of an L-reduction is satisfied

with β = 1 by Theorem 3.2. Hence the operation that transforms a graph to its
2k-subdivision is an L-reduction that self-reduces Max-IS restricted to graphs of
maximum degree B.

We can argue similarly for Min-VC using Theorem 3.2 and simple lower bound
vc(G) ≥ |V |

B+1 .
(ii) The same approach as in (i) can be used also for problems Min-DS, and

Min-EDS, to prove that a 3k-subdivision is an L-reduction for them, when restriced
to graphs of maximum degree B. It is enough to consider Theorem 3.4 together with
lower bounds is(G) ≥ ids(G) ≥ ds(G) ≥ |V |

B+1 , and eds(G) ≥ |V |
2B . Moreover, a 3k-

subdivision for k > 0 reduces Min-DS to Min-IDS and it is again an L-reduction
when restricted to graphs of maximum degree B.

Remark 3.2. Notice that the theorem above shows hardness results for graphs
with low maximum degree and large girth. The part (ii) for k odd claims APX-
completeness results in bipartite graphs of maximum degree 3 and of girth at least
9k + 3.
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For the later applications, we formulate also the explicit NP-hard gap type re-
sults for Maximum Independent Set and Minimum Vertex Cover restricted to
certain subdivisions of low-degree graphs.

Theorem 3.6. It is NP-hard to approximate
(i) Maximum Independent Set in 2-subdivisions of 3-regular graphs within

1 + 1
387 , and in 2-subdivisions of 4-regular graphs within 1 + 1

244 ;
(ii) Minimum Vertex Cover in 2-subdivisions of 3-regular graphs within 1 +

1
390 , and in 2-subdivisions of 4-regular graphs within 1 + 1

249 .
Proof. (i) We will use the corresponding NP-hard gap results from [10] for Max-

imum Independent Set in B-regular graphs, B ≥ 3. For any ε > 0 it is NP-hard
to decide in B-regular graphs G = (V,E) of whether is(G) < |V |

2

(
1 − 3δB + ε

)
, or

is(G) > |V |
2

(
1−2δB−ε

)
, where δB is a constant for B-regular graphs, δ3 ≈ 0.0103305

and δ4 ≈ 0.020242915. Using the formula (3.1) we see that this translates to the fol-
lowing NP-hardness result for 2-subdivisions of B-regular graphs: for any ε > 0 it is
NP-hard to decide of whether is(div2(G)) < |V |

2 (1 + B − 3δB + ε), or is(div2(G)) >
|V |
2 (1 + B − 2δB − ε). Consequently, the approximation within any constant smaller

than 1 + δB

1+B−3δB
is NP-hard.

(ii) We can argue similarly for Minimum Vertex Cover using NP-hard gap
results for it in B-regular graphs, B ≥ 3 ([10]). For any ε > 0 it is NP-hard to
decide in B-regular graphs G = (V,E) of whether vc(G) < |V |

2

(
1 + 2δB + ε

)
, or

vc(G) > |V |
2

(
1 + 3δB − ε

)
, where δ3 and δ4 are as above.

4. Approximation Hardness Results in d-box Graphs. Theorem 2.1 shows
that any graph obtained from another one by at least 2-subdivision of each edge is a d-
box graph for any d ≥ 3. This immediately implies that many optimization problems
in intersection graphs of d-boxes are as hard to approximate as in general graphs.
It is rather easy to make this conclusion for such problems as Minimum Steiner
Tree or Minimum Traveling Salesman. For these problems replacing edges by
pairwise disjoint paths (and splitting edge weights properly) cannot make the problem
easier to approximate. But for some optimization problems the algorithms with better
approximation ratios have been designed in d-box graphs than in general graphs.

In this section we prove APX-hardness and hence non-existence of a PTAS (unless
P = NP) for some basic graph optimization problems in d-box graphs for any d ≥ 3.
Moreover, all our hardness results apply as well to the setting when a representation
by d-boxes is given as an input, not merely its intersection graph. This makes hardness
results stronger, as the problem to find a d-box intersection representation of a graph
is known to be NP-hard.

Theorem 4.1. Let d ≥ 3 be a fixed integer. Each of the problems Maximum
Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Min-
imum Edge Dominating Set, and Minimum Independent Dominating Set, is
APX-hard when restricted to intersection graphs of sets of axis-parallel d-dimensional
boxes, and hence does not admit PTAS unless P = NP. These hardness results apply
also to instances whose intersection graph is simultaneously of maximum degree 3, of
girth at least k (for any prescribed constant k), and, except Maximum Independent
Set and Minimum Vertex Cover, bipartite as well.

Proof. The proof is straightforward using Theorems 2.1 and 3.5.
These results could be stated as explicit NP-hard gap type results and provide
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explicit lower bounds on its approximability. This is demonstrated on Maximum
Independent Set and Minimum Vertex Cover to show how large explicit values
can be obtained with the current methods.

Theorem 4.2. For any fixed d ≥ 3 it is NP-hard to approximate the Maximum
Independent Set problem within 1+ 1

244 and the Minimum Vertex Cover problem
within 1 + 1

249 in sets of axis-parallel d-dimensional boxes.
Proof. We provide the proof for Maximum Independent Set, the proof for

Minimum Vertex Cover is analogous. Let d ≥ 3 be a fixed integer. Assume that
G′ = (V ′, E′) be a 2-subdivision of a 4-regular graph G = (V,E). As follows from
Theorem 2.1, G′ is an intersection graph of a set R of d-boxes and an intersection
realization of R can be found in polynomial time. Due to Theorem 3.6 it is NP-hard
to decide whether the maximum number of pairwise disjoint d-boxes of R is less than
0.49392715|V ′| or greater than 0.495951417|V ′| (under promise that one of these two
cases occurs). Consequently, it is NP-hard to approximate Maximum Independent
Set within 1 + 1

244 in d-boxes for d ≥ 3.
Remark 4.1. The results of Theorems 4.1 and 4.2 hold also for intersection

graphs of sets of axis-parallel lines for any fixed d ≥ 3. The proofs are the same, only
Theorem 2.2 is used instead of Theorem 2.1.

The method of this paper is rather general and can provide inapproximability
results also for other combinatorial optimization problems on sets of d-boxes for any
d ≥ 3 (see [9] for more details). The question of approximation hardness of these
problems in the 2-dimensional case is open. However, as shown in [9], using subdivi-
sions of planar graphs provides a generic method of proving NP-hardness of all these
problems on sets of axis-parallel rectangles (even unit squares) in the plane. Similar
methods how to prove NP-hardness for problems in geometric intersection graphs of
planar objects have been already used in [11] for unit disk graphs, and in [20] for
intersection graphs of line segments.
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